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Hadron-Hadron Scattering at High Energies
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We review the role of the QCD vacuum structure in the determination of the properties of states
and processes occurring in the con�nement regime of QCD. The vacuum correlation model of non-
perturbative QCD is mentioned as a bridge between the fundamental theory and the description of
the experiments. The model of the stochastic vacuum provides the framework in which a simple and
e�ective description of the high-energy pp and �pp data can be given, leading to a determination of
relevant parameters of non-perturbative QCD and to a good description of the data. A slow increase
of the hadronic radii with the energy accounts for the energy dependence of all observables.

I Physical QCD Vacuum and

High-Energy Phenomenology

A �rst observed manifestation of vacuum properties as
a source of strong interaction dynamics occurred in
the Regge phenomenology of high-energy elastic pro-
cesses. A dominating and universal contribution to
these processes consists in the exchange of an entity,
called pomeron, carrying the quantum numbers of the
vacuum.

The general features of the hadronic elastic pro-
cesses (pp, �pp, �p, Kp, ...) at high energies are rather
simple to describe [1]. For all processes, there is a
strong forward peak, with the elastic di�erential cross-
section d�e`=dt (t is the squared momentum transfer
four-vector) decreasing exponentially with t. The to-
tal cross-sections �rst decrease with the energy, until
a minimum is reached at an energy around 10 GeV,
and then increase again, slowly. The values of the total
cross-section �T (s) and of the slope parameter of the
elastic di�erential cross-section
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�����
t=0
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are the basic characteristic quantities of these hadronic
elastic processes at very low momentum transfers.
These quantities are well described through the Regge
exchange phenomenology, developed since the years
1960's. Actually, the Regge pole parametrization [2]
yields an excellent phenomenological representation of
the bulk of the data on high-energy scattering at small
momentum transfers, t �< 1GeV2 . The total cross-
section can be written in this approach as
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and the di�erential elastic cross-section as
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each term of the sums corresponding to a Regge tra-
jectory. At high energies, the process is dominated by
the term with the largest value of �i(0), the so-called
pomeron trajectory, �1(t) � �p(t), with the quantum
numbers of the vacuum (J = 0, I = 0, C = +1). It
has been shown by Donnachie and Landsho� [3] that an
excellent description of the scattering data at high en-
ergies and small momentum transfers can be obtained
with the exchange of one pomeron, with a linearly in-
creasing Regge trajectory �p(t) = 1:0808 + 0:25t. The
parameter �p determines the strength of the pomeron
coupling to the hadrons. For higher momentum trans-
fers, terms corresponding to two and more pomeron
exchanges must be added to the amplitude. The value
�p(0) = 1:0808, being larger than 1, would lead to
a violation of the Froissart{Martin bound [4] for ex-
tremely high values of s, and there it must be modi�ed
by the presence of Regge cuts, which occur naturally in
a Reggeon �eld theory.

With the pomeron trajectory alone contributing to
the Regge expansions in eqs.(2),(3), we obtain for the
energy dependence of the total cross-section

�T (s) = �T (s0) (s=s0)
0:0808 ; (4)

and of the slope parameter

B(s)�B(s0) = 2�0(t) log(s=s0) ; (5)

where the t dependence of the residue �(t) has been
neglected. A direct relation between the values of total
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cross-sections and slope parameters is

�T (s) = �T (s0) exp

�
0:0808

2�0(t)
[B(s)�B(s0)]

�
: (6)

All these relations (4)-(6) are well ful�lled by the data
at high energies.

Quantum chromodynamics, as the fundamental the-
ory of the strong interactions, should be able to ex-
plain this successful and simple Regge phenomenology.
Since the pomeron has the quantum numbers of the
vacuum, it is natural to associate its exchange with
the exchange of gluons. The understanding of the de-
tailed nature of the gluon-�eld processes behind this
phenomenology is of course an important problem. It
is now understood that many important features are
due to non-perturbative QCD e�ects. Soft processes,
respecting (even microscopically) the quark and colour
con�nement in the colliding hadrons, is a domain where
the non-perturbative aspects of QCD can be explored
and studied. This domain mixes the parameters de-
scribing properties of the QCD �eld (gluon condensate,
correlation length) with those describing the colourless
hadrons. The e�ective dynamics providing the basis for
the phenomenological description of the data must have
the characteristic features of the pomeron exchange
mechanism of Regge phenomenology [2]: vacuum quan-
tum numbers exchanged between well determined and
unchanged hadronic structures. This mechanism leads,
for all hadronic systems, to total cross-sections which
increase with the energy [3] somewhat like s0:0808.

Since at small momentum transfers the strong cou-
pling constant becomes large, one has to rely either
on re�ned resummation schemes in perturbation the-
ory or on non-perturbative models. Landsho� and
Nachtmann [5] have constructed a model in which the
pomeron is described by the exchange of two gluons
with modi�ed propagators, containing a new length
scale �, which implies a modi�cation of the long-range
QCD forces. Nachtmann later re�ned this model [6],
describing a system of two quarks interacting through
an external vector �eld (gluon �eld), which is supposed
to vary slowly in time, compared with the frequency as-
sociated to high-energy quark motion. Since the quarks
in the problem have very high energies, and only very
small angle scattering is considered, the WKB (eikonal)
approximation for the scattering in an external �eld can
be used, and the quarks can be put in light-like paths.

Hadron{hadron scattering has been treated in the
same framework [7], with the purpose of explaining
the elastic scattering data in a non-perturbative QCD
framework. This treatment requires the functional in-
tegration over the external gluon �elds (denoted by the
bracket iA), which cannot be performed exactly. Use is
then made of the same vacuum correlation model [8, 9]
introduced in Euclidean �eld theory for investigations
of hadron spectroscopy, where it provides an explana-
tion of con�nement (the linearly rising potential) [10] as

a dynamical consequence of the vacuum structure. The
basic assumption of the model is that the complicated
integration over the low-frequency (non-perturbative)
contributions to the gluon �elds can be approximated
by a cluster expansion, ideally by a Gaussian process,
which is determined by the correlators of two �elds.

The hadronic structure enters the calculation in the
simplest way, through Gaussian wave-functions, with a
radial parameter S, describing the sizes of the particles.
Mesons are treated as simple q�q systems. Baryons have
been treated either through a con�guration of three
quarks symmetrically distributed in space or through
a diquark model (in this case the baryons enter the cal-
culation in a form totally similar to that of the mesons).
At the end, hadron physics enters in the results for the
observables in high-energy scattering only through the
hadronic size parameters S. The relevant QCD parame-
ters in the calculation are the gluon condensate hg2 FF i
and the correlation length a.

The evaluation of the hadron-hadron scattering am-
plitudes proceeds through the evaluation of eikonal
functions, and of averages over the hadronic wave-
functions. After the necessary trace evaluations (the
hadrons are colour-singlet objects) and numerical inte-
grations, the pro�le functions that give a representa-
tion for the amplitudes in impact parameter space are
otained. Then the expressions for the observables of to-
tal cross-section and logarithmic slope are constructed
[7], combining QCD quantities and hadron extension
parameters in the forms

�T = �(
S1S2
a2

)�=2 (�hg2FF i)2a10 ; (7)

and

B = 1:858a2 +


2
(S21 + S22) ; (8)

where S1 and S2 denote the hadron sizes.
Comparing the above expressions with those of

Regge phenomenology, eqs.(4) and (5), we observe that
now the parameters S1, S2 representing the hadronic
extensions have taken the place of the energy parameter
s. If we consider hadron-hadron scattering for hadrons
of equal sizes (as in pp and p�p scattering), a direct re-
lation between the observables �T and B, analogous to
eq.(6), can be obtained by eliminating S = S1 = S2,
and it has the form

�Tpom = ���=2(� < g2FF >)2a(10�2�=2)

�(B � 1:858a2)�=2 : (9)

It is very interesting and important that both eqs.(6)
and (9) represent well the present data, which go up to
the energy of 1800 GeV.

Using the experimental data for �T and B at a
given energy, eqs.(7) and (8) provide a relation be-
tween values of the gluon condensate and the corre-
lation length. Independent relations between these two
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quantities can be extracted from the lattice calculation
[11], and also from the results of the vacuum correlation
model derivation for the linear quark-quark potential
[9, 10]. These three independent relations �t together
perfectly well, providing a unique determination of the
values of hg2 FF i and a, which are two fundamental
properties of the physical vacuum of quantum chromo-
dynamics.

Several models relate the total high-energy cross-
sections to the hadronic radii [12]. This is a character-
istic feature also of the model of the stochastic vacuum
which gives speci�c predictions for the size dependence
of the high-energy observables for di�erent hadronic
systems [7]. These predictions account for the observed
ratios of �p to pp (or �pp) total cross-sections, which
have been thought of as indications supporting addi-
tive quark models, and also account for the important
avour dependence of the observables. The model of
the stochastic vacuum treats simultaneously the pp and
�pp systems, describing the high-energy data in terms
of non-perturbative QCD parameters, and relating the
energy dependence of the observables with radius de-
pendence. The knowledge of the hadronic structures
required for the description of the soft high-energy data
does not go beyond the information on their sizes, the
simplest and most trivial transverse wave-function giv-
ing all information required for the determination of
the observables. We show that the energy dependence
of the total cross-section and of the forward slope pa-
rameter can both be accounted for by a slow variation
of the radius associated to the transverse wave-function.

The treatment of soft hadron-hadron scattering, es-
sentially including the con�nement properties of quan-
tum chromodynamics, cannot be made straightfor-
wardly, requiring use of approximations and models.
The model of the stochastic vacuum, originally con-
ceived to treat non-perturbative e�ects in low-energy
hadron physics [8], was later applied to explain high-
energy soft scattering [7]. The treatment is based on the
concept of loop-loop scattering, which allows a gauge-
independent formulation for the amplitudes. The loops,
formed by the quark and antiquark light-like paths in a
moving hadron, have their contributions added incoher-
ently, with their sizes weighed by transverse hadronic
wave-functions.

We review the results of a more complete calcula-
tion of the high-energy observables (total cross-section
and slope parameter), in which both Abelian and non-
Abelian contributions to the �eld correlator are taken
into account. The role of the parameter � measuring
the strength of the non-Abelian part, which was deter-
mined in lattice calculations to be about 3/4, is studied
and we observe that the range of values that suits the
description of the high-energy data leads to a con�rma-
tion of the lattice results. We take into account all avail-
able data on total cross-sections and slope parameters
in pp and �pp scattering , which consist mainly [13, 14]

of ISR (CERN) measurements at energies ranging fromp
s = 23 GeV to

p
s = 63 GeV, of the

p
s = 541� 546

GeV measurements in CERN SPS and in Fermilab,
and of the

p
s = 1800 GeV information from the E-

710 Fermilab experiment. These data are shown in ta-
ble 1. Besides these, there is a measurement [15] of
�T = 65:3�2:3 mb at

p
s = 900 GeV and there are the

measurements of �T = 80:6� 2:3 and B = 17:0� 0:25
GeV�2 in Fermilab CDF [16] at

p
s = 1800 GeV which

seem discrepant with the E-710 experiment at the same
energy. A measurement by Burq et al.[17] at

p
s = 19

GeV seems to disagree with the ISR data, presenting
a too high value for B = 12:47 � 0:10 GeV�2 (possi-
bly because the measurements are taken at rather large
momentum transfers; for our purposes these should be
smaller than the hadronic scale of � 1 GeV). This point
at
p
s = 19 GeV was taken as the sole input in the �rst

calculation made [7].

Table 1. Experimental high-energy data from CERN
ISR, CERN SPS and Fermilab.

p
s �T B Ref:

(GeV) (mb) (GeV�2) [13]
23:5 39:65� 0:22 11:80� 0:30 (a)
30:6 40:11� 0:17 12:20� 0:30 (a)

pp 45:0 41:79� 0:16 12:80� 0:20 (b)
52:8 42:38� 0:15 12:87� 0:14 (a)
62:3 43:55� 0:31 13:02� 0:27 (a)

30:4 42:13� 0:57 12:70� 0:50 (a)
52:6 43:32� 0:34 13:03� 0:52 (a)

�pp 62:3 44:12� 0:39 13:47� 0:52 (a)
541 62:20� 1:50 15:52� 0:07 (c)
546 61:90� 1:50 15:28� 0:58 (d)
1800 72:20� 2:70 16:72� 0:44 (e)

In Fig.1 we plot the two observables, �T and
B against each other. At the ISR energies we use
�Tpom = (21:70 mb)s0:0808 as representative of the
non-perturbative contributions, instead of the full ex-
perimental values. At the highest energies (541-1800
GeV) it is believed that the process is essentially non-
perturbative. The relation between the two observables
is parametrized in the form

B = B0 + C(�T )�; (10)

with B0 = 5:38 GeV�2, C = 0:458 GeV�2, � = 0:75,
and with �T given in milibarns. This form is suggested
by the results of the calculations with the model of the
stochastic vacuum [7], where an interpretation for the
meaning of the parameters is given in terms of QCD and
hadronic quantities. This is explained in detail later.

In the next section we recall the principles of the
evaluation of the observables of high-energy scattering
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in the model of the stochastic vacuum [7]. In the sec-
tions that follow we present our new calculations and
results.

Figure 1. Relation between the two experimental quantities
of the pp and �pp systems. The values of �T at energies
up to 62.3 GeV shown in this �gure are the �T

pom values
as given by the parameterization of Donnachie-Landsho�,
namely �T

pom = (21:70 mb)s0:0808. We also included the
point [17] at 19 GeV and the Fermilab CDF values [16] at
1800 GeV. The values of B for the pp system are shown with
circles, while the values for �pp are represented by squares.
The solid line represents eq.(10), with values for �, B0 and
C given in the �gure.

II Nonperturbative QCD and

the Model of the Stochastic

Vacuum in Soft High Energy

Scattering

The non-perturbative vacuum expectation values (such
as gluon condensates) that were �rst introduced in cal-
culations of hadron spectroscopy [18] were shown by
Nachtmann [6] to have fundamental role in soft high-
energy scattering. The application of the model of the
stochastic vacuum to this problem follows his general
analysis, adopting however a di�erent fundamental in-
gredient. Instead of reducing the hadron-hadron am-
plitude to quark-quark scattering amplitudes, the ba-
sic entities used are scattering amplitudes for Wilson
loops in Minkowski space-time. The loops are formed
by the trajectories of the quark and the antiquark of the
hadronic system, and this approach has the important
advantage that the amplitudes are gauge invariant.

The model of the stochastic vacuum [8] is based on
the assumption that the low frequency contributions
in the functional integral can be taken into account

by a simple stochastic process with a converging clus-
ter expansion [19]. The integration is speci�ed by a
simple correlator, which is determined by two scales:
the strength of the correlator (the value of the gluon
condensate) and the correlation length. This simple
model leads to con�nement in a non-Abelian gauge the-
ory, with a linear potential between static quarks which
agrees with phenomenological determinations [20].

In order to guarantee gauge invariance, the model
deals with the correlator of the �eld-strengths F�� ,
rather than with the expectation values of gauge po-
tentials A�(x). In order to give a well de�ned meaning
to the correlator, which is a bilocal object, the colour-
content of all �elds must be parallel-transported to a
single reference point w. Then the parallel-transported
�eld strength tensors

F��(x;w) := ��1(x;w) F��(x) �(x;w) ; (11)

where �(x;w) is a non-Abelian Schwinger string from
point w to point x, must be constructed. This quantity
follows the gauge transformation at the �xed reference
point w

F��(x;w) ! U(w) F��(x;w) U
�1(w) ; (12)

so that the vacuum expectation value

F��(x;w) FÆ�(y; w)

�
A
with respect to the low frequen-

cies is a gauge invariant quantity.
With the approximation that the correlator is in-

dependent of the reference point w, depending only on
the di�erence z = x � y, its most general form [8] is
given by�

g2 FC
��(x;w) F

D
��(y; w)

�
A

=
ÆCD

8

1

12
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�
�

�
�(Æ�� Æ�� � Æ�� Æ��) �D(z2=a2)

+ (1� �) � 1
2

h @

@z�
(z�Æ�� � z�Æ��)

+
@

@z�
(z�Æ�� � z�Æ��)

�
D1(z

2=a2)

�
: (13)

Here a is a characteristic correlation length,


g2 FF

�
is the gluon condensate


g2 FF
�
=


g2 FC

��(0) F
C
��(0)

�
A
; (14)

C;D = 1; : : : ; 8 are colour indices, and the numerical
factors in eq.(13) are chosen in such a way that

D(0) = D1(0) = 1 : (15)

Lattice studies [11] show that the ratio �=(1��) is
rather large (about 3), so that D(z2=a2) gives the dom-
inant contribution. This dominance was the reason for
the previous [7] neglect of the contributions from the
part (1� �)D1(z

2=a2), which are taken into considera-
tion in the present work.
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The correlator in eq.(13) is the starting point for
the evaluation of observables in soft high-energy scat-
tering. In the analysis made by Nachtmann [6], the
quark-quark scattering amplitude for the interaction of
the quarks with the gluon �eld is evaluated using the
eikonal approximation. If the energy of the quark is
very high and the background �eld has only a limited
frequency range, the quark moves on an approximately
straight light-like line and the eikonal approximation
can be applied. In the limit of high energies there is
helicity conservation and spin degrees of freedom can
be ignored. This quark-quark scattering amplitude is
explicitly gauge dependent. However, we can make use
of the fact that in meson-meson scattering for each
quark there is an antiquark moving on a nearly par-
allel line. The meson must be a colour singlet state
under local gauge transformations, and to construct
such a colourless state we have to parallel-transport
the colour content from the quark to the antiquark.
Since this parallel-transport of the colours is made by a
Schwinger string, we obtain for the meson a rectangu-
lar Wilson loop whose light-like sides are formed by the
quark and antiquark paths, and whose front ends are
the Schwinger strings. The direction of the path of an
antiquark is e�ectively the opposite of that of a quark,
so that the loop has a well de�ned internal direction.

The resulting loop-loop amplitude is then speci�ed,
not only by the impact parameter, but also by the
transverse extension vectors ~R1 and ~R2. In the trans-
verse plane the two interacting loops are seen as shown
in Fig.2.

Figure 2. View in the transverse plane of the two loops that
represent the paths of quark and antiquark in meson-meson

scattering. The vectors ~R1 and ~R2 represent components

of the meson transverse wave-functions. The vector ~b is the
impact parameter vector connecting the geometric center of
the two hadrons.

The functional integration over A is evaluated using

the model of the stochastic vacuum. Since the corre-

lator is given in terms of the parallel-transported �eld

tensor F��(x;w), the line integrals
R
A�dz

� are trans-

formed into surface integrals over the �eld tensor with

the help of the non-Abelian Stokes-theorem. The inte-

grations are then extended over open surfaces S1 and

S2 having the loops L1 and L2 as contours.

The exponential being expanded, the expectation

value can be calculated assuming factorization in a

Gaussian process. In the expansion of the trace of the

exponential at least two terms are necessary, because

tr �A = 0, we obtain the lowest order contribution to

the loop-loop scattering amplitude. The integration

surfaces and details of the calculation have been de-

scribed before [7]. The higher order terms are shown

to be small as compared to the leading term, and can

be neglected. In this approximation the surface order-

ing becomes irrelevant. The expectation values of the

product of four �elds is evaluated using the factoriza-

tion hypothesis

FC1FC2FD1FD2

�
=



FC1FC2

�

FD1FD2

�
+


FC1FD1

�

FC2FD2

�
+



FC1FD2

�

FC2FD1

�
:(16)

It is convenient to introduce the eikonal function �

in terms of which the loop-loop amplitude J(~b; ~R1; ~R2)

is given to the lowest order in the correlator by

J(~b; ~R1; ~R2) = � 1

576

�
�(~b; ~R1; ~R2)

�2
: (17)

In order to extract as a factor the value of the gluon

condensate, it is useful to introduce a reduced eikonal

function and a reduced loop-loop scattering amplitude

through

e�(~b; ~R1; ~R2) � 12

hg2FF i�(
~b; ~R1; ~R2) (18)

and

eJLL0(~b; ~R1; ~R2) � 1�hg2FF i�2 JLL0(~b; ~R1; ~R2)

= � [e�(~b; ~R1; ~R2)]
2

144 � 576 : (19)

We have introduced the indices L;L0 to indicate the

two loops.

To be applied to high-energy scattering, the model

of the stochastic vacuum must be translated from Eu-

clidean space-time, to the Minkowski continuum. The

correlation functions D(z2=a2) and D1(z
2=a2) must fall

o� for negative z2 values (corresponding to Euclidean

distances), and must have well de�ned Fourier trans-

forms in the Minkowski metric, since these enter in the

scattering amplitudes.

The loop-loop eikonal function is determined by

the geometry of the two loops and by the form of

the correlation functions. In eq.(13) there appear two

independent arbitrary scalar functions, D(z2=a2) and

D1(z
2=a2), which are supposed to fall o� at large dis-

tances with characteristic lengths a, called correlation

lengths. Lattice calculations [11] show however that

the forms of D and D1 in the Euclidean region at large

distances are similar (exponential decreases with same
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rates), with the contribution from the term with D in

the correlator being about 3 times larger than that from

D1. We then adopt the same shapes D � D1 , and

� = 3=4.

A convenient general form [7] for the correlation

function is

D(n)(�j~�j2) = 1

2n�3�(n� 3)
(�nj~�j)n�3�

(n� 1)Kn�3(�nj~�j)� 1

2
(�nj~�j)Kn�2(�nj~�j)

�
; (20)

where K�(x) is the modi�ed Bessel function, n � 4,

and

�n =
3
p
�

4

�(n� 5=2)

�(n� 3)
: (21)

The dependence of the �nal results on the particular

choice for n is not very marked, the reason being that

all correlation functions are normalized to 1 at the ori-

gin, and decrease exponentially at large distances. It

is enough that the chosen function falls monotonically

and smoothly in the range of physical inuence (up to

about one fermi, say), and there cannot be much di�er-

ence in the results obtained using di�erent reasonable

analytical forms. The simpler choice is n=4, which in

the Euclidean region leads to a good representation of

the lattice calculations [11]. We then have for the cor-

relation function

D(4)(�j~�j2) = (�4j~�j)
�
K1(�4j~�j)� 1

4
(�4j~�j)K0(�4j~�j)

�
;

(22)

with

�4 =
3�

8
: (23)

In the evaluation of the (Euclidean) Wilson loop in

the model of the stochastic vacuum the D part of the

correlator leads [8] to the area law for a Wilson loop,

and to a relation involving the condensate �hg2FF i,
the correlation length a and the string tension �

� =
��

144



g2 FF

�
a2
Z
1

0

D(�u2) du2 : (24)

For the family of correlators written above the inte-

gration can be performed analytically and for the case

n = 4 the result gives

�hg2FF i = 81�

8a2
� : (25)

We thus say that D represents the con�ning correlator,

while D1 is the non-con�ning (and Abelian) part.

After the limits are taken, which make the long sides

of the rectangular Wilson loops tend to �1 in the di-

rection of the colliding beams, the remaining variables

in the integrands are coordinates of points in the trans-

verse plane. The distances z between such points enter

in the �nal expressions for the eikonal functions � as ar-

guments of the two-dimensional inverse Fourier trans-

form, which is given by

F (4)
2 (�j~�j2) = 32

9�
(�4j~�j)2

�
2K0(�4j~�j)

�
�

4

�4j~�j
� �4j~�j

�
K1(�4j~�j)

�

= � 32

9�
�2

�
(�4j~�j)3K3(�4j~�j)

�
; (26)

where �2 is the 2-dimensional Laplacian operator, and
~� is any two-dimensional vector of the transverse plane

and K3 is a modi�ed Bessel function. This Laplacian

form is important in the calculation, as it allows lower-

ing the order of the integrations, through Gauss theo-

rem.

III Pro�le Function for

Hadron-Hadron Scattering

We now introduce the notation ~R(I; J), where the �rst

index (I=1,2) speci�es the loop, and the second speci-

�es the particular quark or antiquark (J=1 or 2) in that

loop.

Fig.3 shows a projection on the transverse scatter-

ing plane. The vectors ~Q(K;L) in the transverse plane

connect the reference point C (with coordinates w) to

the positions of the quarks and antiquarks of the loops

1 and 2. The quantity  (K;L) is the angle between
~Q(1;K) and ~Q(2; L).

In the evaluation of the eikonal functions

�(~b; ~R(1; 1); ~R(2; 1)) coming from the con�ning case

a typical resulting contribution is

Z 1

0

d�

Z 1

0

d� cos	(1; 1)

F (4)
2 (�j�~Q(1; 1)� � ~Q(2; 1)j2) ; (27)

where F (4)
2 is the above mentioned two-dimensional

Fourier transform of the correlator with n = 4. Taking

advantage of the Laplacian form, we can apply Gauss'

theorem in two dimensions and eliminate one further in-

tegration. The term from the non-con�ning correlator

has a total derivative under the integration sign, and

in this part one more integration can be immediately

made.
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Figure 3. Geometrical variables of the transverse plane,
which enter in the calculation of the eikonal function for
meson{meson scattering. The points C1 and C2 are the me-
son centers. In the integration, P2 runs along the vector
~Q(2; 1), changing the length z, which is the argument of
the characteristic correlator function. In analogous terms,

points P1, �P1 and �P2 run along ~Q(1; 1), ~Q(1; 2) and ~Q(2; 2).
This explains the four terms that appear inside the brack-
ets multiplying � in the expression for the loop-loop ampli-
tude. The length z0 of the dot-dashed line is the argument
of the Bessel function arising from the non-con�ning cor-
relator D1; there are four such terms, appearing inside the
brackets multiplying (1� �).

We then write for the eikonal function of the loop-
loop amplitude

e� (~b; ~R(1; 1); ~R(2; 1)) = �

�
� cos (1; 1) I [Q(1; 1); Q(2; 1);  (1; 1)]

� cos (2; 2) I [Q(1; 2); Q(2; 2);  (2; 2)]

+ cos (1; 2) I [Q(1; 1); Q(2; 2);  (1; 2)]

+ cos (2; 1) I [Q(1; 2); Q(2; 1);  (2; 1)]

�

+ (1� �)

�
�W [Q(1; 1); Q(2; 1);  (1; 1)]

� W [Q(1; 2); Q(2; 2);  (2; 2)]

+ W [Q(1; 1); Q(2; 2);  (1; 2)]

+ W [Q(1; 2); Q(2; 1);  (2; 1)]

�
: (28)

The quantities I which represent the non-Abelian con-
tributions are given by integrations along the dashed
lines of the �gure:

I [Q(1;K); Q(2; L);  (K;L)] =
32

9�

�
3�

8

�2

�fQ(1;K)

Z Q(2;L)

0

[Z1(x)]

�K2

�
3�

8

p
Z1(x)

�
dx

+Q(2; L)

Z Q(1;K)

0

[Z2(x)]

�K2

�
3�

8

p
Z2(x)

�
dxg ; (29)

with Q(K;L) = j ~Q(K;L)j and where

Z1(x) = Q(1;K)2 + x2 � 2xQ(1;K) cos (K;L)

Z2(x) = Q(2; L)2 + x2 � 2xQ(2; L) cos (K;L) (30)

The quantities W, which come from the non-con�ning
part of the correlator, are given by

W [Q(1;K); Q(2; L);  (K;L)] =

32

9�
2
3�

8
[Z3]

3=2K3

�
3�

8

p
Z3

�
; (31)

where

Z3 = Q(1;K)2 +Q(2; L)2

�2Q(1;K)Q(2; L) cos (K;L): (32)

From the eikonal function e� we construct the loop-
loop amplitude eJL1L2

(~b; ~R1; ~R2) , where ~R1 and ~R2 are

shorthand notations for ~R(1; 1) and ~R(2; 1) respectively.

The hadron-hadron amplitude is constructed from
the loop-loop amplitude using a simple quark model
for the hadrons. Since our amplitude is independent of
the momentum of the quarks (as long as the energy is
high enough to ensure light-like paths), the dependence
of the wave-functions on the longitudinal momenta of
the quarks can be neglected, and we thus only con-
sider the transverse dependence, which is given by the
Fourier transform of the transverse wave-function. We
thus obtain the hadron-hadron scattering amplitude by
smearing over the values of ~R1 and ~R2 in eq.(17) with

transverse wave-functions  (~R).

Taking into account the results of the previous anal-
ysis of di�erent hadronic systems [7], in the present
calculation we only consider for the proton a diquark
structure , where the proton is described as a meson, in
which the diquark replaces the antiquark. Thus these
expressions apply equally well to meson-meson, meson-
baryon and baryon-baryon scattering.

For the hadron transverse wave-function we make
the ansatz of the simple Gaussian form

 H(R) =
p
2=�

1

SH
exp (�R2=S2H) ; (33)

where SH is a parameter for the hadron size.

We then write the reduced pro�le function of the
eikonal amplitude

bJH1H2
(~b; S1; S2) =

Z
d2 ~R1

Z
d2 ~R2

eJL1L2
(~b; ~R1; ~R2) j 1(~R1)j

2j 2(~R2)j
2
; (34)

which is a dimensionless quantity.

For short, from now on we write J(b) or J(b=a) to

represent bJ(~b; S1; S2).



Erasmo Ferreira 289

The contributions of both the con�ning and non-
con�ning correlators to the eikonal function and to the
observables in high-energy scattering are being taken
into account. Aiming at the pp and �pp systems, we only
consider the case S1 = S2 = S. Fig.4 shows a compari-
son between the results for the pro�le functions J(b=a)
corresponding to S=a = 2:4 in the cases of pure con-
�ning (� = 1), pure non-con�ning (� = 0) and mixed
(� = 3=4) correlators, in order to exhibit their di�er-
ences.

Figure 4. Dimensionless pro�le functions J(b=a) for S=a =
2:4 obtained in the cases of pure con�ning (� = 1), pure
non-con�ning (� = 0) and mixed (� = 3=4) correlators.

The dimensionless hadron-hadron scattering ampli-
tude in the eikonal approach is given by

TH1H2
= is[hg2FF ia4]2a2Z

d2~b exp (i~q �~b) bJH1H2
(~b; S1; S2) ; (35)

where the impact parameter vector ~b and the hadron
sizes S1 , S2 are in units of the correlation length a, and
~q is the momentum transfer projected on the transverse
plane, in units of 1=a, so that the momentum transfer
squared is t = �j~qj2=a2. For convenience, in the ex-
pression above we have explicitly factorized the dimen-
sionless combination hg2FF ia4 : The normalization for
TH1H2

is such that the total cross-section is obtained
through the optical theorem by

�T =
1

s
Im TH1H2

; (36)

and the di�erential cross-section is given by

d�e`

dt
=

1

16�s2
jTH1H2

j2 : (37)

To write convenient expressions for the observables,
we de�ne the dimensionless moments of the pro�le func-
tion (as before, with b in units of the correlation length

a)

Ik =

Z
d2~b bk bJ(b) ; k = 0; 1; 2; ::: (38)

which depend only on S=a, and the Fourier-Bessel
transform

I(t) =

Z
d2~b J0(ba

p
jtj) bJ(b) ; (39)

where J0(ba
p
jtj) is the zeroth{order Bessel function.

Then
TH1H2

= is[hg2FF ia4]2a2I(t) :
Since J(b) is real, the total cross section �T , the slope
parameter B (slope at t = 0) and the di�erential elastic
cross-section are given by

�T = I0 [hg2FF ia4]2a2 ; (40)

B =
d

dt

�
ln
d�e`

dt

�����
t=0

=
1

2

I2
I0

a2 = Ka2 ; (41)

and
d�e`

dt
=

1

16�
I(t)2 [hg2FF ia4]4a4 : (42)

We have here de�ned

K =
1

2

I2
I0

:

We observe that in the lowest order of the correla-
tor expansion the slope parameter B does not depend
on the value of the gluon condensate hg2FF i and, once
the proton radius S is known, may give a direct deter-
mination of the correlation length.

The QCD strength and length scale have been fac-
torized in the expressions for the observables, and the
correlation length appears as the natural unit of length
for the geometric aspects of the interaction. These
aspects are contained in the quantities I0(S=a) and
I2(S=a), which depend on the hadronic structures and
on the shapes and relative weights (parameter �) of the
two correlation functions. It has been shown [7] that
for the case � = 1 the two moments have simple form
as functions of S=a. To consider arbitrary values for
�, we remark that the pro�le function and its moments
are quadratic functions of �, as they result from in-
tegrations of the squares of a (symbolic) combination
�D+(1��)D1 . The pro�le function J(b=a) for an ar-
bitrary value of the weight � can be obtained once the
pro�le functions have been determined for three di�er-
ent values of �. It is shown in the next section that
the moments I0(S=a) and I2(S=a) for arbitrary � (with
0 � � � 1) can be represented by similarly simple ex-
pressions.

It is important that the high-energy observables �T

and B require only the two low moments I0 , I2 of the
pro�le functions. The curvature of the forward peak
depends on higher moments and on the long distance
behavior of J(b=a).
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IV Experimental Observables

and QCD Parameters

The curves for I0 = �T = [hg2FF i2a10] and K = B=a2

can be parameterized as functions of S=a with simple
powers, with good accuracy for 0 � � � 1. The conve-
nient expressions are

I0 = �

�
S

a

��
; (43)

and

K = � + 

�
S

a

�Æ
: (44)

The numerical values of the parameters �; �; �; ; Æ and
the ratio Æ=� (which is of particular importance for the
comparison with the data) for � = 3=4 are

� = 0:6532� 10�2; � = 2:791; � = 2:030

 = 0:3293; Æ = 2:126; Æ=� = 0:762 :

The parameterizations of the total cross-section and
of the slope parameter B are very convenient for com-
parison of the results of the model of the stochastic vac-
uum with experiment. In order to have a wide range
of data to extract reliable information on QCD param-
eters, we concentrate on elastic pp and p�p scattering.
The data extending from the ISR range (20 - 60 GeV)
to the Fermilab energy (1800 GeV) are presented in
table 1 and in Fig.1.

The non-perturbative calculation made with the
model of the stochastic vacuum corresponds to the
phenomenological pomeron exchange of Regge phe-
nomenology [2, 3]. Donnachie and Landsho� [3]
found that the parameterization �Tpom(pp; �pp) =

(21:70 mb) s0:0808 (with s in GeV2) works well over
a wide range of data above

p
s = 5 GeV, so that we

may use this expression to represent the pomeron con-
tribution at the energies where the non-pomeron part
is important ( the ISR energies). At 541 and 1800 GeV
we assume that pomeron exchange dominates the scat-
tering process, and ignore possible di�erences between
pp and �pp systems. We then take the data at these two
highest energies as input, and predict the values for the
lower (ISR) energies.

The values of the slope parameter related to the
pomeron exchange mechanism are not known, and must
be predicted by a model. Our model makes speci�c
predictions for the relation between �Tpom and Bpom,
and we need good data to test accurately these predic-
tions. The di�erences B(p�p)�B(pp) are 0.50, 0.16 and
0.45 GeV�2 at 30.5, 52.7 and 62.3 GeV respectively,
with error bars typically �0:55 GeV�2 (see table 1);
these di�erences do not shown a decrease with the in-
creasing energy, as expected from pomeron dominance,
but the error bars are too large, larger than the quan-
tities themselves. The situation is simpler with the
total cross-sections, where at the same three energies

the di�erences �T (�pp)� �T (pp) are 2.02, 0.94 and 0.57
mb respectively, decreasing continuously to zero, and
with error bars not larger than the values of the di�er-
ences. Thus, in the range of the ISR experiments, we
see the cross-sections converging to the same pomeron-
exchange values, but not the slopes.

In Fig.1, besides the ISR and higher energy data, we
show the point [17] corresponding to

p
s = 19 GeV with

�Tpom = 34:92 mb and B = 12:47� 0:10 GeV�2. This
point has been used [7] as an input in an application
of the model of the stochastic vacuum to high-energy
scattering, and we now see that it is not consistent (due
to a too large value for B) with the ISR data, as shown
in Fig.1. This consideration has inuence in the numer-
ical values that are obtained for the QCD parameters.
In Fig.1 we show also the Fermilab CDF values at 1800
GeV, which must be considered as alternative to the
values obtained in the E-710 experiment, since they re-
fer to the same energy ; in the analysis presented below
we opt for the E-710 values, which �t more naturally
in our calculation.

Once the forms of the correlation functions are �xed,
the parameters in the model that are fundamentally re-
lated to QCD are the weight �, the gluon condensate
hg2FF i and the correlation length a. The hadronic
extension parameter SH accounts for the energy de-
pendence of the observables. In this section we show
how these quantities can be evaluated using exclusively
high-energy scattering data.

To obtain from eqs(40), (41), (43) and (44) a re-
lation between the observables �T and B at a given
energy, we eliminate the radius, and write

B � �a2 =
a2

(< g2FF > a4)2Æ=�


�Æ=�

�
�T

a2

�Æ=�

: (45)

The form of eq.(45) is the same as given by eq.(10),
with an obvious correspondence of parameters.

To determine the parameters, we �rst remark that
the exponent � = Æ=� does not depend on QCD quan-
tities and is almost constant (equal to about 3/4) in the
region of values of � that are obtained in lattice calcu-
lations (� � 3=4). This tells us that we cannot easily
extract a unique value of � from high-energy scattering
data only, but tells us also that the power � in eq.(10)
must surely be very close to

Æ=� = � = 3=4 : (46)

This is a fortunate result for our analysis, because then
in practice we are left with only two free quantities in
both energy independent relations (45) and (10). They
can be determined using as input the two clean experi-
mental points for �T and B at 541 and 1800 GeV given
in table 1. We then obtain

B0 = �a2 = 5:38 GeV�2 = 0:210 fm2 ;

C = 0:458 GeV�2 : (47)
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Fig.1 shows the observables of soft high-energy
scattering, with the modi�cation that for the to-
tal cross-sections at the ISR energies we show
the non-perturbative pomeron-exchange contribution
�Tpom(pp; �pp) = (21:70 mb) s0:0808 instead of the full
experimental value. The values of B for the pp sys-
tem are shown with circles, while the values for �pp are
represented by squares. The solid line is eq.(10), with
values for �, B0 and C given above. We see that using
the 541 and 1800 GeV data as input, the model gives a
very good prediction for the ISR data. It is interesting
to observe that the values of B for the pp system are
closer to our prediction for the non-perturbative slope
(the solid line) compared to the �pp values, which are
rather high.

Eq.(45) gives the correspondence between the phe-
nomenological quantities �, B0, C and the parameters
of the model and of QCD. Since the model parameters
are functions of � only, we can also obtain the QCD
parameters as functions of �. They are plotted in �gs.5
and 6. The correlation length is remarkably constant ,
while the gluon condensate decreases as � increases.

Figure 5. The correlation length as a function of �. The
values are determined using as input the data at 541 and
1800 GeV.

Of course these results are subject to uncertainties.
We have adopted an ansatz for the correlation function,
which is arbitrary (although numerically it could not be
very di�erent). There is some uncertainty also in the
determination of the parameters �; � : : : representing
the �nal results of the numerical calculation. On the
other hand, the model gives a rather unique prediction
for � = Æ=� = 3=4 which is well sustained by the data
as shown in Fig.1.

To be speci�c, we borrow from lattice calculation
the value � = 3=4, and then use the parameter values
obtained for this case. Taking into account the exper-
imental error bars in the input data at 541 and 1800

GeV, we obtain

� = 3=4 ; a = 0:32� 0:01 fm ;

< g2FF > a4 = 18:7� 0:4 ;

< g2FF >= 2:7� 0:1 GeV4 : (48)

Figure 6. The gluon condensate < g2FF > as a function
of �, determined using as input the data at 541 and 1800
GeV.

With the value � = 33=40 obtained in more recent
lattice results [21] the central values change slightly to

� = 33=40 ; a = 0:33 fm ;

< g2FF > a4 = 19:2 ;

< g2FF >= 2:6 GeV4 : (49)

The results of the pure SU(3) lattice gauge calcula-
tion by Di Giacomo and Panagopoulos [11] for the cor-
relator hFC

�� (x; 0) F
D
��(0; 0)iA have been �tted [7] with

the same correlation function (22) used in the present
work. The correlation between the values of < g2FF >
and a that was then obtained can be well represented
by the empirical expressions

�L =
1:1122

a1:310
; < g2FF >=

0:01813

a4:656
;

< g2FF > a4 = 0:0172
p
�L ; (50)

with the lattice parameter �L in MeV, a in fm, and
< g2FF > in GeV4. This correlation is displayed in
Fig.7, where some chosen values of �L are marked. �L
usually takes values in the range 5 � 1:5 MeV. The
point representing our results of eq.(48) is marked in
the same �gure. The dashed line represents the re-
lation between the gluon condensate, the correlation
length and the string tension obtained in the applica-
tion of the model of the stochastic vacuum [8] to hadron
spectroscopy; for our form of correlator, this relation is
given by eq.(25). The curve drawn corresponds to a
string tension � = 0:16 GeV2 .
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Figure 7. Constraints on the values of hg2FF i and of the
correlation length a. The solid line is the �t of our corre-
lator to the lattice calculation [11] as given in eq.(50). The
dashed line plots eq.(25), with � = 0:16 GeV2. The cross
centered at a = 0:32 fm, < g2FF >=2.7 GeV4 shows the
result of our calculation given in eq.(48).

As can be seen from the �gure, the constraints from
these three independent sources of information are si-
multaneously satis�ed, providing a consistent picture of
soft high-energy pp and �pp scattering. The (pure gauge)
gluon condensate is well compatible with the expected
value. The lattice parameter �L and the string tension
� are also in their acceptable ranges. As we describe be-
low, the resulting proton size parameter Sp takes values
quite close to the electromagnetic radius [22].

In our model the increase of the observables with
the energy is due to a slow energy dependence of the
hadronic radii. An explicit relation is obtained if we
bring into eqs.(40) and (43) a parameterization for the
energy dependence of the total cross-sections, such as
the Donnachie-Landsho� [3] form. In this case we ob-
tain for the proton radius

Sp(s) =
a

�1=�

�
21:7 mb

a2

�1=�
s0:0808=�

(hg2FF ia4)2=� : (51)

The energy dependence, given by a power 0:0808=� of s
is very slow, and the values obtained for Sp are in the re-
gion of the proton electromagnetic radius [22], which is
Rp = 0:862�0:012 fm. However, use of the Donnachie-
Landsho� parameterization for the total cross-sections
is not appropriate at very high energies. Using eqs.(40)
and (43) and directly the data at 541 and 1800 GeV, we
obtain the values for the proton radius that are shown
in Fig.8, where a log scale is used for

p
s. It is remark-

able that we have an almost linear dependence, which
can be represented by

Sp(s) = 0:671 + 0:057 log
p
s (fm) ; (52)

with
p
s in GeV. With this form for the radius, which is

shown in dashed line in Fig.8, the cross-sections evalu-
ated at very high energies rise with a term log�

p
s, and

are smaller than predicted by the power dependence of
Donnachie-Landsho�. However, since � � 2:8, they
still violate the bound log2

p
s. This may be corrected

using a power 2=� instead of 1 in the parameterization
for Sp(s), and we then obtain

Sp(s) = 0:572+ 0:123[log
p
s]0:72 (fm) : (53)

This form is shown in solid line in Fig.(8). Clearly it
gives a good representation for the existing data. At
14 TeV, which is the expected energy in the future
LHC experiments, we obtain Sp(14 TeV ) = 1:19 fm =
1:38 Rp = 3:7a and the model predictions for the
observables are �T=92 mb and B=19.6 GeV�2. The
dashed line representing eq.(52) leads at the same LHC
energy to �T=97 mb and B=20.1 GeV�2, while the
Donnachie-Landsho� formula leads to the still higher
value �T=101.5 mb.

Figure 8. Energy dependence of the proton radius. The
marked points are obtained from the total cross-section data
(at the ISR energies the total cross-sections are represented
by the pomeron exchange contributions). The two repre-
sentations for the radius dependence are indistinguishable
with the present data, but give quite di�erent predictions
for the cross-section values at the LHC energies.

The non-perturbative QCD contributions to soft
high-energy scattering are expected to be dominant in
the forward direction, thus determining the total cross-
section (through the optical theorem) and the forward
slope parameter. The model, as it is presented in this
paper, leads to a negative curvature for the slope B(t),
which decreases as jtj increases, as shown in Fig.5. The
data however shows an almost zero curvature of the
peak, so that above some value of jtj the model leads
to too high values of the di�erential cross-section. This
is illustrated in Fig.9, where the experimental data [13]
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at 541, 546 and 1800 GeV are shown, together with
the results of the model, without any free parameter
(the gluon condensate, the correlation length and the
hadronic radius have been uniquely �xed by the inputs
of �T and B at 541 and 1800 GeV).

Figure 9. Elastic di�erential cross-sections at high ener-
gies [13]. The solid lines represent the calculations with
the model of the stochastic vacuum described in the present
work, without free parameters. The systematic deviations
occurring for jtj larger about 30�10�3 GeV2 arise from the
long range behavior of the pro�le function J(b/a).

V Final remarks

We have explained the calculation of soft high-energy
scattering, including the two tensor forms in the cor-
relator, and thus taking into account the two indepen-
dent correlation functions. We mentioned the inuence

of the weight parameter � that measures the ratio be-
tween the two contributions, giving the general results
that allow the determination of the observable quanti-
ties and QCD parameters in terms of this weight. We
show that there are little changes in the �nal results,
when � varies in the ranges suggested by lattice deter-
minations.

The model of the stochastic vacuum describes the
most important data on total cross-section and slope
parameter for the pp and �pp systems, extended fromp
s �20 to 1800 GeV, giving a uni�ed and consistent de-

scription of these data in terms of fundamental quanti-
ties. The non-perturbative QCD parameters determin-
ing the observables are the gluon condensate and the
correlation length of the vacuum �eld uctuations. The
third quantity entering the calculations is the transverse
hadron size, which has a magnitude close to the electro-
magnetic radius, and whose variation accounts for the
energy dependence of the observables.

The model allows a very convenient factorization
between the QCD and hadronic sectors. Elimina-
tion of the hadron size parameter between the expres-
sions for the two observables at a given energy yields
a parameter-free and energy independent relation be-
tween the total cross-section and the slope of the elastic
cross-section which agrees very well with experiment.
Starting from two experimental energies as input, this
expression gives a prediction of the remaining data, and
leads to a determination of the correlation length and
the gluon condensate from high-energy data alone. The
results obtained are in good agreement with the corre-
lations between the two QCD parameters obtained in
the lattice calculations and in the application of the
stochastic vacuum model to hadronic spectroscopy.

In the expansion of the exponential with functional
integrations, the present calculation is restricted to
the lowest order non-vanishing contribution, which is
quadratic in the gluonic correlator, and we may con-
clude from our results that this is justi�ed for the eval-
uations of total cross-section and slope parameter. The
resulting amplitude is purely imaginary, and the �-
parameter (the ratio of the real to the imaginary parts
of the elastic scattering amplitude) can only be de-
scribed if we go one further order in the contributions
to the correlator. Also the factorization in eq.(16), im-
plied by the assumption of a Gaussian process, is impor-
tant in the present formulation of the model, and possi-
bly has consequences for the phenomenological analysis.
Recent developments of the model [23] give more accu-
rate determination of the pro�le function as a function
of the impact parameter, without requiring the assump-
tion of small values the function �. There is important
improvement in the predicted t-dependence of the dif-
ferential cross-section.
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Figure 10. Relation between observables of high-energy
scattering obtained in our calculations compared to the rela-
tion obtained from a Regge amplitude according to eq.(54).
The dashed line uses as input for the Regge formula thep
s = 541 GeV data and passes close to the CDF point at

1800 GeV. The dotted line uses as input the values of the
E-710 experiment at

p
s = 1800 GeV.

It is interesting to compare the results of the model
of the stochastic vacuum with Regge phenomenology.
In Fig.10 we plot the relation between the observables
given by

�TRegge = �T0 e0:1616(B�B0) ; (54)

obtained from a Regge amplitude using the slope of the
pomeron trajectory �0(0)pom = 0:25 GeV�2. This rela-
tion requires an input pair �T0 , B0 at a chosen energy.
The dashed line uses as input the

p
s = 541 GeV data

�T0 = 62:20 mb, and B0 = 15:52 GeV�2 . It is in-
teresting to observe the tendency of this line to pass
close to the CDF experimental point, instead of the E-
710 point. The dotted line uses as input the values of
the E-710 experiment at

p
s = 1800 GeV and shows a

deviation at 541 GeV. This is rather intriguing, as it im-
plies that eq.(54) favors the CDF experimental results
at 1800 GeV.
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