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Transition state theory (TST) is the most widely used formalism for theoretical calculations of
di�usion coe�cients of defects in solids. In this work, we test its validity for the case of vacancy
di�usion in silicon. The di�usion coe�cient directly obtained from molecular-dynamics simulations
with a classical (Stillinger-Weber) potential is compared with TST predictions. Our results con�rm
the validity of TST for this system.

Di�usion coe�cient calculations for defects in solids

are almost exclusively done in the framework of transi-

tion state theory (TST) [1]. Within this formalism, the

defect jump rate � is written as

� = ��e�Em=kT ; (1)

where the migration energy Em is determined by the

energy di�erence between two absolutely static atomic

con�gurations: The ground state and the saddle-point,

i.e.,

ETST
m = Es � E0: (2)

The saddle-point is the con�guration of maximum en-

ergy along the adiabatic reaction pathway. The pre-

factor �� can be seen as an e�ective "jump-attempt"

frequency, and it is given within TST by

��TST =

QN
i=1 �

0

iQN�1
i=1 �si

; (3)

where the products in the numerator and denomina-

tor are over all normal mode frequencies of the ground

state and saddle-point, respectively.

In this work, we test the validity of TST predictions

for the speci�c case of vacancy di�usion in silicon. Va-

cancy in silicon has been and still is [2] one of the most

studied point defects in semiconductor physics, partly

due to its role in mediating impurity di�usion. Our cal-

culations are based on a classical Stillinger-Weber [3]

(SW) interatomic potential. This potential is chosen

mainly for its simplicity but, as shown below, it pro-

vides a reasonable agreement with more sophisticated

methods for many calculated properties.

The system is modeled by a supercell with periodic

boundary conditions and we start out by searching for

its ground state. A vacancy is initially formed by re-

moving one of the silicon atoms in the supercell, with-

out relaxing the remaining atoms. This unrelaxed con-

�guration is found to be a metastable state for the SW

potential. The true ground state is associated with a

0.56 �A inward relaxation of the vacancy �rst neighbors,

and it is shown in Fig. 1(a) (or Fig. 1(c)). Our result

using a classical potential is in reasonable agreement

with recent ab initio calculations [4] which indicate an

inward relaxation of 0.4 �A.

Figure 1. Fragment of the supercell around the vacancy,
illustrating the di�usion pathway: (a) initial ground state,
(b) saddle-point (split-vacancy) and (c) �nal ground state.

The saddle-point con�guration can be guessed from

symmetry arguments and is known as split-vacancy.

The resulting migration pathway is then indicated in

Fig. 1, which shows the initial, saddle and �nal con�g-

urations. In this pathway, one of the vacancy neighbors

moves to an intermediate position midway its initial lo-

cation and the vacancy position.

The formation energies for the vacancy and split-

vacancy calculated for a 64-site cell (thus containing 63

silicon atoms) are shown in Table 1 , along with the
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corresponding ab initio and experimental results. The

TST migration energy, calculated as in Eq. (2) are also

given. Notice that TST migration energy (0.49 eV) is

in reasonable agreement with the experimental values

of 0.18-0.45 eV [7]. Convergence with respect to the

supercell size was investigated for 216-, 512- and 1000-

site cells, with the migration energy converging to 0.54

eV.

Table 1. Formation energies for the ground state (E0) and saddle-point (Es) and migration energy (Em) for the

vacancy in silicon (in eV).

Energy This work Ab initio [4, 5] Experiment [6, 7]
E0 2.90 3.3 - 3.6 3.6
Es 3.40 - -
Em 0.49 (TST) - 0.18 - 0.45

0:44� 0:07 (MD)

We now proceed to the calculation of the pre-factor

��. The fully relaxed con�gurations for a 64-site cell are

used as input for the calculation of the vibration spectra

at both the ground state and saddle-point. The matrix

of force constants is obtained by a �nite-di�erence ap-

proach, in which the matrix element �i�;j� is approx-

imated by
��Fj�
�Ri�

, where �Fj� is the calculated force

on atom j, direction �, for a small displacement �Ri�

on atom i along direction � starting from equilibrium.

This matrix is then diagonalized and the pre-factor

�� is calculated as prescribed in Eq. (3). We �nd

�� = 1:1� 1013 Hz.

The accuracy of TST predictions is tested by com-

parison with results directly obtained from molecular

dynamics (MD) simulations. We perform MD simu-

lations within the constant NEV ensemble, where N

is the number of Si atoms, V is the volume and E is

the total energy. The atomic trajectories are generated

from a 5th-order predictor-corrector algorithm with a

time step of 10�16 s. Due to the small time steps re-

quired for accurate dynamics, the amount of elapsed

time is limited. In the simulations presented here, we

typically simulate di�usion for 10�9 s.

The di�usion coe�cient is obtained from the simu-

lations through:

D =
1

6t

NX

i=1

j~ri(t) � ~ri(0)j
2; (4)

where ~ri is the position of atom i at time t. Since the

mean square displacement can be related to the number

of jumps n in the diamond lattice by

NX

i=1

j~ri(t) � ~ri(0)j
2 = 3na2=16; (5)

where a is the lattice parameter, the jump rate is given

by:

� =
32D

a2
: (6)

Results for � at di�erent temperatures are shown in

Fig. 2 as an Arrhenius plot. From the linear �t of the

data according to Eq. (1), we obtain �� = 2� 1� 1013

Hz and Em = 0:44 � 0:07 eV for the frequency and

migration energy, respectively. These results are to be

compared with the TST predictions: ��TST = 1:1�1013

Hz and ETST
m = 0:49 eV.

Figure 2. Jump rate � as a function of the inverse temper-
ature from molecular dynamics simulations for the 64-site
system. The �lled line represents the best �t from which
the dynamical values for the �� and Em are extracted.

These results show no clear discrepancy between

TST predictions TST and MD simulations, specially

for the migration energy. For the pre-factor ��, the

TST value barely �ts the large error bars. Indeed,

pre-factors are expected to be more a�ected by two of



830 Brazilian Journal of Physics, vol. 29, no. 4, December, 1999

the key approximations in TST: the harmonic approx-

imation and the neglect of multiple jumps and return

jumps. The harmonic approximation is used in TST in

order to perform analytically the integrations needed to

determine the ratio of partition functions that will lead

to Equations (1-3) [1]. This approximation can be, in

some cases, improved through numerical integration [8].

The second approximation is a more dramatic problem

for TST. Multiple jumps and return jumps occurring

in a time scale much smaller than the mean residence

time are correlated events not easily introduced in the

framework of TST. Even though there have been some

attempts in this direction [9], this remains an open,

di�cult and important problem in defect physics. We

plan to address these issues in a future work.
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