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We use the self-consistent harmonic approximation (SCHA) to study static properties of the two-
dimensional quantum Heisenberg model with easy-axis anisotropy. We calculate the critical tem-
perature as a function of the spin value, and compare with classical results. Speci�cally, we compare
how the ratio of critical temperatures varies as a function of the spin S in the quantum and classical
cases, for a �xed anisotropy parameter. We see that, for values of spin near 5/2, the classical result
approximates to the quantum results and the classical calculation is justi�ed. We have also studied
the behavior of the magnetization for very small anisotropies. We have shown that our magneti-
zation curves do not present a plateau in the limit of very small anisotropies, as predicted by the
real-space renormalization-group calculations.

I Introduction

Low-dimensional magnets have been extensively inves-
tigated by many theorists and experimentalists in the
last three decades. More recently, the interest on the
properties of two-dimensional (2D) Heisenberg mag-
nets has been greatly revived since the discovery of
high-Tc superconductivity: it is now well known[1]
that the undoped, insulating La2CuO4 has a quasi-
two-dimensional antiferromagnetic behavior. However,
most quasi-two-dimensional magnetic real materials ex-
hibit some kind of anisotropy: the anisotropic proper-
ties often arise not so much from an anisotropy in the
interaction mechanism (which can be wholly isotropic)
but from other sources, such as the presence of a crys-
tal �eld that couples the spins to a certain direction
in the crystal. Then, at least from a theoretical point
of view, a large amount of magnetic materials �ts (un-
der certain circunstances like temperature range) into
one of the two groups: easy-plane or easy-axis models.
Easy-plane 2D magnets have deserved a lot of atten-
tion due to their possibility of showing the topologi-
cal Kosterlitz-Thouless phase transition.[2] The interest
devoted to easy-axis magnetic systems has been consid-
erably smaller.

In a recent paper[3], we have studied the static
and dynamical behavior of the two-dimensional clas-
sical easy-axis Heisenberg model. In the refered pa-
per we have used a classical treatment and our ana-
lytical results, for both static properties and dynamic
correlation functions, were compared to numerical sim-

ulation data combining cluster-Monte Carlo algorithms
and Spin Dynamics. The comparison allowed us to con-
clude that below the transition temperature, where the
SCHA is valid, spin waves are responsible for all the
relevant features observed in the numerical simulation
data: topological excitations did not seem to contribute
appreciably.

It must be emphasized that, although we shall be
concerned only with magnetic systems in this paper,
many of the magnetic Hamiltonians also allow for an
interpretation other then a magnetic one. Most physi-
cal problems concerning mutually interacting elements
that form a spatial array can be mapped into a mag-
netic Hamiltonian by describing it within a pseudo spin
formalism. The advantadge of studying a general phys-
ical problem in its magnetic form is clearly that in mag-
netism several experimental techniques are available to
study the fundamental properties of a system.[4]

The analysis of the general Ising-Heisenberg model
is of interest because, from the experimental point of
view, the presence of some degree of anisotropy in the
interaction is to be expected in nearly all cases.

Here we consider the two dimensional Heisenberg
ferromagnet with easy-axis exchange anisotropy

H = �J
X
n;a

Sn � Sn+a �K
X
n;a

Sz
nS

z
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where the summations run over all distinct pairs of
spin sites n and its nearest neighbors a. As the
anisotropy parameter K ranges from 0 to 1, we go



S.A.Leonel and A.S.T. Pires 429

from the isotropic Heisenberg model to an Ising like

model in which the spins tend to be con�ned along the
�z�direction.

In this paper we consider the contribution of spin
waves, using a self-consistent harmonic approximation
theory (SCHA). As is well known, the SCHA is a rea-
sonable approximation to calculate the transition tem-
perature and low-temperature properties of a system
but it is of limited value in estimating critical proper-
ties. Therefore, in our work, we did not attempt to
do any calculation for critical exponents and related
aspects of a phase transition.

We use a quantum treatment and compare our re-
sult with the classical one in order to see when the
classical calculation is justi�ed.

We give our quantum results for the critical temper-
ature as a function of the anisotropy parameter K=J ,
for a �xed value of the spin, and for small and large
anisotropies. We �nd that, for large anisotropies, the
critical temperature are given as Tc � 2:00K, to be
compared with the 2D single-component Onsager re-
sult for the Ising model value, Tc � 2:27K.

In the limit of small anisotropies, we �nd that
contrary to the real space renormalization-group
calculation[5], the magnetization curves does not ex-
hibit a plateau as a function of temperature, wich
is in agreement with the calculation of Reinehr and
Figueiredo[6].

II Self-Consistent Harmonic

Approximation

Since its original derivation by Bloch,[7] the self consis-
tent harmonic approximation has been found to account
for the low temperature dependence of various proper-
ties of several magnetic insulators, which seem to be
fairly well-described by the Heisenberg model.[8, 9, 10]
Its usefulness stems mainly from the way it takes into
account a substantial part of the interactions among
spin waves, being characterized by simple temperature-
dependent renormalization factors for the unperturbed
spin wave energy.

We start by writing the spin components using the
Dyson-Maleev representation of spin operators
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where a
y
n and an are the Bose spin operators on site

n. The harmonic spin wave Hamiltonian obtained from

(1) is given by

H0 =
X
q

!qa
y
qaq (3)

where a
y
q and aq are the Fourier transforms of a

y
n and

an respectively, and

!q = 4JS[1� (q)] + 4KS (4)

with (q) = 1
2 [cos qx + cos qy]. The spin wave approx-

imation will be reasonable when haynani � S, so it
ought to be fairly good for anisotropies satisfying the
relation T � 4KS2.

Now we simplify the general model by reduc-
ing Hamiltonian (1) to an e�ective harmonic prob-
lem with the e�ect of the anharmonicity embodied in
temperature-dependent renormalized parameters. This
means that the couplings of the model are replaced
by quadratic interactions whose strength is then op-
timized. Details of this method may be found in the
literature[7, 9] and here we give only an outline of those
steps pertinent to our present calculation.

We assume as e�ective Hamiltonian the appropriate
form for a noninteracting gas of Bose excitations

~H0 =
X
q

Eqa
y
qaq : (5)

The spin wave energy is obtained by a variational pro-
cedure based on the inequality for the free energy F

F � ~F0 + hH � ~H0i0 ; (6)

where the brackets indicate the thermal average. Traces
should be taken only over the physical states, that is,
states with no more than 2S spin deviations on a single
site. The minimization of (5) with respect to Eq de-
termines the spin wave energies. We obtain, following
Rastelli et al,[9]

Eq(T ) = 4JS (1� (q))
h
1� ~�(T ) + ~�(T )

i

+ 4KS
h
1� ~�(T )� (q)~�(T)

i
(7)

where
~�(T ) =

1

NS

X
q

nq (8)

~�(T ) =
1

NS

X
q

(q)nq (9)

Here nq is the Bose distribuition

nq = (eEq(T )=T � 1)�1 (10)

Eqs. (7), (8), and (9) are coupled equations which
should be solved self consistently by an iterative
method. These coupled equations have a double-valued
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solution below Tc and no real solution above Tc: this
is the typical behavior for self consistent harmonic ap-
proximations and allows for easy determination of Tc.
The lower branch (for T < Tc) has an unphysical tem-
perature dependence and may be discarded as a spuri-
ous mathematical solution that is physically unstable.

III Static Results

In Fig. 1 the ratio between the quantum and classical
calculation for the critical temperature, for two values
of anisotropy K=J = 1:0 and K=J = 10:0, are given
as a function of the spin. We see that when the value
of the spin increases, the ratio between quantum and
classical results approximate to one. This behavior is
expected for the domain of validity of the classical ap-
proximation.

Figure 1. Ratio between quantum critical temperature and
classical critical temperature as a function of spin S, for two
value of anisotropies, K = 10:0J and K = 1:0J .

Figure 2. Reduced critical temperature Tc=J as a func-
tion of anisotropy parameterK=J ,for small anisotropies and
S = 1=2.

In Fig. 2 we show the critical temperature behav-
ior as a function of the anisotropy parameter K=J , for

small anisotropies and spin S=1/2. We see when K
tends to zero, the hamiltonian (1) tends to the Heisen-
berg isotropic model and the critical temperature tends
to zero, as expected.

In Fig. 3 we give the critical temperature as a func-
tion of the anisotropy parameter K=J , for K=J > 1:0
and a constant value of spin S = 1: Notice that, as
K increases, the dependence of Tc on K=J becomes
linear. For K=J � 1, we recover a continuous spin
Ising Hamiltonian: Eq. (1) can be approximated as
H � J(1 +K=J)Sz

nS
z
n+a = ~KSz

nS
z
n+a. Fig. 3 shows

that, for K=J > 1:0, the results follow a straight line
with slope � 2:0. For these anisotropies, Tc � 2:0K
wich is near to the 2D single-component Ising model
value, Tc � 2:27K.

Figure 3. Reduced critical temperature Tc=J as a function
of the anisotropy parameter K for S = 1:0.

The reduced spontaneous magnetization along the
z-axis is given by

Mz(T )

Mz(0)
= 1� ~�(T ) : (11)

In Fig. 4 we present results obtained from eq.(11)
for small anisotropies, that is, K=J = 0:001, K=J =
0:01, K=J = 0:07, K=J = 1:0, and the spin S = 1=2:
The magnetization calculated using this equation drops
discontinously to zero at a temperature that we take as
Tc.
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Figure 4. Reduced magnetization as a function of temper-
ature for small anisotropies and S=1/2. Curve A corre-
spond to K = 0:001J , curve B to K = 0:01J , curve C to
K = 0:07J and curve D to K = 1:0J .

In two recent papers [5, 6] the authors have cal-
culated the magnetization as a function of temper-
ature for this model with spin value S = 1=2: In
the �rst [5], the author have applied the real space
renormalization-group and have show that, in the limit
of small anisotropies, the magnetization curves exhibit
a plateau as a function of temperature. In the sec-
ond [6], where the authors have applid the formal-
ism of Green's functions, they have shown that, in
limit of small anisotropies, the magnetization curves
did not exhibit a plateau as a function of temperature.
In our calculation, the magnetization curves for small
anisotropies does not exib a plateau, as Fig. 4 shows.
Our calculations is then in agreement with the calcula-
tion of Reinehr and Figueredo[6].

IV Conclusions

We have applied a self-consistent harmonic approxima-
tion to the quantum easy-axis model, obtaining the crit-
ical temperature and magnetization curves. We have
demonstrated that the quantum and classical results
for the critical temperatures are close for values of the
spin greater then one. Thus, we see that the classi-
cal approximation, for values of spin grater than one,
is reasonable and the quantum e�ects are appreciable
only for small values of the spin. In the limit of large
anisotropies, that is K=J >> 1,we get an Ising like
model in which the spins tend to be con�ned along �z

direction. We �nd, in this limit, Tc � 2:00K which
is near Tc � 2:27K for the 2D single-component Ising
model.

We have also shown that the magnetization curves
did not exhibit a plateau for small values of the
anisotropy. This behavior is in agreement with that
observed in the Green's function calculations and is dif-
ferent from that observed in the real-space renormaliza-
tion calculations where a plateau appears.
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