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We compute the Casimir pressure between an unusual pair of parallel plates, namely, a perfectly
conducting plate (�!1) and an in�nitely permeable one (�!1) with the generalized �-function
method. The result for this problem, which has been rarely discussed in the literature, is a repulsive
Casimir force. The �-function method provides a very compact and economic way of obtaining the
�nal result.

Since Casimir's paper [1] on the attraction of two

neutral parallel (perfectly) conducting plates due to the

vacuum 
uctuations of the electromagnetic �eld, a con-

siderable amount of work has been done on this subject,

varying from the application of alternative techniques

to the exploration of new geometries and theories. Ex-

cellent reviews as well as a large list of relevant ref-

erences on this subject can be found in the work of

Plunien et al[2] and in the book by Mostepanenko and

Trunov[3].

The �rst experimental test of Casimir's prediction

was made by Sparnaay[4] only in 1958. However, the

accuracy of the results was far from being reasonable:

approximately one hundred percent of error. Since

then, experiments involving dielectrics have been done,

but only four decades after Sparnaay's work an ex-

periment of the Casimir force between metals was re-

peated: in 1997, Lamoreaux[5] made an experiment

with a slightly di�erent geometry (a spherical metallic

lens and a 
at metal plate) where theory and the ex-

perimental data agree within a few percents. More re-

cently, another experiment with metals was performed

by U. Mohideen and A. Roy [6]. Using an atomic force

microscope they measured the Casimir force between

a metallized sphere of diameter equal to 196�m and a


at metal plate for separations from 0; 1�m to 0; 9�m.

They showed that the experimental data are in very

good agreement with the theoretical predictions. May

be this is one of the most striking results of quantum

�eld theory once it is a macroscopic (measurable) man-

ifestation of the quantum vacuum.

Instead of paying attention to the sources (the per-

fect conducting plates), Casimir's approach for this

problem consisted basically in computing the interact-

ing energy between the plates as the (regularized) di�er-

ence between the zero point energies with and without

the boundary conditions dictated by the physical situ-

ation (perfectly conductor character of the plates). In

fact, the great novelty of Casimir's paper of 1948 was

not the fact that two neutral objects attracted each

other1, but the simplicity of the method to do it in

the context of quantum �eld theory. However, since

Casimir's work, many other techniques were developed

which may be more appropriate depending on the phys-

ical situation under study. In particular, methods of

computing e�ective actions are in general very power-

ful for our purposes.

We shall be concerned here with one of these

methods, namely, the so called generalized �-function

method. In this communication we shall apply it to the

unusual case of a pair of parallel plates, where one of

them is perfectly conducting (� !1), while the other

is in�nitely permeable (� ! 1). This problem was

solved by T. Boyer [8] two decades ago in the context

of random electrodynamics (a kind of classical electro-

dynamics which includes classical electromagnetic zero-

point radiation) and has appeared again recently in the

literature[9]. The relevance of this problem is that it

seems at �rst sight to contradict the heuristic interpre-

�e-mail:marcus@if.ufrj.br
ye-mail:farina@if.ufrj.br
1Recall that Van der Waals dissertation was presented in 1873 (although it was published only almost two decades after that) and

that London's [7] explanation for the non-retarded long range dispersive forces was published in 1930.
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tation for the direction of the Casimir force: naively,

the Casimir force between two parallel plates should

point always inwards independently of the nature of the

plates, since there would be more �eld modes outside

the plates exerting pressure than inside (for the usual

case, a computation of the Casimir pressure based on

this argument can be found in the excellent book by

Milonni[10]). Things are not exactly like this (see ref.[9]

for the details). In this paper we clarify those issues

keeping our formalism as simple as possible. In this

way we consider the geometry of parallel plates and

the �elds at zero temperature; a much more involved

calculation can be done at �nite temperature [11].

In order to apply the generalized �-function method,

let us introduce the (pure electromagnetic) vacuum per-

sistence amplitude h0+j0�i in the presence of external

agents, as for example external �elds, external sources,

boundary conditions, etc..

In the case at hand, we are interested only in the

energy shift in the electromagnetic vacuum induced by

a pair of parallel plates whose distance from each other

is d, but there are no other external sources or external

�elds. Hence, we can write

< 0+j0� >= eiW
(1)(d); (1)

where the one-loop e�ective actionW (1)(d) can be com-

puted as if the electromagnetic �eld were a massless

scalar �eld. All we have to do is to put by hand an

extra factor 2 to take into account for the two possible

polarizations of the electromagnetic �eld modes (elec-

tromagnetic results are not generally just twice those

for a massless scalar �eld, but for the particular case

of plane geometry as it is the case at hand this can be

done).

Therefore, in a euclidian spacetime we have

W (1)(d) = ln

Z
Fd

D�e�
1
2

R
d�d~x�(�2E)�

=

�
�1

2

�
ln det(�2E jFd); (2)

where the symbol Fd means a set of functions which

satisfy some boundary conditions on the plates.

The electromagnetic vacuum energy (the Casimir

energy) is then given by

E(d) = �(2)W
(1)

TE
; (3)

where TE =
R
d� must be taken as in�nite after the

calculations are made and we have already included the

polarization factor 2 mentioned before.

The generalized �-function method, introduced two

decades ago[12], consists basically in the following three

steps: (i) �rst, we compute the eigenvalues of �2E and

write �(s;�2E ) = Tr(�2E )�s ; (ii) second, we make

an analytical extension of �(s;�2E ) to a meromor-

phic function of the whole complex s-plane; (iii) �nally,

we compute det(�2E jFd) = exp
n
�@�

@s
(s = 0;�2E)

o
.

Combining the previous equations, we get

E(d) = ��0(s = 0;�2E)

TE
: (4)

Choosing the cartesian axes such that the axis OZ

is perpendicular to both plates with the perfectly con-

ducting plate at z = 0 and the in�nitely permeable one

at z = d, the boundary conditions are the following:

tangential components of the electric �eld as well as the

normal component of the magnetic �eld must vanish at

z = 0, while the tangential components of the mag-

netic �eld must vanish at z = d. It can be shown that

the allowed frequencies for the electromagnetic vacuum

�eld modes between these plates can be simulated by

a massless scalar �eld which satis�es mixed boundary

conditions (provided we do not forget an extra factor of

2 due to the two possible photon polarizations). Hence,

we must �nd out the eigenvalues of �2E whose eigen-

functions �(�; ~x) satisfy:

c

�(�; x; y; z = 0) = 0 ;
@

@z
�(�; x; y; z = d) = 0: (5)

This leads to the following eigenvalues

�
k20 + k21 + k22 + (n+

1

2
)2
�2

d2
jk0; k1; k2 �R; n = 0; 1; 2; :::

�
(6)
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The �-function then reads

�(s;�2E ) = TEL
2
1X
n=0

Z
dk0dk1dk2
(2�)3

�
k20 + k21 + k22 + (n+

1

2
)2
�2

d2

��s

=
TEL

2

2�2

X
n=odd

Z
K2dK

�
K2 +

�n�
2d

�2��s
; (7)

where L2 is the area of the plates, K2 = k20 + k21 + k22 and the angular integration was already made.

Using the following integral representation for the Euler beta function

Z
1

0

dx x��1(x2 + a2)��1 =
1

2
a�+2��2B

��
2
; 1� � � �

2

�
; (8)

which is valid for Re(� + �=2) < 1 and Re� > 0, where B(x; y) = �(x)�(y)
�(x+y) , we get

�(s;�2E ) =
TEL

2

4�2
�(3=2)�(s� 3=2)

�(s)

� �

2d

�3�2s X
n=odd

1

n2s�3
: (9)

In order to connect the summatin on the r.h.s. of the above equation to the Riemann �-function, we use the

following trick: we sum and subtract the same expression with even n, namely

X
n=odd

1

nz
=

1X
n=1

1

nz
�

X
n=even

1

nz

=

�
1� 1

2z

�
�R(z): (10)

The three series that appear in (10) are absolutely convergent in the domain Re z > 1 and so the trick we used

leads to a series that is rigorously identical with the original sum on the odd integers. Substituting this result into

(9) and using that �(3=2) =
p
�, we have

�(s;�2E ) =
TEL

2

8�3=2
�(s� 3

2)

�(s)

� �

2d

�3�2s�
1� 23

22s

�
�R(2s� 3): (11)

Recalling that �(s) � 1=s for small s and having in mind that an analytic extension is tacitly assumed for �(s;2E),

it is straightforward to show that

�0(s = 0;�2E) =
TEL

2
p
�

8�2
�(�3=2)

� �

2d

�3
(�7)�R(�3)

=

�
�7

8

�
TEL

2�2

720

�
1

d3

�
; (12)

where we used that �(�3=2) = 4=3
p
� and �R(�3) = 1=120.

From equations (4) and (12), the Casimir energy per unit area is simply given by

E(d)
L2

=

�
7

8

�
�2

720

1

d3
: (13)

Bringing back the universal constants ~ and c, the Casimir pressure is then given by

F(d)
L2

= � @

@d

�E(d)
L2

�
=

�
+
7

8

�
�2~c

240

�
1

d4

�
; (14)

d
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Observe that the above result is �7
8 times the stan-

dard result (two perfectly conducting plates), which

means that for the case at hand the Casimir pressure

between the plates is repulsive instead of attractive

(although slightly weaker) in perfect agreement with

references[8, 9]. In other words, the generalized �-

function method supports the (very) few methods that

have been applied to this unusual problem. Besides,

this method has shown to be once more a very economic

regularization prescription for this kind of problem. As

a �nal remark, we would like to stress that this kind

of unusual boundary conditions (plates with di�erent

nature) should be used in more interesting problems as

for instance in the so called dynamical Casimir e�ect,

where real photons can be created due to the movement

of the boundaries.
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