
Brazilian Journal of Physics, vol. 29, no. 4, December, 1999 661

An Order-N Study of Dislocations in

Homopolar Semiconductors

R.W. Nunes

Departamento de F��sica, Universidade Federal de Minas Gerais

Belo Horizonte, Minas Gerais 30123-970, Brazil

Received February, 1998

This article surveys the main results of the author's work, in collaboration with David Vanderbilt
and John Bennetto, on the application of the order-N density-matrix approach, together with ab

initio methods, to investigate the atomic structure of dislocation cores in the homopolar semicon-
ductors silicon, carbon, and germanium. In these systems, the predominant dislocations are the 30�

and the 90� partial dislocations. For the three materials, the nature of the reconstruction at the
core of the 90�-partial dislocation is considered. Both the traditional single-period and our recently
proposed double-period core structures are investigated. The double-period geometry is found to
be the ground-state structure in all three cases. For silicon, we have also investigated in detail
the structure and dynamics of point excitations (kinks, solitons, and kink-soliton complexes) in the
cores of the 30� partial dislocation and the single-period geometry of the 90� partial. Our calcu-
lated formation energies and migration barriers for these excitations are in good agreement with
available experimental results. Furthermore, we have examined the reactions by which high-energy
kinks relax into low-energy ones by soliton emission.

I Introduction

The fundamental understanding of plasticity in solids

requires a knowledge of the atomistic structure at the

cores of dislocations. Dislocation motion occurs by

the propagation of point excitations (kinks) that oc-

cur within the dislocation core. The multiplicity and

structure of these point excitations are connected with

the underlying lattice symmetries and the nature of the

reconstruction in the core.[1] Recent advances in com-

puter power and computational methodology have led

to an active area of research focused on the theoreti-

cal study of the atomistic structure of these dislocation

cores and their defects.[2-14]

A wealth of experimental information is avail-

able about the properties of dislocations in

semiconductors.[15-21] In tetrahedrally bonded sys-

tems, such as silicon (Si), the two most frequently

occurring dislocations are the 30� and the 90� par-

tial dislocations, lying on f111g planes along [110]

directions.[15-17] Both are known to dissociate into

pairs of partial dislocations bounding a ribbon of intrin-

sic stacking fault.[15-17] Dissociation lowers the strain

energy and is made energetically favorable by the low

energy of the stacking fault in these materials. The

resulting 90� and 30� partials are believed to undergo

core reconstruction, which eliminates the unsaturated

bonds, thus restoring the fourfold coordination of the

atoms at the cores. This picture is consistent with the

low density of dangling bonds, as suggested by EPR

measurements.[15,16]

Given their technological importance, the detailed

understanding of the atomic structure at the dislocation

cores in these materials is of great interest, since dislo-

cations inuence both the electronic and the mechanical

properties of semiconductor devices. In the particular

case of Si, the theoretical study of the dislocation cores

at the atomistic scale has revealed a rich structure of

point excitations (kinks and reconstruction defects) in

the core of the 30� and 90� partials.[2-4,6,8,13]

Here, I survey the results of our investigation of

the atomic structure of dislocation cores in homopolar

semiconductors. This study was carried out using an

order-N density-matrix technique, [22] in the context of

a tight-binding Hamiltonian for a quantum-mechanical

description of the electronic structure, as discussed in

the next section.[23] In Sec. III, the core reconstruction

of the 90� partial in Si, carbon (C), and germanium

(Ge) is reviewed. Our calculations indicated a new

ground-state structure for the defect, a feature which

we also investigated by means of ab initio calculations.

For Si, the nature of the core reconstruction of the 30�

partial is also discussed (Sec. V), as well as the struc-

ture and dynamics of the point excitations (kinks and
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reconstruction defects, the latter being commonly re-

ferred to as solitons) occurring in the cores of the two

partials (Secs. IV and V). A comparison with avail-

able experimental results for kink formation energies

and migration barriers, and some concluding remarks

are given in Secs. VI and VII, respectively.

II The order-N density-matrix

technique

From a computational point of view, the atomic-scale

study of the structure of extended defects in solids,

such as dislocations, grain boundaries, and stacking

faults, with a proper quantum-mechanical treatment

of the electronic structure, is limited by the high-

computational cost associated with the \traditional"

approaches. This is also true for problems such as

lattice dynamics in amorphous semiconductors, where

molecular-dynamics simulations are employed. By tra-

ditional, we mean methods in which the electronic

Hamiltonian is diagonalized, enabling the calculation

of the electronic-structure contributions to the energy

and the forces acting on the system. This bottleneck

applies to both ab initio and tight-binding approaches,

whenever diagonalization is used, since the computa-

tional time scales with the third power of the number

of atoms in the system [O(N3
at)]. In these approaches,

once the eigenvalue equation Hj ni = "nj ni is solved,

the electronic total energy and the �-th component of

the electronic contribution to the force acting on the

i-th atom are given, respectively, by Etot =
P

n "n and

F i
� =

P
nh nj@H=@r

i
�j ni (the sums on the index n,

appearing in these and the following equations, run over

the occupied electronic states).

In recent years, several approaches aiming at solv-

ing the electronic-structure problem in a linear-scaling

or O(Nat) fashion have been proposed. In our study,

we use the density-matrix method introduced by Li,

Nunes, and Vanderbilt (LNV), [22] in which the prob-

lem is formulated in terms of the one-particle density-

matrix, � =
P

n j nih nj, associated with the elec-

tronic Hamiltonian. In terms of �, integrated quantities

such as Etot and F
i
� are written simply as Etot = tr [�H]

and F i
� = tr

h
� @H
@ri

�

i
, where tr[A] is the trace of the ma-

trix A. In this formulation, the diagonalization of the

Hamiltonian is avoided, but one is now left with the

need to enforce the idempotency of the density matrix,

i.e. the condition � = �2, which ensures the proper

fermionic �lling of the electronic levels. In terms of the

eigenvalues �� of �, idempotency implies that �� = 1

for energy levels below the chemical potential (or fermi

level) �, and �� = 0 for levels above �.

In the LNV method, the idempotency requirement

is enforced indirectly, by introducing the puri�cation

transformation

~� = 3�2 � 2�3: (1)

In essence, � is now treated as a trial density ma-

trix, while ~� is the physical density matrix, in the

sense that the required observables are now written as

hOi = tr[~� Ô], where Ô is the operator associated with

observable O. The ground-state ~� is found by minimiz-

ing the electronic total energy

Etot = tr [~�H] = tr
��
3�2 � 2�3

�
H
�
; (2)

with respect to the matrix-elements of �, in the cho-

sen tight-binding basis. The transformation given by

Eq. (1) is such that, upon minimization of Eq. (2), the

occupation of the eigenvalues below (above) � is driven

to its physical value of 1 (0), as desired. The solution is

stable, since Eq. (1) has stable �xed points at �� = 0; 1.

Moreover, the LNV solution takes advantage of the fact

that � is exponentially localized in real-space, i.e., for

j~Rj � ~Rij ! 1, �ij / exp(�j~Rj � ~Rij), where i and j

are tight-binding orbitals centered at sites Ri and Rj,

respectively. Linear-scaling is then achieved by trun-

cating the density matrix beyond a chosen cuto� radius

Rc. The method is variational with respect to both �

and Rc, and becomes exact in the limit Rc !1. This

ensures that the forces can be obtained by a Hellman-

Feyman expression

F i
� = tr

��
3�2 � 2�3

� @H
@ri�

�
: (3)

III Core reconstruction of the

90� partial dislocation

To date, the majority of the theoretical works on the

atomic-structure of dislocations in semiconductors have

addressed the structure of the 90� partial dislocation.

From these studies, a consensus had emerged at the the-

oretical level, about the nature of the reconstruction at

the core of the defect. In its unreconstructed con�gura-

tion, the core of the 90� partial displays a zigzag chain

of threefold-coordinated atoms running along the dislo-

cation direction, with broken bonds lying nearly parallel

to the slip plane. Mirror symmetry planes, along the

dislocation direction, are present is this con�guration.

A reconstruction that breaks the mirror symmetry of

the unreconstructed core, while preserving the lattice

periodicity along the line, is shown in Fig. 1(a). In

the following discussion, this symmetry-breaking recon-

struction is referred to as the single-period (SP) recon-

struction. In all our �gures the shaded area represents
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the stacking fault, and the dislocation line is indicated

by the boundary between shaded and unshaded areas.

White (black) atoms lay above (below) the glide plane;

besides the bonds in the plane shown in the �gures,

each atom is bonded to another either above or below

it. Notice that all dangling bonds have been eliminated,

and all the atoms are fourfold coordinated. This re-

construction was predicted to be substantially lower in

energy than both the unreconstructed and the related

quasi�vefold-reconstructed cores (in the latter, the core

is allowed to relax, with the constraint that the mirror

symmetry is preserved), [2,7,9-11] hence being the one

expected to occur in nature.

Figure 1. (a) The single-period (SP) symmetry-breaking
core reconstruction of the 90� partial dislocation in homopo-
lar semiconductors, viewed from above the (111) slip plane.
Black (white) atoms lie below (above) the slip plane and the
shaded area indicates stacking fault. Crystalline directions
are also shown. (b) The double-period (DP) symmetry-
breaking reconstruction.

However, our recent theoretical work, on the core

reconstruction of this dislocation in Si, has indicated

otherwise. In Ref.[3], we proposed an alternative core

structure for the Si 90� partial in which, in addition

to symmetry breaking of the SP core, the periodic-

ity along the dislocation line is doubled. This double-

period (DP) reconstruction, shown in Fig. 1(b), can

be derived from the SP one by introducing alternating

kinks at every lattice site along the core. Its geometry

is consistent with all available experimental informa-

tion about the 90� partial. Being fully reconstructed,

the DP structure does not give rise to deep-gap states

which would show an EPR signal. (EPR measurements

in Si indicate a rather small density of dangling bonds

in the core of dislocation.[15-17] Surely, this is also a

feature of the SP core. Moreover, both cores consist

entirely of �vefold, sixfold, and sevenfold rings, both

being consistent with images produced by transmission

electron microscopy, at the current level of resolution

of this technique.[21] While the experiments appear un-

able to decide clearly on the issue, our theoretical re-

sults in Ref. [3] show the DP structure to be lower in

energy than the SP one, by means of Keating-potential,

total-energy tight-binding (TETB), and ab initio local-

density (LDA) calculations.

In Ref. [4], we extended the investigation of the DP-

�SP-core issue to carbon (C) and germanium (Ge). In

that work, we found the DP core to be the ground-

state in all three materials. The results for the ener-

getics of the SP and DP cores in Si, C, and Ge, are

given in Table I. The LDA and TETB calculations are

in quite good agreement, except in the case of C, where

the TETB results appear to underestimate the energy

di�erence between the two structures. To investigate

the inuence of dislocation interactions on our results

we performed TETB calculations for larger cells, as

also shown in Table I. Further, we used a Keating-

potential analyses to elucidate the di�erence between

the local-strain �elds generated by the two reconstruc-

tions. The indication is that the DP core is able to

\pack" the atoms more e�ciently, as indicated by the

smaller average bond-length deviations, at the expense

of larger bond-angle deviations. The balance between

bond-bending and bond-stretching forces leads to the

preference of these materials for the DP core. The

Keating-potential results indicate a rather subtle dif-

ference between the two structures. While the Keat-

ing energy for the Keating-potential relaxed structures

indicate the SP core to be favorable in C, the same

potential when applied to the LDA-relaxed geometries

reproduces the LDA trends for the relative energies,

with the DP core being more strongly favored in C.

One last comment is in order about our results on

these two core structures. Recently, Lehto and Oberg

have claimed that the relative stability between the SP

and DP structures could depend on the choice of su-

percell boundary conditions. In order to use periodic

boundary conditions, the net Burgers vector in the su-

percell must be zero. Hence, the cell must contain at

least a dislocation dipole. Bigger et al. [7] have sug-

gested the use of the quadrupole cell used in our work,

which is designed in order to avoid the presence of spu-

rious strains associated with a tilt grain boundary that

forms in the dipole-cell con�guration. (Such boundary-

condition e�ects should disappear in the limit of suf-

�ciently large cells.) In order to elucidate this issue,

we have performed fully converged [25] (with respect

to supercell size) calculations that show that at least in

Si and C, the DP core is favored, for both the dipole

and quadrupole cells, showing that our �ndings hold

regardless of the nature of the boundary conditions.
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IV 90� partial: solitons and

kinks

Symmetry breaking in the SP core gives rise to a soli-

tonic defect at the boundary between two stretches of

the dislocation, in which the direction of the bonds is

switched, as shown in Fig. 2. Note the presence of a

dangling bond in the core of the defect, which explains

its formation energy of 1.45 eV. Our result is in reason-

able agreement with the 1.2 eV value obtained in the

cluster calculations of Ref. [13]. We also computed an

energy barrier of only 0.04 eV for soliton propagation

along the dislocation line. Such a small barrier shows

the soliton to be extremely mobile even at low temper-

atures. As a test, we performed a molecular dynamics

simulation on a supercell containing a soliton and an

anti-soliton, initially separated by 9.6 �A, on an other-

wise defect-free partial dislocation. Remarkably, at a

temperature of only 50 K, recombination of the pair

took place after only 1.3 ps.

Figure 2. Reconstruction defect (also termed a soliton) in
the SP core of the 90� partial dislocation. The direction of
the reconstruction along the dislocation line changes from
right to left, going through the defect.

For the study of the kinks in this dislocation core,

we adopt a notation based on the sense of the recon-

struction, going into and out of the kink, as shown in

Fig. 3. Thus, `L' and `R' denote the direction of the

core reconstruction on either side of the kink. Refer-

ring to Fig. 3(a), the reconstruction will be said to tilt

to the `left' and to the `right' on the left and right sides

of the kink, respectively. Hence, we call this a left-right

(LR) kink, the notation following accordingly for the

other defects. We actually compute the sum of the en-

ergies of the LR and RL kinks shown in Fig. 3(a) and

(b), �nding a result of 0.24 eV only. The RL and LR

kinks are structurally quite similar; they would be re-

lated by a two-fold rotation axis normal to the plane of

Fig. 3, if it were not for the fact that a stacking fault

exists on one side but not the other. Thus we expect

the energies of the two kinks to be similar, and assign

the average energy of 0.12 eV to each. This result is in

good agreement with the �rst-principle cluster calcula-

tions in Ref. [14] (0.1eV), and in perfect agreement with

the Terso� potential values obtained in Ref. [13] (0.12

eV). The rather low formation energy can be seen as

another indication of the DP core structure, since even

individual kinks add little strain over that imposed by

the SP core itself. In the formation of the DP core,

this additional strain is more than compensated for by

the attraction between the LR and RL kinks. We also

computed an energy barrier of 1.62 eV for the motion

of the LR and RL kinks. Such large energy barriers are

associated with the existence of malcoordinated atoms

and severe bond distortions at the core of the kink.

There are two additional kink-type defects associ-

ated with the SP reconstruction of the core. These are

the RR and the LL defects, shown in Figs. 3(c) and

(d). These defects can actually be seen as complexes

of a LR or a RL kink together with a soliton. Two LL

complexes are possible (only one is shown in Fig. 3), and

they share the same \quasi-symmetry" that the LR and

RL kinks do, di�ering only by the position of the �ve-

fold and dangling-bond-containing rings with respect

to the stacking fault. These complexes appear to be ei-

ther unstable or marginally stable against the emission

of a soliton, as discussed in Ref. [2]. The dissociation

barrier, if present, is basically the soliton migration bar-

rier, which indicates that these complexes should disso-

ciate very easily at moderate temperatures. This was

con�rmed by a simulation performed at 300 K, with

a supercell containing a pair of RR complexes in each

dislocation, separated by a distance of 34.6�A. On the

time scale of 1 ps, this system undergoes the following

relaxation process:

c

RR+RR ! (RL+ S) +RR ! RL+ (S +RR) ! RL+ LR :
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In the �rst step of this reaction, one of the kink

complexes undergoes a soliton-emission reaction, after

which the soliton (S) propagates rather easily towards

the other RR complex (second step), where it is ab-

sorbed by the other RR kink, in the �nal step. Overall,

a dislocation containing a pair of RR complexes relaxes

into one containing alternating RL and LR kinks, by

means of soliton emission (absorption).

Figure 3. Core structure of kinks and kink-soliton complexes
in the SP core. See text for notation. (a) LR kink. (b) RL
kink. (c) LL complex = LR + soliton. (d) RR complex =
LR(RL) + soliton.

V 30� partial: core reconstruc-

tion, solitons and kinks

In Fig. 4(a), a top view of the atomic structure of the

unreconstructed 30� partial in the glide plane is shown.

Notice that the atoms at the core of the defect are three-

fold coordinated, with a dangling bond lying nearly par-

allel to the dislocation line. Fig. 4(b) shows the recon-

structed structure, where the core atoms bond in pairs

along the line, thus restoring their fourfold coordina-

tion. This leads to a doubling of the period in the dislo-

cation direction. This reconstruction is well accepted as

being the ground-state of the 30� partial, and has been

discussed theoretically by other authors.[6,9,13,17] In

Ref [6], it was found to be 0.21 eV/�A lower in energy

than the unreconstructed structure, using a Stillinger-

Weber potential. We �nd a higher value of 0.36 eV/�A

for the reconstruction energy. The distribution of bond

lengths for this structure shows that the reconstruction

is indeed strong, with maximumbond-length deviations

of only 3.0% (maximumand minimumbond lengths are

2.42 �A and 2.31 �A, respectively) with respect to Si bulk

values (2.35 �A). To a large extent, the core energy is due

to the strain associated with bond-angle distortions at

the core of the defect, with bond angles ranging be-

tween �90� and �126� (109:5� is the bulk value). No

mid-gap levels are expected for this structure, in accor-

dance with the EPR evidence.[15-17]

Figure 4. (a) Unreconstructed core of the 30� partial dislo-
cation in Si. (b) Double-period reconstruction of the same
dislocation.

Several core defects are associated with this recon-

struction. Like in the case of the 90� partial, the ba-

sic types are kinks and solitons, which also form kink-

soliton complexes. A detailed study of these defects is

found in Ref. [6], including structural features and en-

ergetics under a Stillinger-Weber potential. Our study

of this speci�c dislocation relied on this previous study,

adding to it the bene�ts of a quantum-mechanical treat-

ment of the electronic structure. The formation ener-

gies and migration barriers of these excitations are in-

cluded in Table II. (For the kink-soliton complexes the

binding energy is shown in the second column, instead.)
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Fig. 5(a) shows the soliton associated with the core of

the 30� partial. Our value of 1.32 eV for the soliton

formation energy is somewhat higher than the value of

0.81 eV obtained in Ref. [6] We believe our result to

be more reliable, given the quantum-mechanical nature

of our approach, in particular for a defect containing a

dangling bond. We also computed the migration barrier

for the propagation of the soliton along the dislocation

core, obtaining a value of 0.3 eV. This indicates that

solitons are less mobile in this dislocation than in the

90� partial. This feature is perhaps reected on the sta-

bility of the kink-soliton complexes in the 30� partial,

which is discussed below. This in contrast with the case

of 90� partial, where complexes are unstable.

Figure 5. Soliton in the core of 30� partial dislocation. The
phase of the reconstructed bond along the dislocation line
is switched, going through the defect.

The period doubling of the reconstructed core gives
rise to a multiplicity of kinks in this system. Two
distinct families of such defects appear, depending on
whether the dislocation \kinks" to the left [Figs. 6(a)
and 6(b)] or to the right [Figs. 6(c) and 6(d)]. The pe-
riod doubling of the core introduces a choice of phase
of the core reconstruction both ahead of, and behind,
the kink. Of the four con�gurations generated in this
way, two of them (those necessarily containing a coordi-
nation defect) are classi�ed as kink-soliton complexes.
The remaining two con�gurations, each with two possi-
ble states due to the period doubling, will be classi�ed
as \pure" kinks. Thus, in Fig. 6(a-b) we show the left
kinks LK and LK0, while the right kinks, RK and RK0,
are shown in Fig. 6(c-d). The energies for each type
of kink were computed using the TBTE Hamiltonian,
as well as with a classical Keating model [26] in the
parameterization suggested in Ref. [27]. In our discus-
sion, we use the Keating model as a tool to examine the
local-strain contributions to the energy of each defect.
In order to work with more reliable geometries, we ana-
lyze the Keating energies for the TB-relaxed structures.

Figure 6. Core structure of kinks in the 30� partial, and
associated transition state. Kink notation is explained in
the text. (a) LK kink. (b) LK0 kink. (c) RK kink. (d) RK0

kink.

The energies for LK and LK0 given in Table II,
show that reconstruction produces low energy kinks in
this case, as compared to the energy of the (unrecon-
structed) soliton. At �rst sight, the formation energy
for these reconstructed defects is expected to be mostly
associated with the local strain at the kink cores. The
Keating-model results can give us a qualitative under-
standing of these local-strain e�ects. The LK is found
to add little additional strain to that imposed by the
core reconstruction itself, with a slightly negative for-
mation energy, while for the LK0 kink we compute a
Keating formation energy of 0.44 eV. Note that the
trend in energies for the two left kinks is in qualitative
agreement with the TB results. This is actually true
for all four kink types, as can be seen by looking at
the kink energies in the fourth column Table II. For the
LK saddle-point con�guration we computed an energy
barrier of 1.52 eV. This result is in very good agree-
ment with experimental estimates. Such a high barrier
to motion can be understood by the presence of severe
bond-bending and stretching distortions at the core of
the defect, along with the presence of malcoordinated
atoms. Bond angles as small as 50.4� are found, as well
as bonds stretching to 2.80 �A.

Also shown in Table II are the formation energies for
RK (1.24 eV) and RK0 (1.85 eV). These values are sur-
prisingly high, since both are being fully reconstructed.
No single structural feature of the right kinks could be
traced in order to explain the unexpected formation
energies. The minimum and maximum distortions of
bond lengths and angles do not vary drastically among
the four kink types. In Ref. [4], the strain �elds and
the corresponding energies associated with these kink
are analyzed in more detail (where we �nd the trends
in energy among the various kinks to be determined by
the medium-range strain introduced by the defect, in
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each case). Like in the case of the left kinks, the rather
high migration barrier of 2.03 eV for the right kinks is
associated with the drastic bond distortions and malco-
ordination of atoms at the core. Note that this barrier
is substantially higher than the 1.52 value we obtained
for the left kinks, leading to a physical picture of \fast"
and \slow" plasticity carriers for the 30� partial dislo-
cation.

Kinks and solitons can be considered as the fun-
damental types of excitations in the dislocation cores.
Important structural features and modes of dislocation
dynamics can also be associated with the complexes
formed by these basic defect types. Here, we consider
the energetics of the kink-soliton complexes. The im-
portant questions concern whether or not these com-
plexes form bound states, as well as the associated
binding energies and migration barriers. We consid-
ered each of the kink-soliton complexes in two con-
�gurations. The left complex (LC = LK + soliton)
was studied in the state of closest approach, LC(0), in
which the two constituents overlap and cannot be dis-
tinguished; and also in an extended state, LC(1), in
which the soliton and the kink have been separated to
adjacent positions. We also analyzed the correspond-
ing right-complex cases, RC(0) and RC(1). The results
are shown in Table II. We �nd that the soliton binds
strongly with both the left and the right kinks, in agree-
ment with Ref. [6]. However, contrary to what is found
in that work, our results indicate the LC to be more
strongly bound than the RC. From the binding ener-
gies and the energies of these more extended con�gura-
tions, we obtain a lower bound of 0.80 eV (LC) and 0.49
(RC) for the dissociation barrier of these bound states.
It should be emphasized that these results are in sharp
contrast with those for kink-soliton complexes in the SP
reconstruction of the 90� partial dislocation, which are

found to be unstable. Finally, we note that the energy
of the LC is lower than that of the soliton, making the
former the more likely site for unpaired electrons in the
core of the 30� partial.

VI Comparison with experi-

mental results

The results for the formation energies and migration
barriers of kinks in the 90� and 30� partial disloca-
tions are summarized in Table III. For the 30� partial,
of the two equilibrium states of each kink [(LK,LK0)
and (RK,RK0)], one is to be regarded as an intermedi-
ate metastable state in the propagation of the kink, in
view of the substantial di�erence in formation energy
between the two states. The state with the lower for-
mation energy will determine the kink concentration in
each case (this being the number included in Table III).
For comparison, we include the ranges of experimen-
tal results for both quantities, obtained from di�erent
techniques.[18-21] We observe that, for the 30� partial,
our values are in excellent agreement with the experi-
mental ones.

One possible interpretation of these experiments
is o�ered by theory of Hirth and Lothe, in which
the dislocation velocity is given by vd / 2 �
exp [� (Uk +Wm) =kT ], where Uk is the kink forma-
tion energy andWm is the kink migration barrier. This
equation is written assuming the equivalence between
the two kinks resulting from the nucleation of a stable
double kink (a kink-antikink pair). This assumption
does not hold for the 30� partial, where the left and
right kinks are intrinsically di�erent. A more general
form, given by

c

vd / exp

�
�

1

2kT
(ULK + URK)

�
�

�
exp

�
�
WLK

m

kT

�
+ exp

�
�
WRK

m

kT

��
; (4)

d

must be used. The quantity of interest in the �rst acti-
vated term is the average formation energy of the two
kink species. The second term is derived from the kink
velocities, and therefore the relative velocity appears in
the generalized form. In the 30� partial this term is
dominated by the velocity of the left kinks (fast car-
riers), given the much higher migration barrier of the
right kinks (slow carriers). We stress that the average
formation energy of the kink-antikink pairs in Table III
falls within the range of the experimental numbers, for
the 30� partial. An alternative theory of dislocation
glide has been proposed,[28,29] in which the motion is

controlled by the pinning of kinks by strong obstacles
along the dislocation line, and the kink migration barri-
ers are not rate controlling. Our work does not address
such pinning mechanisms, thus being unable to decide
between the latter and the HL theories. Nevertheless,
our results are certainly consistent with the HL inter-
pretation.

Finally, despite the fact that we did not consider
the true ground state for the 90� partial (the excellent
agreement we obtain for the kink barriers being some-
what fortuitous) our results are qualitatively consistent
with the experimental images in Ref. [21], which show
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a higher concentration of kinks in the 90� partial. In
Table III, we see that kink energies are lower in this
dislocation, as compared to the 30� partial. Obviously,
this is only plausible to the extent that this general
trend of lower kink energies carries over to the ground-
state DP structure of the 90� partial.

VII Conclusion

The main results of our study of the atomic structure
of the 30� and the 90� partial dislocations in homopo-
lar semiconductors, as reported in Refs. [2-5], can be
summarized as follows. In Si, C, and Ge, the DP struc-
ture of the 90� partial is found to be lower in energy
than the SP geometry. The energy di�erence between
the two structures follows the same trends as the sti�-
ness and the size of the gap in these materials. In Si,
our investigation of solitons and kinks in the 30� par-
tial and the SP structure of the 90� partial shows a
picture of reconstructed kinks in both cases, with en-
ergies and migration barriers that compare favorably
with experimental estimates. Solitons are shown to be
very mobile in the 90� partial, and less so in the 30�

partial. Kink-soliton complexes are found to be unsta-
ble or marginally so in the 90� partial, while in the case
30� partial such complexes appear stable, with binding
energies of at least 0.5 eV.
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Table I. Calculated energy di�erence in meV/�A, between the SP- and DP-core reconstructions of the 90� partial
in C, Si, and Ge. Cell size refers to the double-period cell. EDP is the energy of the double-period reconstruction.
For the single-period case, ESP and �ESP are respectively the average and di�erence of the energies for the two
di�erent relative arrangements of mirror symmetry-breaking.

192-atom supercell 588-atom supercell
EDP � ESP �ESP EDP �ESP �ESP

C
LDA -235 126 - -
TETB -100 74 -76 14
Keating -21 123 34 24
Keating [1] -121 160 - -

Si
LDA -69 48 - -
TETB -75 39 -57 3
Keating -27 40 -7 8
Keating [1] -40 67 - -

Ge
LDA -58 27 - -
Keating -21 32 -5 6
Keating [1] -12 36 - -

[1] Evaluated at LDA-relaxed structure.

Table II. Formation energy of defects in the 30� partial dislocation, in eV. Defect energies are referred to a defect-
free dislocation core. Defect migration barrier is shown in the last column, for the pure kinks (LK's and RK's)
and the soliton (S). For the defect complexes, last column gives the defect binding energy. Two di�erent states are
considered for each complex (the notation is explained in the text).

Formation energy Migration barrier
S 1.33 0.30
LK 0.35 1.53
LK0 0.76 -
RK 1.24 2.10
RK0 1.85 -

Binding energy
LC(0) 0.88 0.80
LC(1) 1.58 -
RC(0) 2.15 0.42
RC(1) 2.64 -

Table III. Formation energy and migration barriers of dislocation kinks in Si, in eV. Range of available experimental
estimates of is included.

Dislocation Kink type Formation energy Migration barrier
30� LK 0.35 1.53
30� RK 1.24 2.10
90� LR 0.12 1.62
90� RL 0.12 1.62
Experiments 0.4-0.7 1.2-1.8


