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The geometric language of General Relativity is not normally related to Condensed Matter (CM)
Physics since it is the electromagnetic and not the gravitational interaction that dominates the
physics of CM systems. What points in common would then CMP have with Cosmology and the
dynamics of objects in a gravitational �eld? There is at least one that is very important: topological
defects formed in symmetry breaking phase transitions. To explore the similarities and di�erences
here has been a very fruitful experience for both sides. On one hand, topological defects in solids
started to be described by a gravity-like theory including torsion and, on the other hand, experiments
have been proposed and performed in CM systems with the purpose of testing cosmological theories.
Some examples are: 1) Landau levels and the Aharonov-Bohm e�ect of electrons moving in a crystal
containing a screw dislocation can be described in a simple way in a geometric formalism; 2) closed
timelike curves have been proposed in the vicinity of vortices in superuid Helium; 3) Kibble
mechanism, for the generation of topological defects, has been experimentally veri�ed in liquid
crystals. In summary, Condensed Matter Physics with its rich diversity of systems and phenomena
and of relatively easy access to experiments, appears as a laboratory for testing hypotheses of
gravitational theory and cosmology involving topological defects. In this work I summarize recent
results in this interface area focusing mainly in the results obtained by our research group.

I Introduction

Topological defects, both in Condensed Matter Physics
and in Cosmology, are formed during symmetry break-
ing phase transitions[1]. The analogy is so strong that,
in the past few years, some \cosmological experiments"
have been carried out in liquid crystals[2] and super-
uid Helium[3], shading a new light on the dynamics
of the defect formation process. Although quite conve-
nient to study the dynamics of defect formation, those
systems do not provide an easy experimental setting for
the study of static properties of the defect background,
due to the high mobility of the defects. On the other
hand, topological defects in crystalline solids, with their
very low mobility, are just ideal for this purpose. But,
how similar are these defects to space-time defects? It
is the intent of this work to briey review these sim-
ilarities and to present a summary of results on this
research area obtained by our research group.

There is a formal equivalence between three-
dimensional gravity with torsion and the theory of de-
fects in solids[4]. Defects in crystals are formed when
the continuous translational and rotational symmetries
of the liquid are broken into the discrete symmetries

of the lattice during the freezing transition. They can
be conceptually generated by a \cut and glue" process,
known in the literature as the Volterra process[5]. This
process gives a unifying view of the topological line de-
fects. That is, take a cylinder of a continuous elastic
material and make a radial cut in it, from its axis out.
Displacement of the surfaces of the cut with respect to
each other and subsequent glueing will generate a line
defect whose core coincides with the axis. Considering
cylindrical coordinates, if the displacement is:

(i) along the z-direction a screw dislocation is
formed.

(ii) along the r-direction, an edge dislocation is
formed.

(iii) along the � direction, which implies the addition
or removal of a wedge of material, leads to a disclina-
tion.

(iv) a combination of both (i) and (iii) it produces
a dispiration.

It is clear then, that the core of such line defects
are associated to geometric singularities. Here we come
close to gravity theory, where geometric singularities
are sources of gravitational �eld which, on the other
hand, is described by a deformation of the space-time
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from the at Minkowsky geometry.

II Geometric model for line de-

fects in elastic solids

It is well known that elastic solids with topological de-
fects can be described by Riemann-Cartan geometry[6].
Recently, Katanaev and Volovich[4] have shown the
equivalence between three-dimensional gravity with
torsion and the theory of defects in solids. The defect
acts as a source of a \gravitational" distortion �eld.
The metric describing the medium surrounding the de-
fect is then a solution to the three-dimensional Einstein-
Cartan equation.

Since we are discussing line defects it is convenient
to imagine at three-dimensional space as a pile of
\pancakes". This way we can imagine a Volterra pro-
cess for a single \pancake", and then, extend the de-
formation to the rest of the pile. Obviously the metric
describing the space is

ds2 = dz2 + dr2 + r2d�2; (1)

in cylindrical coordinates.

A screw dislocation corresponds to a pile of cut
\pancakes" like the one in Fig. 1. The displacement
between the edges of the cut is the so-called Burgers
vector of modulus b and directed along the z-axis. The
corresponding metric is[7]

ds2 = (dz +
b

2�
d�)2 + dr2 + r2d�2: (2)

Figure 1. Screw Dislocation

Figure 2. Disclination

Fig. 2 corresponds to the disclination. The met-
ric of a disclinated medium, which is in fact the space
section of the cosmic string metric[8], is given by

ds2 = dz2 + dr2 + �2r2d�2; (3)

where � gives a measure of the angular de�cit. Since
a slice of angle 2�(1� �) has been taken out of space,
the total algle around the z-axis is now 2��.

The above metrics are in fact particular cases of
the one describing the spinning chiral string space-time
considered by Gal'tsov and Letelier[9] and Tod[10]

ds2 = (dt+ Jd�)2 � dr2 � �2r2d�2 � (dz + �d�)2; (4)

Figure 3.Edge dislocation viewed as a disclination dipole.

An edge dislocation may be formed [4] by placing
a pair of opposing parallel disclinations next to each
other as a dipole (Fig. 3). Each disclination is made
by either removing or inserting a wedge of material. In
the continuum limit, at large distances from the defect,
the medium is described by the metric [4]

ds2 = dz2+

�
1 +

m

2�

2hr sin � � h2

r2

�
(dr2+r2d�2); (5)
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in cylindrical coordinates. The wedge angles are given
by �m and the disclinations are at a distance h apart.
The Burgers vector ~b = �mhx̂ is therefore along the
x-axis and the defect itself is along the z-axis.

Naturally, there are more defects and, consequently,
more metrics. They are all listed in[7]. We will be in-
terested in just the ones described above.

III Some results

We have been mainly interested in the physical prop-
erties of crystals with defects where the defects have
the passive role of providing the background for par-
ticles (electrons or holes) or �elds (electromagnetic or
scalar) to be around. We have also looked at simi-
lar defects in space-time. The defects impose bound-
ary conditions on those objects leading to bound and
scattering states for the particles: binding of elec-
trons and holes to defects[12, 13], Landau levels in
the presence of the defects[14, 15], localized states[16],
geodesic motion[11, 17], transport phenomena[18],
Aharonov-Bohm e�ect[19, 20, 21], quantum scattering
by defects[22], the acquisition of a quantum (Berry's)
phase[23]. For the �elds, the boundary conditions due
to the defects lead to classical and quantum e�ects like
self-force[24, 25, 26], Casimir e�ect[27, 28] and correc-
tions to physical constants[29]. Among these results I
choose to comment briey on: (a) the geodesics around
an edge dislocation[11], (b) the self-force on a charged
particle also near an edge dislocation[26], (c) the cor-
rection to the magnetic moment of the electron near
a disclination[29] and, �nally, (d) the Aharonov-Bohm
e�ect around a screw dislocation[20, 21] .

(a) As shown in Fig. 3, an edge dislocation may be
formed by removing a rectangular slice of material and
glueing the loose edges. The medium with this defect is
associated to the metric (5) which describes essentially
a at three-dimensional space with singular torsion on
the z-axis. Notice the assymmetry of the metric as one
go around the z-axis. This become quite evident when
one observes the geodesics in such medium[11] (Figures
4-6). Each �gure shows a bundle of geodesics, parallel
to each other at in�nity, approaching and being de-
ected by the dislocation located at the origin of the
plots.

(b) The boundary conditions imposed by a topolog-
ical defect on the electric �eld of a point charge in its
neighborhood provokes a distortion of the �eld lines.
This can be interpreted as due to image charges, just
like in the case of a point charge in the presence of a
ground conducting plane. In this case the interaction
energy between the charge and its image is the self-
energy of the charge. Since it depends on the distance
between the charge and the plane, the derivative of this
energy with respect to this distance gives rise to an ef-
fective force between the charge and the plane. The

same also happens for a point charge and a topological
defect[26]. Fig. 7 shows a plot of the self-energy of a lin-
ear charge density parallel to an edge dislocation (� and
' are the coordinates of the line of charge with respect
to the defect, whose location coincides with the z-axis).
The lack of axial symmetry of the defect is manifest in
the plot. Notice that, as the charge goes around the de-
fect, there are alternating regions of e�ective attraction
and repulsion, respectively.

(c) Analogous to the classical �eld phenomenon of
the self-force there are also quantum �eld e�ects due to
topological defects. The Casimir e�ect[27, 28] being the
best known example of such phenomena. A less known
e�ect, but very important for condensed matter exper-
iments is the correction of the magnetic moment of the
electron due to a defect[29]. Quantum electrodynamics
gives us

� =
e~

2mc

�
1 +

e2

2�~c
+ : : :

�
; (6)

for the magnetic moment of the electron in empty space.
The correction to the Dirac value � = e~

2mc
is due to the

coupling of the electron to the quantized magnetic �eld.
When the quantized electromagnetic �eld is submitted
to the boundary conditions imposed by a topological
defect the correction obviously change. For an electron
bound to a negative disclination it is found[29]

Æ�

�
=

(1� p2)s2(p)e6

288�4~3c3�2
; (7)

where p = 1=�. A negative disclination corresponds to
0 < p < 1, therefore Æ�

�
> 0, con�rming experimental

evidence[30] that negative curvature disclinations en-
courage larger local moments.

(d) Here, just a brief comment on the Aharonov-
Bohm e�ect around a screw dislocation, which has been
studied in detail in[20, 21]. The well-known original
Aharonov-Bohm e�ect involves a charged particle mov-
ing outside a region with magnetic ux. If the ux is
con�ned to a string, it can be described, in the Kaluza-
Klein approach, as the �ve-dimensional metric

ds2 = dt2 � dz2 � dr2 � r2d�2 � (dx5 +
�

2�
d�)2; (8)

where � is the magnetic ux and x5 the �fth dimension.
Now, compare this metric with the four-dimensional
metric of a screw dislocation (see Equation (2)

ds2 = dt2 � (dz +
b

2�
d�)2 � dr2 � r2d�2: (9)

Notice that the Burgers vector b plays the same role as
the magnetic ux � making it clear that the Aharonov-
Bohm e�ect should appear for a particle moving in the
presence of a screw dislocation. Indeed, the Schr�odinger
equation will look the same in either background (�
being replaced by b) being exactly Aharonov-Bohm's
equation[19].
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Figure 4. Geodesics around edge dislocation (1).

Figure 5. Geodesics around edge dislocation (2).

Figure 6. Geodesics around edge dislocation (3).

Figure 7. Self-energy of a linear charge density parallel to
an edge dislocation.

IV Other systems

Topological defects appear in nature as consequence of
symmetry-breaking phase transitions. An important
issue in cosmology is whether the observed structure
of the universe contains relics of topological defects
formed as the early universe cooled. What is the de-
fect density after a phase transition? In 1976 T. W. B.
Kibble[31] proposed a statistical procedure for calcu-
lating the probability of string formation in the phase
transitions in the early universe. In 1991 Chuang and
coworkers[32] and in 1994 Bowick et al. made experi-
mental veri�cations of the Kibble mechanism for string
formation in liquid crystals. Since 1994 di�erent ex-
perimental groups[3] have tested Kibble's mechanism
in superuid He4.

More interesting than superuid He4 are the super-
uid phases of He3 which are quantum liquids with in-
teracting fermionic and bosonic �elds. Its rich struc-
ture gives rise to a number of analogues of cosmological
defects[33]: 1) the dysgiration, that simulates the ex-
tremely massive cosmic string; 2) the singular vortex,
which is analogous to the rotating cosmic string, 3) the
continous or ATC vortex, whose motion causes \mo-
mentogenesis", which is the analogue of baryogenesis in
the early universe; 4) planar solitons, that have event
horizons similar to rotating black and white holes; 5)
symmetric vortices (in a thin �lm), which admit the
existence of closed timelike curves through which only
superuid clusters of anti-He3 atoms can travel and vi-
olate causality; 6) moving domain walls that can gen-
erate Hawking radiation; and so on.
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There are still the superconductors with their vor-
tices; glasses with their curved space description that
require disclinations and perhaps monopoles; magnets
with their disclinations and domain walls...

V Conclusion

Condensed Matter Physics has much bene�ted from
tools and ideas from gravitation and cosmology and
pays that back by o�ering a laboratory for testing some
cosmological or gravitational hypotheses.
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