
Brazilian Journal of Physics, vol. 30, no. 2, June, 2000 419

Vector Supersymmetry of Chern-Simons

Theory at Finite Temperature

D.G.G. Sasaki,

Centro Brasileiro de Pesquisas F��sicas,

Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ, Brazil

S.P. Sorella, and V.E.R.Lemes

Departamento de F��sica Te�orica

Instituto de F��sica, UERJ

Rua S~ao Francisco Xavier, 524

20550-013 Maracan~a, Rio de Janeiro, Brazil

Received 1 December, 1999

The existence of the vector supersymmetry is analysed within the context of the �nite temperature
Chern-Simons theory.

I Introduction

Since many years the topological three-dimensional
Chern-Simons [1, 2] theory is the source of continu-
ous and renewed interests, with many applications go-
ing from pure �eld theory to condensed matter physics.
The Chern-Simons gauge model has been the �rst ex-
ample of a topological �eld theory of the Schwarz type,
allowing for the computation of several topological in-
variants in knots theory [1]. It is a remarkable fact
that these computations can be performed within the
standard perturbation theory [3]. Moreover, the Chern-
Simons provides an example of a fully ultraviolet �nite
�eld theory, with vanishing �-function and �eld anoma-
lous dimensions [4]. This feature relies on the existence
of an additional global invariance of the Chern-Simons
action which shows up only after the introduction of the
gauge �xing and of the corresponding Faddeev-Popov
ghost term. This further symmetry is known as vector

supersymmetry [5, 2] since its generators carry a Lorentz
index and, together with the BRST symmetry, give rise
to a supersymmetric algebra of the Wess-Zumino type.
It worth mentioning that the nonzero temperature ver-
sion of the Chern-Simons action is also available [6] and
turns out to play an important role in the applications

of three-dimensional gauge theories to �nite tempera-
ture e�ects. Therefore, it seems naturally to ask our-
selves if the vector supersymmetry is still present in
the case of a nonzero temperature. This is the aim of
the present letter. In particular, we shall be able to
show that this question can be answered in the aÆrma-
tive. In this sense, the fully quantized Chern-Simons
action can be considered as an example of a superym-
metric �eld theory at �nite temperature. The paper
is organized as follows. In Sect.2 we present the �nite
temperature Chern-Simons action and we analyse the
existence of the aforementioned supersymmetry. Sect.3
will be devoted to the study of some consequences and
to the conclusion.

II Finite temperature Chern-

Simons action

In order to analyse the properties of the Chern-Simons
action at �nite temperature let us �rst recall the su-
persymmetric structure of the zero temperature case.
Adopting the Landau gauge, for the fully quantized
Chern-Simons action we have
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Expression (II.1) is left invariant by the following nilpo-

tent BRST transformations

sAa
� = (D�c)

a ; sca = �1

2
fabccbcc

s�ca = ba ; sba = 0 :
(II:2)

In addition, the action (II.1) is known [5, 2] to possess

a further rigid invariance whose generators Æ� carry a

vector index, i.e.

Æ�c = A� ; Æ��c = 0

Æ�b = @��c ; Æ�A� = �"���@��c; (II:3)

and, together with the BRST transformations, obey the

following relations

s2 = 0 ; fÆ�; Æ�g = 0 ;

fÆ�; sg = @� + eqs: of motion ;
(II:4)

which, closing on-shell on the space-time translations,

give rise to a supersymmetric algebra of the Wess-

Zumino type.

Concerning now the nonzero temperature case, for

the quantized Chern-Simons action in the imaginary

time formalism [6], we obtain
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d

where � stands for the inverse of the temperature T .

As is well known, all �elds � = (A; c; �c; b) are required

to obey periodic boundary conditions along the com-

pacti�ed direction � [7], namely
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(II:6)

where the !n are the so-called Matsubara frequencies

[7]

!n =
2�n

�
: (II:7)

We emphasize here that the ghost �elds c; �c, although

being anticommuting variables, have to be periodic in

� . As we shall see in the following, this property will be

crucial for the existence of a supersymmetric structure

at nonzero temperature. In order to write down the

�nite temperature Chern-Simons action in terms of the

Matsubara modes �n, we identify the � -direction with

the x3 variable and we introduce the following useful

two-dimensional notation

An
� = (An

�; �
n) ; �; �;  = 1; 2 ;

"3�� = "�� ; "��"� = Æ� :
(II:8)

Thus, for the action we obtain

ST = Sinv + Sgf ; (II:9)

where
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In terms of the Matsubara modes, the BRST transfor-
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mations (II.2) read
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Moreover, it can be checked that the nonzero tempera-

ture action (II.9) is left invariant by the further follow-

ing rigid transformations Æ�; Æ, namely
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and
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Æ�ca n = 0 :

(II:13)

The generators Æ�; Æ give rise, together with the BRST

operator s, to the following algebraic relations

fÆ; sg �n = �i!n�n + eqs: of motion ;

fÆ�; sg �n = @��
n + eqs: of motion ;

fÆ�; Æ�g = 0 ;

Æ2 = 0 :

(II:14)

We see therefore that the supersymmetric structure

(II.4) of the zero temperature Chern-Simons persists

also in the case of a nonvanishing temperature. In par-

ticular, it is easily recognized that the operator Æ of

eqs.(II.13) corresponds to the generator Æ� of eqs.(II.3)

along the compacti�ed direction � = x3. It is also worth

underlining here that the existence of a nonzero tem-

perature supersymmetric algebra relies on the periodic

boundary conditions required for the Faddeev-Popov

ghosts c; �c. As is well known, this property follows from

the gauge invariance of the nonzero temperature action

ST . Moreover, the supersymmetry turns out to be cru-

cial in order to ensure that no physical excitations show

up in the nonzero temperature case, as it will be dis-

cussed in the next section. In other words, the nonzero

temperature Chern-Simons action remains a topologi-

cal theory, with no local physical degrees of freedom.

III Conclusion

It has been already underlined that in the zero temper-

ature case the existence of the vector supersymmetry is

deeply related to the topological nature of the Chern-

Simons term. We recall in fact that the supersymmetry

shows up only after the introduction of the ghost �elds.

As a consequence, it follows that the contributions com-

ing from the propagating components of the gauge �eld

are exactly compensated by those corresponding to the

ghosts, resulting in the well known ultraviolet �niteness

of the theory. This means that the are no local physical

degrees of freedom, i.e. that the theory is topological.

The existence of a supersymmetric structure in the case

of nonzero temperature suggests a similar behaviour

for the �nite temperature version of the Chern-Simons.

This fact can be easily con�rmed in the abelian case

by showing that the partition function turns out to be

independent from the temperature, implying the van-

ishing of all relevant thermodynamic quantities. Let us

compute in fact the partition function for the abelian

Maxwell-Chern-Simons action
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We have introduced a constant g in order to take into account the Maxwell term. Of course, the pure Chern-Simons

contribution is recovered in the limit g ! 0. For the free energy F we obtain the following result
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where L2 stands for the two-dimensional area. Obvi-

ously, expression (III.17) does not depend from � in the

limit g ! 0. Again, there is a complete compensation

between the ghost and the gauge sectors, as expected

from the existence of the supersymmetry. The analysis

of the ultraviolet �niteness of the nonabelian �nite tem-

perature case as well as the computation of the vacuum

expectation value of Polyakov loops are under investi-

gation.
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