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The space-dependent electric potential equations were determined by solution of non-linear Poisson-
Boltzmann equation, which decribes an erythrocyte membrane model which takes into account the
charges of molecules associated with lipidic bilayer (glycocalyx molecules, outer side, and spectrin,
inner side). It was assumed that on both sides of the membrane the charges are homogeneously
distributed. Therefore, the potential was dependent on the z-coordinate only. Thus, we obtained
the potential pro�le curve. The results are compared to previous ones obtained from more simple
membrane model (Bioelectroch. Bioenerg. 1993, 32:305-315).

I Introduction

It is well known that the passive transport of charged

particles across biologic membranes is strongly a�ected

by electrostatic forces and that the ux rates are de-

pendent on intramembrane �eld forces [1-5]. But re-

alistic values of membrane potential from experimental

searches are obtained only for transmembrane potential

(i.e., di�erence of potential between two points distant

from outer and inner surfaces) [6]. The determination

of potential pro�le, which describes the potential be-

haviour on all adjacent points along perpendicular axis

to membrane, is performed based on theoretical models

[6,7,8]. This is a way to estimate the potential in the

vicinity of the membrane. However, informations from

experimental searches are essential to formulate such

mathematical models which allows the calculation of

the membrane potential in function of space. Thus, sev-

eral models have been suggested for biologic membrane

and several electrostatic theories have been developped

[1,2,6,9]. Some modern concepts, such as interionic cor-

relations and surface conductivity, were already intro-

duced within of the Gouy-Chapman theory, being its

range of validity still discussed [10]. According to Cevc

[6], the e�ects due to surface irregularities and to inter-

facial hydration decrease the signi�cance of interionic

correlation e�ects in several membranes.

In previous work [1], we associated some recent

knowledge on membrane electrostatics with classical

Gouy-Chapmann model to describe erythrocyte mem-

brane. For this model we performed a systematic study

on the e�ects of ionic strength change on the electric

potential pro�le. In the present work, we determine

the potential pro�le for a complex membrane model,

which takes into account electric charges of glycocalyx

and spectrin layers. Donath and Patushenko [11] al-

ready have taken into account space charges of the gly-

cocalyx for calculations of the outer surface potential.

Heinrich et al [2] used space distributions of charges of

glycocalyx, spectrin layer and hemoglobin for numer-

ical calculation of potential pro�les. Here, we deter-

mined the analytical solution for non-linear Poisson-

Boltzmann equation, which includes parameters due to

�xed charges on glycocalyx and spectrin. The results

are compared with previous results obtained for a sim-

ple model [1]. Analytical solution of the electric poten-

tial in neighboring of the membrane is of special impor-

tance for studies involving more complex mathematics,

such as the study of mechanical stability of membrane

by hydrodynamic analysis [12-16].

II Adopted model

As already known, the erythrocyte membrane is con-

stituted by a double bilayer of phospholipids, choles-

terol and proteins [17], being asymmetric by distri-

bution of phospholipids between the two lipid mono-

layers [18]. Molecules of phosphatidilserine and phos-
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phatidylethanolalanine are preferentially located in the

inner monolayer and phosphatidylcholine and sphin-

gomyelin are founded in the outer monolayer [19]. In

the outer surface there is an additional layer rich in

polysacharides, which are associated with the bilayer

molecules, this is called the membrane glycocalyx layer.

On the inner surface there is a protein trap that sup-

ports the membrane, the spectrin [20]. In a solution of

NaCl at pH 7.0, erythrocytes exhibit a negative elec-

trophoretic mobility. This is especially due to charged

molecules of the glycocalyx layer [6]. In the same form,

spectrin has a net negative charge at physiological pH

[21]. In addition, all membranes are embedded in dif-

fuse inorganic salt double layers [6].

Figure 1. (a) Adopetd membrane model. The erythrocyte membrane is constituted by a lipidprotein bilayer, a outer layer
rich in polysacharides, the glycocalyx, and a inner layer of spectrin. The bilayer surfaces located at positions z = �h=2.
The glicocalyx extends from �h=2 to �hg and the spectrin layer extends from h=2 to hp. (b) Phases 1 and 2 correspond
to extracellular medium and cytoplasm medium, respectively. �1(z) represents electric potential along z axis into phase 1,
being �01 the potential for z ! �1 and �Sg the potential on z = �hg (on Sg interface). In phase 2, we have �2(z) as the
electric potential along z, �02 is the potential for z ! 1 and �Sp is the potential on z = �hp (on Sp interface). Phases
g and p correspond glycocalyx and spectrin layer, respectively, being �g(z) and �p(z) the electric potentials along z axis in
these phases. S1 and S2 are limit surface of bilayer and �S1 and �S2 are potentials on these interfaces. QS1 and QS2 are
outer and inner surface charge density of bilayer.

Based on these knowledge, we adopted for our study

the model shown in Fig. 1(a) and (b). The system is

formed by �ve regions: extracellular bulk region (phase

1), glycocalyx layer (phase g), lipidic bilayer (phase

f), spectrin layer (phase p) and cytoplasmatic region

(phase 2). Within glycocalyx and spectrin layer there

are space charge distributions denoted respectively by

�g and �p. The charge densities of these two later layers
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are considered almost constant in the z direction. The

lipidic bilayer has dielectric constant �f and thickness

h (extends from z=-h/2 to z=h/2), and it is limited

by surfaces S1 and S2, as can be seen in Fig. 1(b). At

these points the glycocalyx/bilayer and spectrin/bilayer

interfaces are located, respectively. Similar to the Hein-

rich model [1], the inner surface charges are due only to

the head group of phospholipids. So, there are electric

charge distributions on S1 and S2 and their densities

are denoted by QS1 and QS2 (Fig. 1(b)). The ori-

gin of the Cartesian coordinate axis is located at the

bilayer centre. The electric potential depends only of

the z coordinate, because charge distribution is consid-

ered constant along x and y axis. In aqueous phases,

the electrochemical potentials, �i, of each solute ion 

are considered constant. The charge density � in the bi-

layer �lm is taken as zero (�i(+) = � i(�) = 0). Sg is the

phase 1/glycocalyx interface and Sp is spectrin/phase

2 interface.

III Calculation of potential pro-

�le

The Poisson equation applied for the �ve considered

phases is

r2�i = �4��i=�i i = 1; 2 (1)

and it solution give us the electric potential �(x; y; z)

at any point in each one. The considered boundary are

as follows (see Fig. 1 (b)):

� (I) When z ! �1 and z ! 1, (a) the electric

potential tends to limiting values �01 and �02,

respectively, and (b) the corresponding ionic con-

centration tends to limiting values �01 and �02.

In these regions one has the electroneutrality con-

ditions: �Ze�01 = 0 and �Ze�02 = 0:

� (II) At z = �hg, z = �h=2 and z = hp, the elec-

tric potential is continuous through the surfaces

and takes the values �Sg at the surfaces Sg and

�Sp at surface Sp, �S1 and �S2 at S2.

� (III) In these surfaces the condition of disconti-

nuity of the electric displacement vector is valid.

Solution within phases 1 and 2. The potential equa-

tion for 1 and 2 phases already was calculated in pre-

vious paper [1]. In this regions we have only aque-

ous phase. Using the Boltzmann equilibrium, symmet-

ric electrolytes and electroneutrality condition in both

phases we obtained,

c

�i = 2 ln

�
1 + �i

1� �i

�
+ �0i (2)

�i = tanh

�
�

4
�soi

�
exp[ki(�z + h=2)]

�
(+) for i = 1
(�) for i = 2

(3)

�soi = �sj � �oi (4)

d

ki is related to the of Debye constant, �Sj the surface

potential on Sj (j = g; p); �oi is the bulk potential in

phase i, � = Ze=KT , K is Boltzmann constant, Ze

is molar charge. The reference state is assumed to be

stationary.

IV Solution within glycocalyx

and spectrin layers

Within the Glycocalyx and spectrin layers the Poisson

equation is non-linear due to addition of the term re-

lated to �xed charges on these molecular nets [2].

r2�j(x; y; z) = �
4�

�j
(�j + �fj) for j = g; p (5)

where �j is the electrolytic charge density and �fj refer

to �xed charges into glycocalyx (�fg) or spectrin (�fp).

Using a Boltzmann distribution for the ions in aque-

ous phases and considering charge homogeneity on di-

rections x and y, we have for each type of ions:



406 Frederico A.O. Cruz et al.

c

d2

dz2
�j(z) = �

4�

�j

�
�fj � 2Z0e �0jsinh

�
Z0e

KT
(�j(z)� �sj)

��
(6)

where Z0e is the molar electric charge �0j the corre-

sponding molar concentration of ions in solution within

the phase j, and �j dielectric constant. In simpli�ed

form we have,

d2

dz2
�j(z) = Gj + �jsinh(�uj) (7)

where

Gj = �
4��fj
�j

(8)

�j =
8�Z0�0Se

�j
(9)

uj = �j(z)� �Sj (10)

The �rst order solution of equation 6 give us

c

@�j
@z

=

�
Gj�j(z) +

2

�
cosh[�(�j (z)� �sj)�j ] + Cj

�1=2
(11)

Applying the boundary conditions II on Sg e Sp, we have

@�j
@z

=

�
2Gj�j(z) +

2

�
cosh[�(�j (z)� �sj)�j ] + 2G�sj �

2�j
�

+E2
sj

�1=2
(12)

d

where ESj = @�j=@z; at Sj :

Thus, we can write

Z
(gjuj + 2sinh2(�uj=2) + �j)

�1=2duj = kjz (13)

being

�j = (1=4)�E2
Sj=�i (14a)

gi = (1=2)Gj�=�j (14b)

ki = 2(�i=�)
1=2 (14c)

The solution of equation (13) is not trivial, hence sim-

pli�cations was required. Using Taylor's expansion, we

obtained that

c

[gjuj + 2sinh2�uj=2) + �j ]
�1=2 = aj � (1=2)gja

3
juj + (�a2j�

2 + 3=g2j )=8a
2
ju

2
j + ::::+ (15)

d

which is a in�nite series, where aj = (l=�j)
1=2:

Taking into account experimental data from liter-

ature for erythrocyte parameter values, and previous

results [1], we studied the series terms. We found that,

for uj < 200mV, the terms decrease signi�cantly as

the uj-exponent increases. So the higher order terms

do not contribute appreciably and the equation can be

reduced to Z
(aj � bj)ujduj = kjz (16)

where bj = (l=2)gja
3
j :

Solving the �rst order di�erential equation and con-

sidering electric potential continuity (condition II) at

surfaces S1 and S2,

�j =
�aj + [a2j + 2bj(�j � kj(z + h=2))]1=2

bj
+�Sj

(17)

being

�j = �aj(�Si � �Sj) + (1=2bj)(�Si � �Sj)

So, we can write: for glycocalyx region:
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�1g =
�ag + [a2g + 2bg(�g � kg(z + h=2))]1=2

bg
+ �S1

(18)

where

�g = �ag(�S1 � �Sg) + (1=2bg)(�S1 � �Sg)

for spectrin region:

�2g =
�ap � [a2p + 2bp(�p � kp(z + h=2))]1=2

bp
+ �S2

(19)

where

�p = �ap(�S2 � �Sp) + (1=2bp)(�S2 � �Sp)

Thus, from equations 18 and 19 we obtain, respec-

tively,

ESg = kg=[a
2
g + 2bg(�g �Kg(hg � h=2))]1=2 (20)

and

ESp = kp=[a
2
p + 2bp(�p �Kp(hp � h=2))]1=2 (21)

V Solution within bilayer

Considering that in lipidic bilayer charge density can

be vanished, we have

r2�f (x; y; z) = O (22)

being the solution of a linear function family.

Taking into account the vector electric �eld displace-

ment discontinuity (condition III) on the S1 and S2, and

making some algebraic manipulations, we have:

Ef = �(l=�f)

 
�4�QSi +

�jkj
(a2j + 2bj�ij)(1=2)

!
(23)

being

Ef = (�S1 � �S2)=h

�sj = �j �Kj(hj � h=2):

VI Results

Applying the referent values of the erythrocyte mem-

brane (table 1) in results obtained here and using the

interpolation method, we could trace the potential pro-

�le curve (Fig. 2). Fig. 3 shows the potential pro�le for

the simple model based on the Gouy-Chapman theory

of difuse layers, presented in anterior work [1].

Table 1. Numerical values os the parameters used of the calculations
Parameter Simbol Value Reference
Inverse of Debye length (k)1:34� 109m�1 [1]
Glycocalyx thickness (hg) 5.5 nm [22]
Spectrin thickness (hp) 3.5 nm [23]
Bilayer thickness (h) 7.5 nm [24]
Space charge density of glycocalyx (�g) 3:5� 106 As/m3 [25,26]
Space charge density of spectrin (�p) �1:23� 107 As/m3 [21]
Inner Surface charge density (QS2) -0.09 As/m2 [2]
Aqueous dieletric constant (�i; �j) 80
Bilayer dieletric constant (�f ) 2

VII Discussion and conclusions

The inclusion of the volumetric charge distribution into

Poisson's equation (equation 1) led us to a Poisson-

Boltzmann equation one with non linear characteristics

and not trivial analytical solution. Thus, after search

into possibilities we chose Taylor's series expansion to

simplify its second integration (equation 13). However,

we observed that the series (equation 15) was an in�nit

series, and did not converge for any potential value.

Thus, it had required a detailed study to �nd the in-

tervals where it became convergent, and if it was pos-

sible into expected interval of potential values, taking

into account numerical values of the involved potential

equation parameters. So, we investigated the contri-

bution of each series term and we veri�ed convergence

for numerical values of erythrocyte parameters. Indeed,

the values of the terms decrease signi�cantly with in-

creasing of uj-exponent, considering a potential interval

between 0-200 mV, or 0 � (ui � uj) � 200 mV. Thus,

it became possible to obtain a analytical result for po-

tential, which can be easely used for posterior studies

involving more complex calcules. The potential pro�le

curve shown in the Fig. 2 was traced based on these
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obtained equations.

Using numerical integration, Heinrich et al [2] ob-

tained the potential pro�le for their membrane model,

which considered glycocalyx and spectrin charges

hemoglobin charges. They studied the inuence of ionic

strength on this pro�le. Their results showed that, for

all osmotic states studied, a negative inner surface po-

tential (S2) of more than 60 mV was calculated. For a

ionic strength of 145 mM the potential on the S2 was

about -75 mV, and on S1 (outer bilayer surface) was

about -10 mV. They also shown that at a decrease of

ionic strength causes a increase of negativity of poten-

tial on S2. Our potential pro�le (Fig. 2), which was

obtained from analitical solution of Poisson-Boltzmann

equation, presents the same shape than those shown by

Heinrich et al [2]. We considered in our calculation a

ionic strength of 172 mM.

Figure 2. Electric Potential Pro�le of the erythrocyte mem-
brane calculated by use of the potential equations from
analytical solution of nonlinear Poisson-Boltzmann equa-
tion. Numerical values adopted are shown in table 1. (Ionic
strength = 172 mM).

In a previous paper [1], we adopted a simple model,

which was based on the Gouy-Chapman theory of dif-

fuse layers, in which space distributions of �xed charge

of glycocalyx and spectrin layers was neglected. Com-

paring the curve of Fig. 2 with that of previous re-

sults (Fig. 3), we observed that the pro�le su�ers some

change when we took into account these additional

charges. Within layers where there are �xed charges,

the potential varies less pronouncedly than when these

space distribution of charges are neglected. In this case

(Fig. 3), the observed potential varies exponentially in

both two sides, and the linear part of the inner curve

presents a pronounced inclination. As can be seen in

Fig. 2, the inclination of potential pro�le in the neigh-

boring of the bilayer is smaller than that shown in Fig.

3 in the same place. In the simple model [1], we adopted

a distance of 10 nm between the two parallel planes

which limit the membrane region. So, the outer surface

was located approximately at half the distance between

the bilayer surface and the more extreme point of gly-

cocalyx layer. All charges belonging to this membrane

side (bilayer surface and neighbouring �xed charges)

were taken into account as surface charge. Thus, in that

case, we circumvented space charges by treating them

as surface charges becoming trivial the solution of the

Poisson-Boltzmann equation by analytical means. By

confront of these two �gures, it can be observed the im-

portance of glycocalyx charges on potential within the

outer membrane surface, as well as the potential within

spectrin layer at the inner surface is mainly determined

by the charges in this region.

Applying the analytical solution of the electric po-

tential of the membrane in the hydrodynamic analysis,

we can study the inuence of these charges on the me-

chanical stability of the membrane. As can be seen in

Fig. 2, in spectrin region there is an important electric

�eld, and its e�ect on transport phenomena through

membrane may be imperative, as well as on regulation

of other membrane functions.

Figure 3. Electric Potential Pro�le of the erythrocyte mem-
brane calculated by use of the potential equations from an-
alytical solution of the linear Poisson-Boltzmann equation.
QS1 = 1:41�10�3 A.s/m2, QS2 = �9�10

�2 A.s/m2, h = 10
nm. (Ionic strength = 172 mM).
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