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We present a review of some applications of quantum �eld theory in the physics of condensed matter
stressing the extremely fruitful interaction between these two areas. The examples considered
include the Kondo e�ect, Polymers, High-Tc superconductivity and Spin Glasses.

I. Introduction

Quantum Field Theory has always been extremely suc-

cessful in the description of the basic interactions of na-

ture and in the realm of particle physics. Two periods

are especially remarkable: the �rst one with the matu-

rity of QED, after renormalization was understood and

the second one with the advent of non-Abelian gauge

theories and the corresponding description of the strong

and electroweak interactions. Since the beginning of

the 80's, however, with the failure of the grand uni�ed

theories, other areas of application of Field Theory be-

came more prominent in the edge of the investigation

endeavor. One of these is Condensed Matter Physics.

Nearly at the same time, some of the most important

discoveries of the last two decades have been made,

namely: high-temperature superconductivity and the

quantum Hall e�ect. These phenomena and others be-

came major �elds of application of QFT. In this article,

we make an extremely incomplete review of some inter-

esting applications of �eld theory in Condensed Matter

systems, as well as describe the fruitful interchange of

ideas between the two areas.

II. The Kondo E�ect

The Kondo e�ect is observed when we introduce mag-

netic atoms at very low concentrations in a non-

magnetic metal and consist in a series of anomalies ap-

pearing in the magnetization, resistivity and impurity

magnetic susceptibility as a function of the tempera-

ture. The interaction among the electrons of the metal

and the impurities is magnetic and can be simulated by

the chiral Gross-Neveu interaction in 1+1D,

LI = g
�
 y~� 

� � ��y~��� ; (2.1)

where  is the electron �eld, � is the impurity �eld.

The �rst and second terms between parentheses are,

respectively, the electron and impurity spin operators.

This model has been exactly solved for the spec-

trum through the Bethe ansatz whereby the free en-

ergy can be evaluated. The thermodynamic properties

thereby obtained are in good agreement with the ex-

periment. The remarkable fact is the dynamical gener-

ation of a scale, the Kondo temperature TK , separat-

ing a strong and a weak coupling regimes exactly as in

QCD, a scale is dynamically generated separating the

asymptotic freedom and con�ning regimes.

III. Polymers: Polyacethilene

Polyacethilene is a quasi one dimensional chain of CH

radicals bound by alternating single and double bonds

[8]. There are two degenerate ground states, or dimer-

izations, corresponding to the double bond being either

to the left or to the right of a given radical. The sys-

tem has one electron per site and therefore in the tight

binding approximation, it would be a metal. However,

the interaction of the electrons with the lattice changes

the situation. This interaction is of the form

Li = �g �  �+ 1

2
��2 ; (3.1)

where  is the electron �eld, � is the phonon �eld and

the second term in the elastic lattice energy.
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If we integrate over � we obtain the familiar sim-

ple Gross-Neveu model. On the other hand, integrat-

ing over the fermion �eld, we get an e�ective action

for the scalar �eld �, which has two degenerate minima

��0, corresponding to the two dimerizations mentioned

above. Shifting � around any of these minima, accord-

ing to (2) would lead to the dynamical generation of a

mass for the  �eld or, equivalently, to the generation

of a gap for the electrons, thereby explaining the insu-

lating character of polyacethilene. This is the so called

Peierls mechanism, which in �eld theory language cor-

responds to the dynamical mass generation which is

used, for instance in the Weiberg-Salam-Glashow uni-

�ed theory for the weak and electromagnetic interac-

tions. There are soliton solutions interpolating the two

minima of the e�ective � potential. These are defects

on the polymer lattice.

IV. Con�nement in QCD: Dual

Meissner E�ect

Con�nement is one of the most interesting phenomena

in physics. It has remained somewhat mysterious for

some time even though quarks can be observed inside

hadrons exactly in the same way nuclei have been ob-

served inside atoms through the scattering experiments

performed by Rutherford and collaborators in the be-

ginning of the century.

In condensed matter, however, there is a phe-

nomenon closely related to con�nement. This is the well

known Meissner e�ect occurring in type II supercon-

ductors. In these, an applied magnetic �eld is expelled

from the bulk material, except for a number of magnetic

uxes con�ned in tubes. A pair of magnetic monopoles

placed on the extremities of these tubes would be con-

�ned exactly as quarks inside a hadron because the po-

tential corresponding to such ux tubes rises linearly

with the distance. Hence, we may understand quark

con�nement in QCD as a dual Meissner e�ect.

V. High Temperature Super-

conductors

There is by now clear experimental evidence [1, 2, 3, 4]

that the pure high-Tc superconductor cuprates are well

described by a quasi two-dimensional Heisenberg anti-

ferromagnet on a quasi-square lattice, whose sites are

occupied by Cu++ magnetic ions. The ground state

is the antiferromagnetically ordered N�eel state. In the

continuum approximation, the system can be described

by the O(3) nonlinear sigma model formulated in a

two-dimensional space which is the continuum version

of the original lattice [5], the ordered magnetization

of the spins corresponding to the nonlinear sigma �eld

na; (a = 1; 2; 3).

The nonlinear sigma �eld is the continuum limit

of the ordered magnetization of the antiferromagnetic

Heisenberg model describing the active electrons of the

Cu++ magnetic ions of a pure high-Tc cuprate. It sat-

is�es the constraint nana = �20, where �
2
0 is such that

[5] �hc
a

= �20
2
p
2p

S(S+1)
, S being the spin quantum num-

ber, c the spin-wave velocity and a, the lattice spacing.

Using linear spin-wave theory results for the Heisen-

berg model, on the other hand, it is found that [2]
�hc
a

= 1:18(2S)
p
2J where J is the Heisenberg antifer-

romagnetic coupling constant. These two relations are

valid for large S. Assuming the ratio of both holds

for any S and, in particular for S = 1=2, which is the

relevant case here, we establish the following relation

between the coupling constants in the continuum and

in the lattice,

�20 = 1:18

p
3

4
J: (5.1)

The �eld na is conveniently expressed in the so called

CP 1 language in terms of a doublet of complex scalar

�elds zi; (i = 1; 2) subject to the constraint zyi zi = �20,

through

na =
1

�0
zyi �

a
ijzj ; (5.2)

where �a are Pauli matrices. In this language, the con-

tinuous �eld theory corresponding to the Heisenberg

antiferromagnet is described by the lagrangian density

in two spatial dimensions [5, 6]

LCP 1 = 2 (D�zi)
y(D�zi); (5.3)

where D� = @� + iA� and A� = 1
�2
0

(izyi @�zi).

The CP 1-nonlinear sigma model possesses classi-

cal topologically nontrivial solutions called skyrmions

[7]. These bear one unit of the topological charge

Q =
R
d2xJ0, where J� is the identically conserved

topological current. In terms of the CP 1 �eld A�, this
is given by J� = 1

2� �
���@�A� and we see that Q is

nothing but the \magnetic" ux of the �eld A� along

the plane. This means that, in the CP 1 language, the

skyrmions are A�-\magnetic" vortices. In the origi-

nal Heisenberg model version, on the other hand, they

are defects (textures) upon the ordered N�eel state. We

shall use a general method of vortex quantization [9, 10]

to the skyrmions/vortices of the continuous theory de-

scribing the superconducting cuprates. This method al-

lows for the explicit construction of a vortex/skyrmion

creation operator �(x) and the subsequent evaluation

of its correlation functions.
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We now propose a model for the process of doping.

For this purpose, we already start with the continuum

language and associate to the electron/hole dopants a

two-component Dirac �eld with two internal indices

corresponding to the two possible spin orientations:

 a(x), a ="; #. For Y Ba2Cu3O6+Æ the Fermi surface

with dopants has an almost circular shape [2] and ex-

panding around it we can use a relativistic approxima-

tion for the dispersion relation of the dopants. This

is clearly not valid for La2�ÆSrÆCuO4 because of the

shape of the Fermi surface [2]. We propose the fol-

lowing lagrangian density for describing the dopants

and their interaction with the background lattice in

Y Ba2Cu3O6+Æ

c

Lz; = 2 (D�zi)
y(D�zi) + i � a 6@ a � m�vF

�h
� a a � � a

� aA�: (5.4)

d

In the above expression, m� and vF are, respectively,

the e�ective mass and Fermi velocity of dopants. This

must be supplemented by the CP 1 constraint zyi zi = �20.

The dopant dispersion relation corresponding to (5.4)

is �(p) =
p
p2v2F + (m�v2F )2 which agrees with the fact

that the system is still an insulator even after the in-

clusion of some doping. The spin of the dopants is
~S = � i~�ij j . Notice that the ordered spin of the

Cu++ electrons is given by (5.2) and their coupling

to the A�-�eld is described by the minimal interaction

izyi
$
@ � ziA�. This suggests, accordingly, the minimal

coupling of the dopants to A�, introduced in (5.4).

The doping parameter Æ is introduced by means

of a constraint identifying the fermion current
� i

� i with the dopant current which is given by

�� = Æ
R1
X;L

d��Æ3(z � �) for a dopant introduced

at the point X = ( ~X; T ) and moving along the line

L. The 0th-component, for instance, is �0(~z; t) =

Æ Æ2(~z � ~X(t)). The above constraint can be imple-

mented by integration over a vector Lagrange multiplier

�eld �� coupled as

L� = ��
�
� a

� a ���
�
: (5.5)

>From the present model we infer [11] that through

doping, skyrmion defects are created upon the ordered

N�eel background in points whose position coincides

with that of the dopants. A similar situation occurs in

polyacethilene where the doping process produces the

formation of soliton defects on the chain [8].

Evaluation of the skyrmion correlation function al-

lows one to extract the skyrmion energy as a function

of the doping parameter [11]:

ES(Æ) = ��20 � Æ2
�hc

4aD
: (5.6)

The skyrmion energy is an order parameter for the

antiferromagnetic order and we therefore conclude that

the N�eel state is destroyed for a critical doping param-

eter

ÆC =

s
4��20aD
�hc

; (5.7)

which corresponds to a vanishing skyrmion energy. The

experimental values of the Heisenberg coupling con-

stant and spin-wave velocity for Y Ba2Cu3O6+Æ are,

respectively, J = 100� 20 meV [13, 2], and c = 1:0�
0:05 eV�A

�h [4, 2]. >From J , we get �20 through (5.1). The

only remaining input is the dopant lattice spacing. Ex-

perimental evidence [14, 1, 2] indicates that the doped

holes go into the oxygen p-orbitals. Hence, the dopant

lattice parameter is the spacing between the oxygen

ions in the CuO2-planes, which for this compound, is

aD = 2:68 �A. Entering these data and the numerical

value of  in (5.7) we get ÆC = 0:39 � 0:03 [11]. This

agrees with the experimental value of the critical doping

at zero temperature [4], namely, ÆexpC = 0:41� 0:02.

We conclude that our �eld theory model provides

a good description for the normal antiferromagnetic

phase of high-temperature superconductors. We are

presently investigating extensions of the model to de-

scribe higher doped phases.

VI. Conclusion

We conclude that nowadays condensed matter is one

of the most important areas of application of quantum

�eld theory. There are many examples where the inter-

action has been intense with many mutual bene�ts. Ad-

ditional systems not mentioned here where interesting

applications have been made are: quantum Hall e�ect,

vortices in superconductors and superuids, magnetic

systems among others.
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