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We derive a system of equations to describe stationary axisymmetric MHD equilibria characterized
by toroidal and poloidal 
ows as well as plasma anisotropy due to strong magnetic �eld and eventual
auxiliary heating methods. The system consists of a nonlinear partial di�erential equation for the
poloidal magnetic 
ux function and an algebraic Bernoulli-type equation, which relates plasma
density with several surface functions. We analyse the ellipticity of the equation and the plasma
density bifurcation as the Alfv�en-Mach number is changed.

I Introduction

Plasma rotation in tokamaks has been observed dur-

ing non-ohmic current drive and neutral beam injec-

tion, when a net momentum is imparted to the plasma

[1], [2]. Plasma rotations with Mach numbers of or-

der unity have been detected in tokamaks at almost all

operating regimes, both in toroidal and poloidal direc-

tions [3, 4, 5]. Plasma 
ow has also been observed in

reversed-�eld pinches (RFP), showing a high velocity

shear between core and edge plasma rotation [6]. In

�eld-reversed con�gurations (FRC), strong plasma az-

imuthal rotation is responsible for an n = 2 instability

that may destroy plasma con�nement [7].

From the point of view of magnetohydrodynamic

(MHD) equilibrium theory, in the absence of plasma re-

sistivity (ideal theory), magnetic �eld lines lie on mag-

netic 
ux surfaces that rotate rigidly with the plasma,

according to Alfv�en's theorem [8]. Equilibria are char-

acterized by surface functions, i.e., physical quantities

that are constant on nested closed surfaces, with the

topology of tori. Examples of surface functions include

the volume enclosed by a toroidal magnetic surface, the

magnetic 
ux of the poloidal magnetic �eld component,

and the �eld line rotational transform.

We will assume that the plasma is in a MHD sta-

tionary equilibrium state, which means that all par-

tial time derivatives vanish, but allow for stationary

velocity pro�les, including plasma 
ows in toroidal and

poloidal directions. The momentum balance equation

in this case leads to an equilibrium partial di�erential

equation for the poloidal 
ux, which involves other sur-

face functions. Earlier studies to derive an equilibrium

equation with plasma 
ows were conducted by Zehrfeld

and Green [9] and Morozov and Solov'ev [10].

Maschke and Perrin [11] in 1980 were able to solve a

MHD equilibrium equation for purely toroidal 
ows in

axisymmetric plasmas. In addition to the ideal MHD

equations, they have made some thermodynamical as-
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sumptions: the plasma was taken to be an ideal gas,

with larger thermal conductivity along the magnetic

�eld lines than across them, so they have considered

the plasma temperature as a surface quantity. Situa-

tions where the 
ow is adiabatic allow the use of plasma

entropy as a surface quantity, instead of the tempera-

ture.

There are few analytical or semi-analytical solutions

for purely rotating equilibria in the literature, for cylin-

drical [11, 12, 13] and spherical geometries [14]. The

latter con�guration turns to be interesting to explore

astrophysical plasmas, as in magnetic stars. All these

solutions share some properties: the magnetic axis (de-

generate 
ux surface where the 
ux is an extremum) is

displaced outwards due to the centrifugal e�ect, and the

isobaric (constant pressure) surfaces no longer coincide

with the 
ux surfaces.

The problem of combined toroidal and poloidal


uxes has been �rst adressed by Zehrfeld and Green

[9], who assumed simple adiabatic 
ow. Later, Maschke

and Perrin [16] have solved such equilbrium equations

in the limit of small ratio of poloidal to toroidal mag-

netic �eld and small beta. Further developments were

due to Kerner and Tokuda [17],
�
Zelazny et al. [19], and

Tasso and Thromoulopoulos [18]. A common feature of

all these models is the need of supplementing the par-

tial di�erential equation for the magnetic 
ux with a

Bernoulli-like algebraic equation for the density which

contains several other surface quantities.
�
Zelazny and collaborators [19] have obtained nu-

merical solutions of the di�erential and algebraic

equations (called EGSS, or \extended Grad-Schl�uter-

Shafranov" system), by using the inverse method and

Fourier decomposition. They have observed that the

di�erential equation alternates between elliptic and hy-

perbolic when the Alfv�en-Mach number of the poloidal


ow (de�ned as the ratio between the poloidal 
ow ve-

locity and the Alfv�en velocity relative to the poloidal

magnetic �eld) increases. This fact was already ana-

lytically investigated by Hameiri [20], and it is of fun-

damental importance if a well posed boundary value

problem is to be solved. If the equation is not elliptic

no closed equilibrium con�gurations are possible.

So far, we have reported studies on isotropic sta-

tionary plasmas only. On the other hand, pressure

anisotropy due to intense magnetic �elds and auxiliary

heating methods is an important factor to be taken into

account if a general MHD equilibrium equation is to be

written down. It is the case, for example, when the

auxiliary heating power in toroidal devices is greater

than the ohmic heating power. This possibility was

already considered as early as in 1961 for static equilib-

ria [21], but only recently analytical solutions for static

and rotating anisotropic plasmas were obtained [12, 22].

Clemente has found a method to obtain axisymmetric

solutions of the MHD equations with plasma anisotropy

in terms of the corresponding solutions of the isotropic

set of equations for the static or rotating case.

In this paper we present a more general axisym-

metric MHD stationary equilibriummodel, which takes

into account both poloidal and toroidal plasma 
ows as

well as pressure anisotropy. Besides the usual surface

quantities, the poloidal magnetic 
ux and current func-

tions, other auxiliary surface functions will be de�ned.

The poloidal magnetic 
ux nonlinear partial di�erential

equation is complemented with a Bernoulli-type alge-

braic equation which generalizes that introduced for the

isotropic case[9, 10, 16]. The system reduces to the pre-

viously studied cases when anisotropy tend to vanish.

We also discuss the ellipticity of the di�erential equa-

tion and study plasma density bifurcations when the

Alfv�en-Mach number is varied. This could be related

to the problem of L-H transition in tokamaks.

This paper is organized as follows: in the second

section we outline the basic MHD and thermodynam-

ical equations to be used and the representations for

the magnetic and velocity �elds in cylindrical coordi-

nates. Section 3 introduces the auxiliary surface quan-

tities necessary in our model, and in section 4 an energy

theorem is derived. The momentumbalance equation is

derived in section 5, whereas in section 6 we study some

particular cases. Section 7 is devoted to an analysis of

the ellipticity of the equation, followed by a discussion

on plasma density bifurcation. Our conclusions are left

to the last section.



Brazilian Journal of Physics, vol. 29, no. 2, September, 1999 459

II Basic Equations

Let us consider an ideal plasma of electrons and singly

charged ions in stationary equilibrium, all partial time

derivatives will vanish and nonzero plasma velocity will

be allowed. The corresponding ideal anisotropic MHD

equations, in standard units, are [23]

r � (�v) = 0; (1)

�(v � r)v+r �P = j�B; (2)

r �B = 0; (3)

r�B = j; (4)

r� E = 0; (5)

E + v �B = 0; (6)

where

� = n(me +mi) (7)

is the mass density, n is the particle number density

and me, mi are the electronic and ionic masses, respec-

tively. v, E, B, and j are the velocity, electric �eld,

magnetic �eld and plasma current density, respectively.

If the plasma is subjected to a strong magnetic

�eld and ions have a small Larmor radius with a

rapid gyromotion, the pressure tensor P may be no

longer isotropic. Introducing di�erent plasma pres-

sures: p?across the magnetic �eld and pk along it, we

can introduce the Chew-Goldberger-Low form for the

pressure tensor [24]

P= p?I+ ��BB; (8)

where

�� �
pk � p?

B2
(9)

is a measure of pressure anisotropy, I is the identity

tensor and B2 = B�B.

In order to get to a closed system of equations we

must introduce some constitutive thermodynamical as-

sumption so as to obtain an energy equation. In earlier

works, where the pressure was supposed isotropic, it has

been assumed that either the entropy S or the temper-

ature T are surface quantities. In the former case, an

adiabatic equation of state has been used

p��
 = A(S); (10)

where 
 is the speci�c heat ratio. The speci�c enthalpy

h satis�es the thermodynamical relation

dh = TdS +
1

�
dp; (11)

which gives by integration, using (10)

h =




 � 1
A(S)�
�1: (12)

The internal energy e = h=
 satis�es the Gibbs'

equation

de = TdS +
p

�2
d�; (13)

so that

TrS =
�
�1


 � 1
rA(S): (14)

In the case of anisotropic pressure, however, we

must use the double adiabatic equations [23]

c

v � r lnpk � v � r ln� +
2B � [(B � r)v]

B2
= 0; (15)

v � r lnp? � 2v � r ln� �
B � [(B � r)v]

B2
= 0: (16)

d
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Using (1), (5) and (6) these equations can be com-

bined, there resulting that

r �

�
pkp

2

?

�4
v

�
= 0; (17)

r �

�
p?
jBj

v

�
= 0; (18)

r �

�
pkB

2

�2
v

�
= 0: (19)

Let us consider cylindrical coordinates (r; �; z),

where � is an ignorable quantity, i.e., our con�guration

exibits symmetry with respect to this coordinate. A

magnetic �eld representation satisfying Eq. (3) can be

written in terms of two scalar surface functions 	 and

I (poloidal 
ux and current functions, respectively)

B(r; z) = r	(r; z)�
ê�
r
+ I(r; z)

ê�
r
; (20)

We also assume that the plasma can have a rotation

around the symmetry axis in both toroidal and poloidal

directions. A velocity representation which satis�es Eq.

(1) is

�v(r; z) = rF (r; z)�
ê�
r
+ ��(r; z)

ê�
r
; (21)

where � is a stream function, and F is the correspond-

ing stream function for poloidal 
ow.

III Auxiliary Surface Quanti-

ties

Taking the cross product between (21) and (20), and

using axisymmetry we have

v �B = �
IrF

�r2
+
�r	

r2
: (22)

From Ohm's law, the azimuthal component of Eq.

(6) vanishes. Using (22), it implies that the jaco-

bian of the transformation (r; z)! (F;	) is identically

zero, i.e., F = F (	) is also a surface function. Hence

rF = F 0r	, where the primes denote di�erentiation

with respect to 	.

Now, inserting (22) into Faraday's law, Eq. (5), and

using (6), we obtain r
�r	 = 0, where we have de-

�ned


(	) =
�

r2
�
IF 0

�r2
; (23)

and it is also a surface quantity. Physically 
(r; z) is

a toroidal angular velocity for a rigid surface rotation.

This is commonly called \Ferraro's isorotation law" [8].

Combining (23) with (21) we have for the plasma

velocity the following expression in terms of the mag-

netic �eld

v(r; z) =
F 0

�
B(r; z) + 
rê�: (24)

Computing the divergence of the pressure tensor, as

given in the form (8), and substituting it into the mo-

mentum balance equation for equilibria, Eq. (2), we

have

c

�(v � r)v +rp? +r � (��BB) = (r�B)�B; (25)

d

where we have used Amp�ere's law (4). Rearranging

terms we have

r

�
p? +

B2

2

�
+r �T= 0; (26)

where we de�ned the tensor

T= (�� � 1)BB+ �vv: (27)

Dotting (26) with ê� , we �nd that the divergence

of Thas zero �-component. There results, by using (1)

and (2), that (25) can be rewritten as
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B � r[r(�� � 1)B�] + �v � r(rv�) = 0; (28)

or, by means of the assumed representations of B and

v,

B � r[(�� � 1)I + F 0�] = B � r� = 0; (29)

where a new auxiliary surface quantity has been de�ned

as

�(	) = (�� � 1)I + F 0�: (30)

Let us discuss a special case in order to get a phys-

ical insight on the possible motions allowed by the

present treatment. In the case of a �eld-reversed con-

�guration (FRC) we have I = 0, so � = �=F 0. On the

other hand, from (23), we have that � = 
r2. However,

while �=F 0 is a surface quantity, it is easy to prove that


r2 is not, hence the equality

�

F 0
= 
r2 (31)

is not valid for both � 6= 0 and F 0 6= 0.

Therefore, there are only two cases where the equal-

ity (31) is compatible with (30) in the a FRC case: i)


 6= 0 and F 0 = � = 0, which means only azimuthal

rotation (toroidal plasma 
ow); or ii) 
 = � = 0 and

F 0 6= 0, i.e., only poloidal 
ow. Since in FRC some re-

gion of vanishing magnetic �eld, where �� should van-

ish, will exist necessarily, eqs.(19) will predict di�er-

ent expressions for the density in the case where per-

pendicular and parallel plasma pressures tend to be

identical. Such expressions will also be incompatible

with the corresponding density arising from Bernoulli

equation, and we must conclude that both toroidal and

poloidal plasma 
ows are not allowed simultaneously

when I = 0: Moreover, poloidal 
ow will be possible

only within a simple adiabatic ideal MHD model, since

in such case the density is uniquely determined. We

remark that earlier works [10, 11, 20] have dealt with

both 
ows simultaneously also when I=0. When only

poloidal 
ow is present, FRC like equilibria can not

be anisotropic in the Chew, Golberger and Low sense.

However, they can be anisotropic if only toroidal rota-

tion is present, as it has been recently shown[22].

IV An energy theorem

Dotting Maxwell equations (5) and (4) with B and E,

respectively, and subtracting both sides we have Poynt-

ing's theorem

r � (E �B) = �E � j; (32)

where S = E �B represents the net energy 
ux across

the surface of a plasma element, and the second term

is the ohmic heating term. Using (6) and (2) the latter

can be written as

c

E � j = �v � [(v � r)v] + v � rp? + v � [B(B � r��)] + ��v � [(B � r)B]: (33)

Using the double adiabatic equations (15,16), this term can be rewritten, after some algebra, in the form of an

energy theorem for anisotropic stationary equilbria

r �

��
pk

2�
+
2p?
�

+
v2

2

�
�v + ��B(B � v) + E�B

�
= 0: (34)

Now, using (20) and (6) we have for the divergence of the Poynting vector

r � (E �B) = �F 0B � r

�

I

F 0

�
; (35)

and considering that

r � [��B(B � v)] = B � r

�
F 0(pk � p?)

�

�
+B � r(
I��); (36)
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we have that Equation (34) implies the following relation

B � r

�
3pk
2�

+
p?
�

+
v2

2
�


I

F 0
(1� ��)

�
= 0; (37)

and we see that the expression within the brackets is a surface quantity

�(	) �
3pk

2�
+
p?
�

+
v2

2
�


I

F 0
(1 � ��)

=
3pk

2�
+
p?
�

+
F 02B2

2�2
�


2r2

2
; (38)

since B � r� = 0. This is a Bernoulli-type algebraic equation that implicitely de�nes the plasma density � in this

double adiabatic model.

V Momentum balance equation

Consider the equation of motion (2), rewritten by using Amp�ere's law (4) and opening the divergence of pressure

tensor given by (8). It reads

�(v � r)v +rp? + (r��) � (BB) + ��

�
(r�B)�B+r

�
B2

2

��
= (r�B)�B: (39)

The �rst term in the left-hand side can be written as

�

�
(r� v)� v +r

�
v2

2

��
:

Dotting it with r	, and using the representation (24) for the velocity, we have

r	 � [�(v � r)v] =
F 02

�
r	 �

�
r

�
B2

2

�
+ (r�B)�B

�
�

�
F 0
I

r2
r	 � rr2 � �
2r	 � r

�
r2

2

�
: (40)

Similarly, the term involving the pressure tensor would give

r	 � rp? + ��r	 �

�
r

�
B2

2

�
+ (r�B)�B

�
: (41)

The calculation of the last term is analogous to the static, axisymmetric case, and reads

r	 � [(r�B) �B] = ���	
jr	j

2

r2
� I

rI � r	

r2
; (42)

where the Grad-Shafranov operator �� is given by

��	 = r
@

@r

�
1

r

@	

@r

�
+
@2	

@z2
: (43)

Plugging eqs. (40),(41), and (42) into (39), and after some rearrangements, we have the equation

 
1�

F 02

�
� ��

!
��	 = �r4�

0 � I�0 � r2(F 0
)0I �

�
r2

j	j2
r	 �

"
�
I2

r2
r

 
F 02

�
+ ��

!
+rp? +

 
F 02

�
+ ��

!
r

�
B2

2

�
� �r

�

2r2

2

�#
: (44)
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But, using (23), we have that

r

 
F 02

�

B2

2�
�

2r2

2

!
= �0r	 �r

�
3pk

2�
+
p?
�

�
; (45)

and substituting it in (44) we have

 
1�

F 02

�
� ��

!
��	 = �r4�

0 � I�0 � r2(F 0
)0I � r2��0 +

+ I2
F 0F 00

�
+ F 0r	 � r

�
F 0

�

�
+ (46)

+ (r	:r��)
r2

j	j2
r	 �

�
��r

�
B2

2

�
+rp? + B2r�� � �

�
3pk
2�

+
p?
�

��
:

The term within brackets in the second member of the above equation may be written as

� p?
rg

g
�
pk

2

rf

f
; (47)

where we have de�ned

g �
p?
�B

; f �
pkB

2

�3
: (48)

Using the double adiabatic equations (17,18,19), we can show that f and g are actually surface quantities, so

that we �nally get to the momentum balance equation describing stationary MHD equilibrium of an axissymetric

plasma with anisotropy and general 
ow

 
1�

F 02

�
� ��

!
��	 = �r4�

0 � I�0 � r2(F 0
)0I � r2��0 +

+I2
F 0F 00

�
+r	:

�
F 0r

�
F 0

�

�
+r��

�
+ r2

�
p?

g0

g
+
pk

2

f 0

f

�
: (49)

Equation (49) together with (38) form a set of coupled equations whose solutions depend on six hypotheses on

the functional dependence with 	 of the surface quantities 
; F 0; f; g;� and �.

d

VI Particular cases

Once we have obtained the general equations for

anisotropic equilibria with plasma 
ows, let us consider

some special cases. First, consider the isotropic case,

where we have p? = pk = p, or �� = 0. In this case

the term

p?
g0

g
+
pk

2

f 0

f
(50)

in Equation (49) may be written as

3

2
p
h
ln
�
p��5=3

�i0
; (51)

or, identifying 
 = 5=3 and using the adiabatic law

(10), as

�



 � 1

dA

d	
: (52)

The equation (49) for isotropic plasmas (simple adi-

abatic model) assumes the form
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c

 
1�

F 02

�

!
��	 = �r4�

0 � I�0 � r2(F 0
)0I � r2��0 �

�I2
F 0F 00

�
+ F 0r	:r

�
F 0

�

�
+ r2

�



 � 1
A0: (53)

Making the following changes of notation: I ! I, 
 ! !, F 0 ! u, � ! �s, �� ! L, 	 !  , and � ! I0 + �1

we get to the equation presented by Maschke and Perrin [16] for toroidal and poloidal 
uxes, to be supplemented

by the Bernoulli-type equation (38), which in this limit reduces to

�(	) �




 � 1
A�
�1 +

1

2

F 02

�2

 
I2 + jr	j2

r2

!
�

2r2

2
: (54)

d

The electric �eld is E = �r�E , in which the electric

potential is also a surface quantity, and it is easy to

prove that �E(	) = 
.

We can further simplify things by switching o� the

poloidal 
ux by making F 0 = 0 in (53), with both � and


 nonvanishing, and isotropic pressure. In this case,

using (30), we have that � = I, which is the poloidal

current 
ux. The stationary equilibrium equation be-

comes

��	+ II0 + r4�

0 = �r2�

�
�0 �

�
�1


 � 1
A0

�
; (55)

where the surface function

�(	) �




 � 1
A�
�1 �


2r2

2
= h�


2r2

2
(56)

is nothing but the plasma enthalpy (12) with a sort

of centrifugal correction. Using the thermodynamical

relation (14) we rewrite Eq. (55) in the form

��	 + II0 + �r2(r2

0 + �0 � TS0) = 0; (57)

which can be identi�ed with the earlier equation of

Maschke and Perrin [11] for description of pure toroidal


ows with the entropy S as a surface quantity, by mak-

ing the following changes of notation: I ! J , 
 ! !,

� ! �, �� ! L, 	 ! F , and r ! R. We remark

that an equation in which the plasma temperature T

would be a surface function cannot be derived from an

adiabatic model such as used here.

Finally, in the limit of vanishing 
ow, we have that

p0 = �(�0 � TS0), with �(	) = h, so the equation

is simply the Grad-Schl�uter-Shafranov equation for the

static axisymmetric case

��	 = �II0 + r2p0: (58)

VII Ellipticity of the equilib-

rium equation

Let us return to the set of equations characterizing a

general stationary MHD equilibrium with anisotropic

pressure and poloidal and toroidal 
ows. It consists of

a nonlinear partial di�erential equation for the poloidal

magnetic 
ux 	, Eq. (49), and an algebraic Bernoulli

equation (38), which de�nes the plasma density �.

An important issue formerly discussed by Hameiri

[20] in the case of isotropic pressure and simple adia-

batic 
ow, are the conditions of ellipticity for the partial

di�erential equation. In this case one has to analyse the

coe�cients of the second order derivatives of 	 in Equa-

tion (49). This is important because if the equation is

elliptic, a boundary value problem may be posed, af-

ter de�ning proper boundary conditions at the plasma

boundary and/or external conductors. In such case, it
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is possible to solve it by using standard numerical (or,

hopefully, analytical) techniques, as done by
:

Zelazny

and collaborators [19] in the isotropic case. Otherwise,

the existence of hyperbolic regimes implies that some

kind of shock wave should be generated in the plasma

and no closed equilibrium would be possible.

Second-order derivatives (with respect to r and z)

appear in (49) both in the term containing the Grad-

Shafranov operator ��	 and in the term formed by the

dot product of r	 with F 0r(F 0=�)+r��. So, we may

write the quadratic form

L = A
@2	

@r2
+ B

@2	

@z2
+ 2C

@2	

@r@z
; (59)

where the coe�cients A;B; C depend on jr	j2, F 02=�

and ��. The determinant of the symmetric matrix of

these coe�cients is

Det = AB � C2: (60)

Equation (49) will be elliptic if Det > 0, parabolic if

Det = 0, and hyperbolic if Det < 0.

Considering the corresponding terms in (49) there

results

Det = (1� e)2
 
1�

2Qjr	j2

1� e

!
; (61)

where we de�ned

e =
F 02

�
+ ��: (62)

and, after using (8) and (23), we introduced

c

Q =

 
3�k � �? �

F 02

�

!
_�

�
�

_(B2)

2B2
(4�k � �?); (63)

where

�k =
pk

B2
; and �? =

p?
B2

; (64)

and the dots represents di�erentiation with respect to jr	j2.

Now using the Bernoulli equation (38), and after a lengthy but straightforward calculation, we �nd that the

determinant is

Det = (1� e)2

2
4 1� e �X

1� e �X
�
1� jr	j2

r2B2

�
3
5 ; (65)

where

X =

�
3�k � �? � F 02

�

�2
3�k �

F 02

�

� 4�k + �?: (66)

d

If �� = 0, the determinant (65) coincides with that

formerly derived by Hameiri for isotropic pressure [20].

For large aspect Tokamak equilibria the poloidal

�eld component jr	j =r is small when compared to the

total magnetic �eld B.If the plasma betas (64) (ratios

between kinetic and magnetic pressures) are also small

enough, we can develop the denominator of Det to the

�rst order in jr	j2

r2B2 ; �k, and �?.

There results, in this case, that Det is positively

de�nite when the following conditions hold
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c

0 <
F

0
2

�
< 3�k �

�2?
1 + 2�?

; (67)

3�k �
�2?

1 + 2�?

 
1�

jr	j2

r2B2

!
/

F
0
2

�
< 1� �k + �?; (68)

1� �k + �? <
F

0
2

�
/

r2B2

jr	j2
: (69)

As in the simple adiabatic case we have three regions

of ellipticity for the parameter F
0
2

�
, which can be in-

terpreted as the square of the poloidal Alfv�en Mach

number. We note that the second region is separated

from the �rst one by a very small gap.

We stress that plasma density, in the present dou-

ble adiabatic model, is implicitly determined by the

Bernoulli equation (38). Substituting there the double

adiabatic equations we �nd, after using the de�nitions

of f and g provided by (48), two auxiliary equations for

the density:

c

3f�2

B2
= �+


2r2

2
� gB �

s�
� +


2r2

2
� gB

�2

� 3fF 02; (70)

d

where it must be taken into account that B depends

also on � . The plus or minus sign distinguishes di�er-

ent branches for �. Their equivalence de�nes one of the

bifurcation points for the density.

Using the expression (38) for �, the vanishing of the

square root in (70) de�nes a bifurcation point for the

density corresponding to

F
0
2

�
= 3�k; (71)

where the Alfv�en Mach number was taken as the bifur-

cation parameter. As it can be seen from the ellipticity

conditions, such bifurcation point falls just inside of the

second region of ellipticity for the nonlinear partial dif-

ferential equation for the poloidal magnetic 
ux. Its

connection with an eventual transition similar to the

L-H transition in tokamaks (where an abrupt change

from low density to high density equilibria is observed

when the power of neutral beam injection is increased)

is quite suggestive.

VIII Conclusions

Plasma rotation in fusion plasmas generated in Toka-

maks and Reversed Field Pinches is a subject of growing

interest, since it should be related to the existence or

not of equilibrium con�gurations, as well as the pres-

ence of some types of instabilities. Hence, it would

be necessary to develop theoretical models to describe

the main e�ects of rotation without resorting to di-

rect numerical 3-D MHD computer simulations. This

can be done by using a double adiabatic ideal MHD

model with axisymmetry, which includes plasma 
ow

in both poloidal and toroidal directions and pressure

anisotropy, which are possible conditions in the present

generation of strong power injection and high magnetic

�eld tokamaks.

Our theoretical model, in accordance with previous

approaches with less generality, is constituted by a non-
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linear partial di�erential equation for the poloidal mag-

netic 
ux, plus an algebraic Bernoulli-type equation

which involves thermodynamical assumptions. The sys-

tem of equation reduces to the previously studied cases

in the appropriate limits of vanishing anisotropy and/or

plasma 
ows.

The di�erential equation involves six surface quan-

tities which depend on the poloidal 
ux, so in order to

obtain a solution, hypotheses should be speci�ed for all

these functions. However, before proceeding to a solu-

tion of a boundary value problem, it should be investi-

gated whether or not the di�erential equation is elliptic.

This has been examined in this paper by studying the

values of the poloidal Alfv�en-Mach number for which

the equation is elliptic when a tokamak-like equilibrium

is assumed. We have found three intervals in which the

condition of ellipticity is ful�lled.

We have proved that for a �eld reversed con�gura-

tion, where the magnetic �eld vanishes at some place

inside the plasma, and anisotropy is considered, the

plasma 
ow must be purely poloidal or purely toroidal.

Hence, the general equations here derived cannot be

used in such cases without proper modi�cations. How-

ever, for tokamaks the theory should work.

Another result is concerned with the de�nition of

plasma density, which is implicitely �xed by Bernoulli

equation. Our analysis shows the existence of two

branches of density, characterizing a density bifurcation

when the poloidal Alfv�en-Mach number varies continu-

ously. The critical bifurcation parameter is located in

one of the three ellipticity regions.

This could be related to the transition between a

L-mode to H-mode, observed in present tokamaks with

high power neutral beam injection, which is character-

ized by a sudden increase in the plasma density and

improved con�nement leading to a better performance.

In spite of intense theoretical e�ort, the L-H transi-

tion in Tokamaks is poorly understood, so our results

could shed some light on this subject, indicating that

the combined action of pressure anisotropy and plasma


ows could be the triggering mechanism for the transi-

tion to the H-mode regime. However, further work has

to be done in order to give more precise answers to this

question.

Even for low beta tokamaks our general system of

equation seems to be too di�cult to allow an analytical

solution, even using very simple pro�les for the surface

functions. However, provided we stay within the ellip-

ticity intervals, a numerical solution could be sought

for, after de�ning proper boundary conditions at the

plasma boundary and external conductors. This is be-

yond the scope of the present paper.
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