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The domain of validity of standard thermodynamics and Boltzmann-Gibbs statistical me-
chanics is discussed and then formally enlarged in order to hopefully cover a variety of
anomalous systems. The generalization concerns nonextensive systems, where nonextensiv-
ity is understood in the thermodynamical sense. This generalization was �rst proposed in
1988 inspired by the probabilistic description of multifractal geometries, and has been in-
tensively studied during this decade. In the present e�ort, after introducing some historical
background, we briey describe the formalism, and then exhibit the present status in what
concerns theoretical, experimental and computational evidences and connections, as well as
some perspectives for the future. In addition to these, here and there we point out various
(possibly) relevant questions, whose answer would certainly clarify our current understand-
ing of the foundations of statistical mechanics and its thermodynamical implications.

I Introduction

A di�use belief exists, among many physicists as well as

other scientists, that Boltzmann-Gibbs (BG) statistical

mechanics and standard thermodynamics are eternal

and universal. It is certainly fair to say that \eter-

nal", in precisely the same sense that Newtonian me-

chanics is \eternal", they indeed are. But, again in

complete analogy with Newtonian mechanics, we can

by no means consider them as universal. Indeed, we

all know that, when the involved velocities approach

that of light, Newtonian mechanics becomes only an

approximation (an increasingly bad one) and reality

is better described by special relativity. Analogously,

when the involved masses are as small as say the elec-

tron mass, once again Newtonian mechanics becomes

but a (bad) approximation, and quantummechanics be-

comes necessary to understand nature. Also, if the in-

volved masses are very large, Newtonian mechanics has

to be extended into general relativity. In these senses

we certainly cannot consider Newtonian mechanics as

being universal. I believe that the same type of con-

siderations apply to standard statistical mechanics and

thermodynamics. Indeed, after more than one century

highly successful applications of the magni�cent Boltz-

mann's connection of Clausius macroscopic entropy to

the theory of probabilities applied to the microscopic

world , BG thermal statistics can (and should) eas-

ily be considered as one of the pillars of modern sci-

ence. However, it is unavoidable to think that, like all

other products of human mind, this formalism must

have physical restrictions, i.e., domains of applicabil-

ity, out of which it can at best be but an approxi-

mation. It seems that BG statistics satisfactorily de-

scribes nature if the e�ective microscopic interactions

are short-ranged (i.e., close spatial connections) and

the e�ective microscopic memory is short-ranged (i.e.,

close time connections) and the boundary conditions

are non(multi)fractal. Roughly speaking, the standard

formalisms are applicable whenever (and probably only

whenever) the relevant space-time (hence the relevant

phase space) is non(multi)fractal. If this is not the
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case, some kind of extension appears to become nec-

essary. Indeed, an everyday increasing list of physical

anomalies are, here and there, being pointed out which

defy (not to say that plainly violates) the standard BG

prescriptions. A nonextensive thermostatistics, which

recovers the extensive, BG one as particular case, was

proposed in 1988 [1, 2] which might correctly cover at

least some of the known anomalies. Although a fair

amount of what legitimately looks like being successful

applications is nowadays accumulating, further veri�ca-

tions and deeper understanding is needed and welcome.

Computational work is highly desired since, on various

grounds, the analytic discussion frankly appears to be

untractable. Needless, of course, to say that more ex-

perimental and theoretical work is absolutely relevant

to exhibit the applicability and robustness of the ideas

I intend to present herein. In the present contribution,

I propose some (hopefully relevant) questions that are

right now open to such theoretical, experimental and

computational contributions.

Let us be more speci�c. As mentioned above,

it is nowadays quite well known that a variety of

physical systems exist for which the powerful (and

beautiful) BG statistical mechanics and standard ther-

modynamics present serious di�culties or anomalies,

which can occasionally achieve the status of just

plain failures. Within a long list that will be sys-

tematically focused on later on, we may mention at

this point systems involving long-range interactions

(e.g., d = 3 gravitation)[3], long-range microscopic

memory (e.g., nonmarkovian stochastic processes, on

which much remains to be known, in fact)[4, 5],

and, generally speaking, conservative (e.g., Hamilto-

nian) or dissipative systems which in one way or an-

other involve a relevant space-time (hence, a relevant

phase space) which has a (multi)fractal-like structure.

For instance, pure-electron plasma two-dimensional

turbulence[6], L�evy anomalous di�usion[7], granular

systems[8], phonon-electron anomalous thermalization

in ion-bombarded solids ([9] and references therein), so-

lar neutrinos[10], peculiar velocities of galaxies[11], in-

verse bremsstrahlung in plasma[12] and black holes[13],

to cite a few, clearly appear to be (in some cases), or

could possibly be (in others), concrete examples. The

present status of these and others will be discussed in

Sections III, IV and V.

II Formalism

II.1 Entropy

As an attempt to overcome at least some of these

di�culties a proposal has been advanced, one decade

ago[1], (see also [14, 15]), which is based on a general-

ized entropic form, namely

Sq = k
1�

PW
i=1 p

q
i

q � 1

 
WX
i=1

pi = 1; q 2 R

!
; (1)

where k is a positive constant and W is the total num-

ber of microscopic possibilities of the system (for the

q < 0 case, care must be taken to exclude all those

possibilities whose probability is not strictly positive,

otherwise Sq would diverge; such care is not necessary

for q > 0; due to this property, the entropy is said to be

expansible for q > 0). This expression recovers the usual

BG entropy (�k
PW

i=1 pi ln pi) in the limit q! 1. The

entropic index q (intimately related to and determined

by the microscopic dynamics, as we shall mention later

on) characterizes the degree of nonextensivity reected

in the following pseudo-additivity entropy rule

Sq(A+ B)=k = [Sq(A)=k] + [Sq(B)=k]

+ (1� q)[Sq(A)=k][Sq(B)=k] ; (2)

where A andB are two independent systems in the sense

that the probabilities of A + B factorize into those of

A and of B (i.e., pij(A + B) = pi(A)pj(B)). We im-

mediately see that, since in all cases Sq � 0 (nonneg-

ativity property), q < 1; q = 1 and q > 1 respec-

tively correspond to superadditivity (superextensivity),

additivity (extensivity) and subadditivity (subextensiv-

ity). Eq. (2) exhibits a property which has appar-

ently never been focused before, and which we shall

from now on refer to as the composability property. It

concerns the nontrivial fact that the entropy S(A+B)

of a system composed of two independent subsystems

A and B can be calculated from the entropies S(A)

and S(B) of the subsystems, without any need of mi-

croscopic knowledge about A and B, other than the

knowledge of some generic universality class, herein the
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nonextensive universality class, represented by the en-

tropic index q, i.e., without any knowledge about the

microscopic possibilities of A and B nor their associ-

ated probabilities. This property is so obvious for the

BG entropic form that the (false) idea that all entropic

forms automatically satisfy it could easily install itself

in the mind of most physicists. To show counterexam-

ples, it is enough to check that the recently introduced

Anteneodo-Plastino[16] and Curado[17] entropic forms

satisfy a variety of interesting properties, and neverthe-

less are not composable.

The above pseudo-extensivity property can be

equivalently written as follows:

c

ln[1 + (1� q)Sq(A +B)=k]

1� q
=

ln[1 + (1� q)Sq(A)=k]

1� q
+
ln[1 + (1� q)Sq(B)=k]

1� q
(3)

d

We come back onto this form later on in connection

with Renyi's entropy.

Another important (since it eloquently exhibits the

surprising e�ects of nonextensivity) property is the fol-

lowing. Suppose that the set of W possibilities is arbi-

trarily separated into two subsets having respectively

WL and WM possibilities (WL + WM = W ). We

de�ne pL �
PWL

i=1 pi and pM �
PW

i=WL+1
pi, hence

pL + pM = 1. It can then be straightforwardly estab-

lished that

c

Sq(fpig) = Sq(pL; pM) + pqL Sq(fpi=pLg) + pqM Sq(fpi=pMg) ; (4)

d

where the sets fpi=pLg and fpi=pMg are the conditional

probabilities. This would precisely be the famous Shan-

non property were it not for the fact that, in front of

the entropies associated with the conditional probabil-

ities, there appear pqL and pqM instead of pL and pM .

This fact will play, as we shall see later on, a central role

in the whole generalization of thermostatistics. Indeed,

since the probabilities fpig are generically numbers be-

tween zero and unity, pqi > pi for q < 1 and pqi < pi

for q > 1, hence q < 1 and q > 1 will respectively priv-

ilegiate the rare and the frequent events. This simple

property lies at the heart of the whole proposal. Santos

has recently shown[18], strictly following along the lines

of Shannon himself, that, if we assume (i) continuity (in

the fpig) of the entropy, (ii) increasing monotonicity of

the entropy as a function ofW in the case of equiproba-

bility, (iii) property (2), and (iv) property (4), then only

one entropic form exists, namely that given in de�ni-

tion (1). Of course, the generalization of Eq. (4) to the

case where, instead of two, we have R nonintersecting

subsets (W1+W2+:::+WR = W ) is straightforward[19].

To be more speci�c, if we de�ne

�j �
X

Wj terms

pi (j = 1; 2; :::;R) (5)

(hence
PR

j=1 �j = 1), Eq. (4) is generalized into

Sq(fpig) = Sq(f�jg) +
RX
j=1

�qjSq(fpi=�jg) (6)

where we notice, in the last term, the emergence of what

we shall soon introduce generically as the unnormal-

ized q-expectation value (of the conditional entropies

Sq(fpi=�jg), in the present case).

Another interesting property is the following. The

Boltzmann-Gibbs entropy S1 satis�es the relation

� k

"
d

d�

WX
i=1

p�i

#
�=1

= �k
WX
i=1

pi ln pi � S1 : (7)
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Moreover, Jackson introduced in 1909[20] the general-

ized di�erential operator (applied to an arbitrary func-

tion f(x))

Dq f(x) �
f(qx) � f(x)

qx� x
; (8)

which satis�es D1 � limq!1Dq =
d
dx . Abe[21] recently

remarked that

� k

"
Dq

WX
i=1

p�i

#
�=1

= k
1�

PW
i=1 p

q
i

q � 1
� Sq (9)

This property provides some insight into the generalized

entropic form Sq . Indeed, the inspiration for its use in

order to generalize the usual thermal statistics came[1]

from multifractals, and its applications concern, in one

way or another, systems which exhibit scale invariance.

Therefore, its connection with Jackson's di�erential op-

erator appears to be rather natural. Indeed, this oper-

ator \tests" the function f(x) under dilatation of x, in

contrast to the usual derivative, which \tests" it under

translation of x.

Another property which no doubt must be men-

tioned in the present introduction is that Sq is consis-

tent with Laplace's maximum ignorance principle, i.e.,

it is extremum at equiprobability (pi = 1=W 8i). This

extremum is given by

Sq = k
W 1�q � 1

1� q
(W � 1) (10)

which, in the limit q ! 1, reproduces Boltzmann's cel-

ebrated formula S = k ln W (carved on his marble

grave in the Central Cemetery of Vienna). In the limit

W !1, Sq diverges if q � 1, and saturates at k=(q�1)

if q > 1.

Finally, let us close the present set of properties

by reminding that Sq has, with regard to fpig, a def-

inite concavity for all values of q (Sq is always con-

cave for q > 0 and always convex for q < 0). In

this sense, it contrasts with Renyi's entropy SRq �

(ln
PW

i=1 p
q
i )=(1� q) = fln [1 + (1 � q)Sq=k]g=(1� q),

which does not have this property for all values of q .

Before addressing other relevant quantities, let us

introduce the following convenient functions[22]:

exq � [1 + (1� q) x]1=(1�q); 8(x; q) (11)

(hence, ex1 = ex) with the de�nition supplement, for

q < 1, that exq = 0 if 1 + (1 � q) x � 0, (and analo-

gously, for q > 1, exq diverges at x = 1=(q � 1)) and

lnq x � [x1�q � 1]=[1� q]; 8(x; q) (12)

(hence, ln1 x = ln x). We can easily verify that

e lnq x
q = lnq exq = x; 8(x; q): (13)

For instance, Eq. (10) can be rewritten in the following

Boltzmann-like form:

Sq = k lnq W (14)

Let us also introduce the following unnormalized q-

expectation value:

hAiq �
WX
i=1

pqi Ai (15)

hence hAi1 corresponds to the standard mean value of

a physical quantity A.

If our system is a generic quantum one, its proba-

bilistic description is given by the density operator �,

whose eigenvalues are the fpig. Then, the generalized

entropy is given by

Sq = k
1� Tr �q

q � 1
(Tr � = 1) (16)

and the unnormalized q-expectation value of an observ-

able A which does not necessarily commute with � is

given by

hAiq � Tr �qA : (17)

Eq. (16) can be rewritten as

Sq = �k hlnq �iq ; (18)

and also as

Sq = �k hln2�q �i1 : (19)

If our system is a generic classical one, the rele-

vant variables are typically continuous variables, and

its probabilistic description is given by a distribution of

probabilities p(r), where r is a dimensionless variable

in a many-body phase space. Then, the generalized

entropy is given by

Sq = k
1�

R
dr [p(r)]q

q � 1
(

Z
dr p(r) = 1) (20)

and the unnormalized q-expectation value of an observ-

able A(r) is given by

hAiq �

Z
dr [p(r)]qA(r) : (21)
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Although we shall, in what follows, be illustrating the

present formalism with the case of W discrete micro-

scopic possibilities, the generic quantum and classical

discussions follow along the same lines, mutatis mutan-

dis.

II.2 Canonical ensemble

Once we have a generalized entropic form, as given

in Eq. (1) (or an even more general one, or a di�erent

one), we can use it in a variety of ways. For instance,

if we are interested in information theory, some opti-

mization algorithms, image processing, among others,

we can take advantage of a particular form in di�erent

ways. See, for instance, [17, 19, 23, 24] and references

therein, where it can be veri�ed that not less than 25 (!)

di�erent entropic forms have received, along the years,

a great variety of technological and mathematical ap-

plications. For instance, the Renyi entropy mentioned

above has been quite useful in the geometrical charac-

terization of strange attractors and similar multifractal

structures (see [25] and references therein).

However, if our primary interest is Physics, this is to

say the (qualitative and quantitative) description and

possible understanding of phenomena occurring in Na-

ture, then we are naturally led to use the available gen-

eralized entropy in order to generalize statistical me-

chanics itself and, if unavoidable, even thermodynam-

ics. It is along this line that we shall proceed from now

on (see also [26]). To do so, the �rst nontrivial (and

quite ubiquitous) physical situation is that in which a

given system is in contact with a thermostat at tem-

perature T . To study this, we shall follow along Gibbs'

path and focus the so called canonical ensemble. More

precisely, to obtain the thermal equilibriumdistribution

associated with a conservative (Hamiltonian) physical

system in contact with the thermostat we shall extrem-

ize Sq under appropriate constraints. These constraints

are[15]

WX
i=1

pi = 1 (norm constraint) (22)

and

hh�iiiq �

PW
i=1 p

q
i �iPW

i=1 p
q
i

= Uq (energy constraint) (23)

where f�ig are the eigenvalues of the Hamiltonian of

the system. We shall refer to hh:::iiq as the normalized

q-expectation value and to Uq as the generalized inter-

nal energy (assumed �nite and �xed). It is clear that,

in the q ! 1 limit, these quantities recover the stan-

dard mean value and internal energy respectively. We

immediately verify that, for any observable,

hh:::iiq =
h:::iq
h1iq

(24)

The outcome of this optimization procedure is given

by

pi =

h
1� (1� q)�(�i � Uq)=

PW
j=1 (pj)

q
i 1
1�q

�Zq

(25)

with

�Zq(�) �
WX
i=1

2
41� (1� q)�(�i � Uq)=

WX
j=1

(pj)
q

3
5

1
1�q

(26)

It can be shown that, for the case q < 1, the expression

of the equilibrium distribution is supplemented by the

auxiliary condition that pi = 0 whenever the argument

of the function becomes negative (cut-o� condition).

Also, it can be shown[15] that

1=T = @Sq=@Uq ; 8q (T � 1=(k�)): (27)

Furthermore, it is important to notice that, if we add

a constant �0 to all f�ig, we have (as it can be self-

consistently proved) that Uq becomes Uq + �0, which

leaves invariant the di�erences f�i�Uqg, which, in turn,

(self-consistently) leaves invariant the set of probabili-

ties fpig, hence all the thermostatistical quantities. It

is also trivial to show that, for the independent sys-

tems A and B mentioned previously, Uq(A + B) =

Uq(A) + Uq(B), thus recovering the same form of the

standard (q = 1) thermodynamics.

It can be shown that the following relations hold:

WX
i=1

(pi)
q = ( �Zq)

1�q; (28)

Fq � Uq � TSq = �
1

�

(Zq)1�q � 1

1� q
(29)
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and

Uq = �
@

@�

(Zq)1�q � 1

1� q
; (30)

where

(Zq)
1�q � 1

1� q
=

( �Zq)
1�q � 1

1� q
� �Uq : (31)

Let us now make an important remark. If we take

out as factors, in both numerator and denominator of

Eq. (25), the quantity
h
1 + (1 � q)�Uq=

PW
j=1 (pj)

q
i
,

and then cancel them, we obtain

c

pi(�) =
[1� (1� q)�0�i]

1
1�q

Z0q

0
@Z0q � WX

j=1

[1� (1� q)�0�j]
1

1�q

1
A (32)

d

with

�0 =
�PW

j=1 (pj)
q + (1� q)�Uq

(T 0 � 1=(k�0))

(33)

where �0 is an increasing function of � [27].

Let us now address the all important question of the

connection between experimental numbers (those pro-

vided by measurements), and the quantities that ap-

pear in the theory. The de�nition of Uq suggests the

following normalized q-expectation values

Oq � hhOiiiq �

PW
i=1 p

q
iOiPW

i=1 p
q
i

(34)

where O is any observable which commutes with the

Hamiltonian, hence with �. If it does not commute,

Eq. (34) is generalized into

Oq �
Tr�q O

Tr�q
(35)

Consistently, Oq is the mathematical object to be iden-

ti�ed with the numerical value provided by the exper-

imental measure. Later on, we come back onto this

crucial point.

At this point let us make some observations about

the set of escort probabilities[28] fP (q)
i g de�ned through

P
(q)
i �

pqiPW
j=1 p

q
j

(
WX
i=1

P
(q)
i = 1) (36)

from which follows the dual relation

pi =
[P

(q)
i ]

1
qPW

j=1[P
(q)
j ]

1
q

: (37)

The W = 2 illustration of P
(q)
i is shown in Fig. 1. As

anticipated, q < 1 (q > 1) privileges the rare (frequent)

events.

Figure 1. W = 2 illustration of the escort probabilities:

P (q) = pq

pq+(1�p)q .

Let us �rst comment that Eqs. (36) and (37) have,

within the present formalism, a role somehow analo-

gous to the direct and inverse Lorentz transformations

in Special Relativity (see [29] and references therein).

Second, we notice that Oq becomes a usual mean value

when expressed in terms of the probabilities fP (q)
i g, i.e.,

Oq �

PW
i=1 p

q
iOiPW

j=1 p
q
j

=
WX
i=1

P
(q)
i Oi : (38)

and

WX
i=1

P
(q)
i �i = Uq : (39)
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The �nal equilibrium distribution reads

P
(q)
i =

[1� (1� q)�0�i]
q

1�qPW
k=1 [1� (1� q)�0�k]

q
1�q

: (40)

If the energy spectrum f�ig is associated with the set

of degeneracies fgig, then the above probability leads

to (associated with the level �i and not the state i)

P (�i) =
gi[1� (1� q)�0�i]

q
1�qP

all levels gk[1� (1� q)�0�k]
q

1�q

: (41)

If the energy spectrum f�ig is so dense that can prac-

tically be considered as a continuum, then the discrete

degeneracies yield the function density of states g(�),

hence

P (�) = g(�)
[1� (1� q)�0�]

q
1�qR

d�0 g(�0)[1� (1 � q)�0�0]
q

1�q

(42)

The density of states is of course to be calculated for

every speci�c Hamiltonian (given the boundary con-

ditions). For instance, for a d-dimensional ideal gas

of particles or quasiparticles, it is given[30] by g(�) /

�
d
��1, where � is the exponent characterizing the en-

ergy spectrum � / K� where K is the wavevector (e.g.,

� = 1 corresponds to the harmonic oscillator, � = 2

corresponds to a nonrelativistic particle in an in�nitely

high square well, etc). In Figs. 2 and 3 we see typical

energy distributions for the particular case of a constant

density of states. Of course, the q = 1 case reproduces

the celebrated Boltzmann factor. Notice the cut-o� for

q < 1 and the long algebraic tail for q > 1.

All the above considerations refer, strictly speak-

ing, to thermodynamic equilibrium. The word thermo-

dynamic makes allusion to \very large" (N !1, where

N is the number of microscopic particles of the phys-

ical system). The word equilibrium makes allusion to

asymptotically large times (t ! 1 limit) (assuming

a stationary state is eventually achieved). The ques-

tion arises: which of them �rst? Indeed, although both

possibilities clearly deserve the denomination \thermo-

dynamic equilibrium", nonuniform convergences might

be involved in such a way that limN!1 limt!1 could

di�er from limt!1 limN!1. To illustrate this sit-

uation, let us imagine a classical Hamiltonian system

including two-body interactions decaying at long dis-

tances as 1=r� on a d-dimensional space, with � � 0. If

� > d the interactions are essentially short-ranged, the

two limits just mentioned are basically interchangeable,

and the prescriptions of standard statistical mechanics

and thermodynamics are valid, thus yielding �nite val-

ues for all the physically relevant quantities. In partic-

ular, the Boltzmann factor certainly describes reality,

as very well known. But, if 0 � � � d, nonextensivity

is expected to emerge, the order of the above limits be-

comes important because of nonuniform convergences,

and the situation is certainly expected to be more sub-

tle. More precisely, a crossover (between q 6= 1 and

q = 1 behaviors) is expected to occur at t = � (N ). If

limN!1� (N ) = 1, then we would indeed have two

(or even more) di�erent and equally legitimate states

of thermodynamic equilibrium, instead of the familiar

unique state. The conjecture is illustrated in Fig. 4.

Figure 2. Generalization (Eq. (42)) of the Boltzmann
factor (recovered for q = 1) as function of the energy E
at a given renormalized temperature T 0, assuming a con-
stant density of states. From top to bottom at low ener-
gies: q = 0; 1=4; 1=2; 2=3; 1; 3; 1 (the vertical line at
E=T 0 = 1 belongs to the limiting q = 0 distribution; the
q ! 1 distribution collapses on the ordinate). All q > 1

curves have a (T 0=E)q=(q�1) tail; all q < 1 curves have a
cut-o� at E=T 0 = 1=(1� q).

A wealth of works has shown that the above de-

scribed nonextensive statistical mechanics retains much

of the formal structure of the standard theory. Indeed,

many important properties have been shown to be q-

invariant. Among them, it is mandatory to mention

(i) the Legendre transformations structure of thermo-

dynamics [14, 15];

(ii) the H-theorem (macroscopic time irreversibility),
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more precisely, that, in the presence of some irre-

versible physical evolution, dSq=dt � 0; = 0 and � 0 if

q > 0; = 0 and < 0, respectively, the equalities holding

for equilibrium[31, 32];

(iii) the Ehrenfest theorem (correspondence principle

between classical and quantum mechanics)[33];

(iv) the Onsager reciprocity theorem (microscopic time

reversibility)[34, 35];

(v) the Kramers and Wannier relations (causality)[35];

(vi) the factorization of the likelihood function (Ein-

stein' 1910 reversal of Boltzmann's formula)[19];

(vii) the Bogolyubov inequality[36];

(viii) thermodynamic stability (i.e., a de�nite sign for

the speci�c heat)[37];

(ix) the Pesin equality[38].

Figure 3. Log-log plot of some cases like those of Fig. 2
(T 0 = 1; 5 for each value of q).

In contrast with the above quantities and proper-

ties, which are q-invariant, some others do depend on

q, such as

(i) the speci�c heat [39];

(ii) the magnetic susceptibility [40];

(iii) the uctuation-dissipation theorem (of which the

two previous properties can be considered as particular

cases) [40];

(iv) the Chapman-Enskog expansion, the Navier-Stokes

equations and related transport coe�cients[41];

(v) the Vlasov equation[42, 43];

(vi) the Langevin, Fokker-Planck and Lindblad

equations[44, 45, 46, 47, 48];

(vii) stochastic resonance[49];

(viii) the mutual information or Kullback-Leibler

entropy[32, 50].

A remark is necessary with regard to both sets

just mentioned. Indeed, these properties have in fact

been studied, whenever applicable, within unnormal-

ized q-expectation values for the constraints, rather

than within the normalized ones that we are using

herein. Nevertheless, they still hold because they have

been established for �xed �, which, through Eq. (33),

implies �xed �0.

Figure 4. Central conjecture of the present work, assuming
a Hamiltonian system which includes two-body (attractive)
interactions which, at long distances, decay as r��. The
crossover at t = � is expected to be slower than indicated
in the �gure (for space reasons).

Finally, let us mention various important theoreti-

cal tools which enable the thermostatistical discussion

of complex nonextensive systems, and which are now

available (within the unnormalized and/or normalized

versions for the q-expectation values) for arbitrary q.

We refer to

(i) Linear response theory[35];

(ii) Perturbation expansion[51];

(iii) Variational method (based on the Bogoliubov

inequality)[51];

(iv) Many-body Green functions[52];
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(v) Path integral and Bloch equation[53], as well as

related properties[54];

(vi) Quantum statistics and those associated with the

Gentile and the Haldane exclusion statistics[55, 56, 57];

(vii) Simulated annealing and related optimization,

Monte Carlo and Molecular dynamics techniques[58,

59, 60, 61, 62, 63, 64, 65, 66, 67, 68].

III Theoretical evidences and

connections

III.1 Levy-type anomalous di�usion

An enormous amount of phenomena in Nature

follow the Gaussian distribution: measurement error

distributions, height and weight distributions in bi-

ological individuals of given species, Brownian mo-

tion of particles in uids, Maxwell-Boltzmann distri-

bution of particle velocities in a variety of systems,

noise distribution in uncountable electronic devices, en-

ergy uctuations at thermal equilibrium of many sys-

tems, to only mention a few. Why is it so? Or,

equivalently, what is their (thermo)statistical founda-

tion? This fundamental problem has already been ad-

dressed, particularly by Montroll, and satisfactorily an-

swered (see [7] and references therein). The answer

basically relies onto two pillars, namely the BG en-

tropy and the standard central limit theorem. How-

ever, the Gaussian is not the only ubiquitous distri-

bution: we also similarly observe Levy distributions

(in micelles[69], supercooled laser[70], uid motion[71],

wandering albatrosses[72], heart beating[73], �nancial

data[74, 75, 76], among many others). So, once again,

what is the (thermo)statistical foundation of their ubiq-

uity? This relevant question has also been addressed,

once again by Montroll and collaborators[7] among oth-

ers. This time however, a satisfactory answer has been

missing for a long time. The �rst successful step toward

(what we believe to be) the solution was performed in

1994 by Alemany and Zanette[77], who showed that

the generalized entropic form Sq was able to provide

a power-law (instead of the exponential-law associated

with Gaussians) decrease at long distances. Many other

works followed along the same lines[78, 79]. In [79] it

was exhibited how the Levy-Gnedenko central limit the-

orem also plays a crucial role by transforming, through

successive iterations of the jumps, the power-law ob-

tained from optimization of Sq into the speci�c power-

law appearing in Levy distributions. Summarizing,

in complete analogy with the above mentioned Gaus-

sian case (and which is recovered in the more powerful

present formalism as the q = 1 particular case), the

answer once again relies onto two pillars, which now

are the generalized entropy Sq and the Levy-Gnedenko

central limit theorem.

The arguments have been very recently re-

worked[80] on the basis of the normalized q-expectation

values introduced in [15]. These are the results that we

briey recall here.

Let us write Sq as follows:

Sq [p(x)] = k
1�

R1
�1

dx
� [� p(x)]q

q � 1
(43)

where x is the distance of one jump, and � > 0 is

the characteristic length of the problem. We optimize

(maximize if q > 0, and minimize if q < 0) Sq with the

norm constraint
R1
�1

dx p(x) = 1, as well as with the

constraint

hhx2iiq �

R1
�1

dx x2 [p(x)]qR1
�1

dx [p(x)]q
= �2 (44)

We straightforwardly obtain the following one-jump

distribution.

If q > 1:

pq(x) =
1

�

h q � 1

� (3� q)

i1=2 �( 1
q�1)

�( 3�q
2(q�1) )

1�
1 + q�1

3�q
x2

�2

�1=(q�1)
(45)

If q = 1:

pq(x) =
1

�

h 1
2�

i1=2
e�(x=�)

2=2 (46)

If q < 1:

pq(x) =
1

�

h 1� q

� (3� q)

i1=2�( 5�3q
2(1�q))

�(2�q1�q )

h
1�

1� q

3� q

x2

�2

i1=(1�q)
(47)

if jxj < �[(3� q)=(1� q)]1=2 and zero otherwise.

We see that the support of pq(x) is compact if

q 2 (�1; 1), an exponential behavior is obtained if

q = 1, and a power-law tail is obtained if q > 1 (with

pq(x) / (�=x)2=(q�1) in the limit jxj=�!1). Also, we
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can check that hhx2ii1 = hx2i1 =
R1
�1

dx x2 pq(x) is

�nite if q < 5=3 and diverges if 5=3 � q � 3 (the norm

constraint cannot be satis�ed if q � 3). Finally, let us

mention that the Gaussian (q = 1) solution is recovered

in both limits q ! 1 + 0 and q ! 1 � 0 by using the

q > 1 and the q < 1 solutions respectively. This family

of solutions is illustrated in Fig. 5.

Figure 5. The one-jump distributions pq(x) for typical values of q. The q ! �1 distribution is the uniform one in the
interval [�1; 1]; q = 1 and q = 2 respectively correspond to Gaussian and Lorentzian distributions; the q ! 3 is completely

at. For q < 1 there is a cut-o� at jxj=� = [(3� q)=(1� q)]1=2.

We focus now the N -jump distribution pq(x;N ) =

pq(x)�pq(x)�:::�pq(x) (N -folded convolution product).

If q < 5=3, the standard central limit theorem applies,

hence, in the limit N !1, we have

pq(x;N ) �
1

�

h 5� 3q

2�(3� q)N

i1=2
exp

�
�

5� 3q

2(3� q)N

x2

�2

�
;

(48)

i.e., the attractor in the distribution space is a Gaus-

sian, consequently we have normal di�usion. If, how-

ever, q > 5=3, then what applies is the Levy-Gnedenko

central limit theorem, hence, in the limit N ! 1, we

have

pq(N; x) � L (x=N
1=) (49)

where L is the Levy distribution with index  < 2

given by

 =
3� q

q � 1
(5=3 < q < 3) (50)

Through the Fourier transforms of both Eq. (48) and

(49), we can characterize the width �q (dimensionless

di�usion coe�ecient) of pq(x;N ). We obtain

�q �
3� q

5� 3q
(q < 5=3) (51)

and

�q =
2

�1=2

hq � 1

3� q

i 3�q
2(q�1)

�
h 3q � 5

2(q � 1)

i
; (5=3 < q < 3) :

(52)

These results are depicted in Fig. 6. This result

should be measurable in speci�cally devised experi-

ments. More details can be found in [80] and refer-

ences therein. What we wish to retain in this short

review is that the present formalism is capable of

(thermo)statistically founding, in an uni�ed and simple

manner, both Gaussian and Levy behaviors, very ubiq-

uitous in Nature (respectively associated with normal

di�usion and a certain type of anomalous superdi�u-

sion).
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Figure 6. The q-dependence of the dimensionless di�u-
sion coe�cient �q (width of the properly scaled distribution
pq(x;N) in the limit N ! 1). In the limits q ! 5=3 � 0
and q ! 5=3+0 we respectively have �q � [4=9]=[(5=3)�q]

and �q � [4=(9�1=2]=[q � (5=3)]; also, limq!3�q = 2=�1=2.

III.2 Correlated-type anomalous di�usion

There are some phenomena exhibiting anomalous

(super and sub) di�usion of a type which di�ers from

the one discussed in the previous subsection. We refer

to the so called correlated-type of di�usion. We consider

here a quite large class of them, namely those associ-

ated with the following generalized, Fokker-Planck-like

equation:

@

@t
[p(x; t)]� = �

@

@x
fF (x)[p(x; t)]�g+D

@2

x2
[p(x; t)]�

(53)

where (�; �) 2 R2, D is a dimensionless di�usion-

like constant, F (x) � �dV=dx is a dimensionless ex-

ternal force (drift) associated with a potential V (x),

and (x; t) is a dimensionless 1 + 1 space-time. If

� = 1, we can interpret p(x; t) as a probability dis-

tribution since
R
dx p(x; t) = 1; 8t can be satis-

�ed. If � 6= 1, then p(x; t) must be seen as a density

function. The word \correlated" is frequently used in

this context due to the fact that D(@2=@x2)[p(x; t)]� =

(@=@x)fD�[p(x; t)]��1 (@=@x) p(x; t)g, i.e., an e�ective

di�usion emerges, for � 6= 1, which depends on p(x; t)

itself, a feature which is natural in the presence of cor-

relations. The � = 1 particular case of this nonlinear

equation is commonly denominated \Porous medium

equation", and corresponds to a variety of physical sit-

uations (see [46] and references therein for several ex-

amples).

The �rst connection of Eq. (53) with the present

nonextensive statistical mechanics was established in

1995 by Plastino and Plastino[45]. They considered a

particular case, namely � = 1 and F (x) = �k2x with

k2 > 0 (so called Uhlenbeck-Ornstein processes), and

found an exact solution which has the form of Eq. (43-

45). Their work was generalized in [46] where arbitrary

� and F (x) = k1 � k2x were considered. The explicit

exact solution of Eq. (53), for all values of (x; t), was

once again found by proposing an Ansatz of the form

of Eqs. (45-47), i.e., the form which optimizes Sq with

the associated simple constraints. This form eventu-

ally turns out to be the Barenblatt one, useful in re-

lated problems. Here, let us restrict ourselves to just

reproduce the exact solution of Eq. (53) assuming that

p(x; 0) = �(x), this is to say, a Dirac delta distribution.

We obtain[46]

pq(x; t) =
f1� (1� q)�(t)[x� xM(t)]2g1=(1�q)

Zq(t)
(54)

where

q = 1 + �� � (55)

and
�(t)

�(0)
=
hZq(0)
Zq(t)

i2�
(56)

with

Zq(t) = Zq(0)
h�
1�

1

K2

�
e�t=� +

1

K2

i1=(�+�)
; (57)

K2 �
k2

2�D�(0)[Zq(0)]���
(58)

and

� �
�

k2(�+ �)
: (59)

Summarizing, by using the form which optimizes

Sq, it has been possible to �nd the physically relevant

solution of a nonlinear equation in partial derivatives

with integer derivatives. It can be shown[81] that the

problem that was solved in the previous subsection cor-

responds to a linear equation in partial derivatives but

with fractional derivatives. We believe that we are al-

lowed to say that an unusual mathematical versatility

has been observed, within the present nonextensive for-

malism, in this couple of nontrivial examples of anoma-

lous di�usion.

III.3 Stellar polytropes and other self-

gravitating systems

The present formalism has been applied to a vari-

ety of astrophysical[42, 43] and cosmological[82] self-

gravitating systems. In some sense, this is something
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natural to do given the long range of the gravitational

interaction. This was, in fact, the �rst physical ap-

plication of nonextensive statistics. We do not intend

here to reproduce details. Our present aim is to remind

that it is well known in astrophysics that, within the

standard thermodynamical approaches, it is not pos-

sible to simultaneously have �nite values for the total

energy, entropy and mass of a self-gravitating system.

Plastino and Plastino were the �rst to show, in 1993,

that this physically desirable situation can be achieved

if we allow q to su�ciently di�er from unity. In fact,

it can be shown (by considering the Vlasov equation in

D-dimensional Schuster spheres) that the problem be-

comes a mathematically well posed one if q < q�, where

the critical value q� is given by

q� =
8� (D � 2)2

8� (D � 2)2 + 2(D � 2)
: ; (60)

For D = 3 we recover the 7/9 relatively known value.

Also, we notice that D = 2 implies q� = 1, which is very

satisfactory since it is known that D < 2 gravitation is

tractable within standard thermodynamics.

III.4 Zipf-Mandelbrot law

The problem we focus here �rst appeared in Lin-

guistics. However, its relevance is quite broad, as it

will soon become clear. Suppose we take a given text,

say Cervante's Don Quijote, and order all of its words

from the most to the less frequent; we refer to the or-

dered position of a given word as its rank R (low rank

means high frequency ! of appearance in the text, and

high rank means low frequency). Zipf[83] discovered

that, in this as well as in a variety of similar problems,

the following law is satis�ed:

! = A R�� (Zipf law) (61)

where A > 0 and � > 0 are constants. Later on,

Mandelbrot[74] suggested that such behavior was re-

ecting a kind of fractality hidden in the problem;

moreover, he suggested how the Zipf law could be nu-

merically improved:

! =
A

(D + R)�
(Zipf �Mandelbrot law) (62)

This expression has been useful in a variety of analysis.

The connection we wish to mention here is that in 1997

Denisov[84] showed that, by extending (to arbitrary q)

the well known Sinai-Bowen-Ruelle thermodynamical

formalismof symbolic dynamics (i.e., by considering Sq
instead of S1), the Zipf-Mandelbrot law can be deduced.

He obtained

� =
1

q � 1
(63)

and D = d=(q � 1) (d being a positive constant), i.e.,

! /
1

[1 + (q � 1)R=d]1=(q�1)
(q > 1) (64)

Clearly, to make the discussion complete, a model

would be welcome, which would provide quantities such

as q and d. Nevertheless, Denisov's arguments have

the deep interest of explicitly exhibiting that the Zipf-

Mandelbrot law can be seen as having a nonextensive

foundation. Fittings with experimental data will be

shown later on in connection with the citations of sci-

enti�c papers.

III.5 Theory of �nancial decisions; Risk aversion

An important problem in the theory of �nancial

decisions is how to take into account extremely rele-

vant phenomena such as the risk aversion human be-

ings (hence �nancial operators) quite frequently feel.

This kind of problem has, since long, been extensively

studied by Tversky[85] and co-workers. The situation

can be illustrated as follows. What do you prefer, to

earn 85,000 dollars or to play a game in which you

have 0.15 probability of earning nothing and 0.85 prob-

ability of earning 100,000 dollars ? In fact, most peo-

ple prefer take the money. The problem of course is

the fact that the expectation value for the gain is one

and the same (more precisely 85,000 dollars) for both

choices, and therefore this mathematical tool does not

reect reality. The same problem appears if one expects

to loose 85,000 and the chance is given for playing a

game in which, if you win, you pay nothing, but, if you

loose, you pay 100,000 dollars. In this case, most peo-

ple choose to play. So, the experimental facts are that

most human beings are risk-averse when they expect to

gain, and risk-seeking when they expect to loose. The

problem is how to put this into mathematics.

Following [86], let us introduce, for the above gain

problem, normalized q-expectation values as follows:
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c

hhgainiitake the money
q = 85; 000 (65)

and

hhgainiiplay the game
q =

100; 000� 0:85q + 0� 0:15q

0:85q + 0:15q
=

100; 000� 0:85q

0:85q + 0:15q
(66)

Since most people would prefer the money, this means that most people have q < 1 for this particular decision

problem.

For the loss probem we have:

hhgainiitake the money
q = �85; 000 (67)

and

hhgainiiplay the game
q =

�100; 000� 0:85q + 0� 0:15q

0:85q + 0:15q
=
�100; 000� 0:85q

0:85q + 0:15q
(68)

d

Since in this case most people would prefer to play,

this means that, consistently with the previous result,

most people have q < 1 for the particular decision

problem we are considering now. In some sense, we

have some epistemological progress. Indeed, the state-

ment \most people have (for this type of amount of

money) q < 1", uni�es the previous two separate state-

ments concerning expectation to gain and expectation

to loose.

Let us address now the following question: how can

we measure the value of q associated with a particular

individual ? We illustrate this interesting point with

the example of the gain. The person is asked to choose

between having V dollars or playing a game in which, if

the person wins, the prize will be 100; 000 dollars and,

if the person looses, he (she) will receive nothing. As

before, the person is informed that his (her) probability

of winning is 0.85 (hence, the probability of loosing is

0.15). Then we keep gradually changing the value V

and asking what is the preference. At a certain critical

value, noted Vc, the person will change his (her) mind.

Then, the value of q to be associated with that person,

for that problem, is given by the following equality

100; 000� 0:85q

0:85q + 0:15q
= Vc (69)

(See Fig. 7). The ideally rational operator corresponds

to q = 1. For this gain problem, the risk-averse opera-

tors correspond to q < 1, and the risk-seeking ones to

q > 1.

Figure 7. The index q to be associated with a person whose
critical value corresponding to Eq. (69) is Vc. People with
q < 1 (q > 1) tend to avoid (seek) risks for that particular
game. The case q = 1 corresponds to an ideally rational
agent.

In order to better understand the unifying power of

the present proposal, let us analyze another classical

problem, namely that of the two boxes. A person is

proposed to choose between two games. He (she) is in-

formed that in box A there are (exactly) 100 balls, 50

of them being red, the other 50 being white. The per-

son declares a color, and randomly takes o� a ball. If it

has the chosen color, the person will earn 100 dollars.

If it has the other color, the person will earn nothing.
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The person is also informed that in box B there are

also (exactly) 100 balls, some are red, some are white

but we do not know how many of each, though we do

know that no other colors are in the box. As before, the

person is asked to declare a color, and then randomly

take o� a ball. If it has the chosen color, the person

will earn 100 dollars. If it has the other color, the per-

son will earn nothing. These are the two games. The

person is now asked to choose the box to play. The exp

erimental outcome is that most of the people choose

box A (possibly because their anxiety is smaller with

regard to that particular box, because they have some

supplementary information about it...even though this

information is completely useless !). Let us write down

the associated normalized q-expectation values: It is

clear that models for stock exchange can be formulated

by using these remarks. Such an e�ort is presently in

progress[87].

III.6 Physiology of vision

Physiological perceptions such as the visual percep-

tion are since long known to focus upon rare events

(e.g., a red spot on a white wall). Barlow[88], among

others, has recurrently stressed our attention on the fact

that, at the action decision level, the various possibili-

ties should enter with a weight proportional to � ln pi,

and not proportional to pi, pi being the a priori prob-

ability of occurrence of that particular event; indeed,

� lnpi diverges when pi ! 0. He even argues that evo-

lutionary arguments hold very well together with such

hypothesis. To privilege rare events is precisely what

happens, in the present formalism,whenever q < 1. Let

us be more speci�c: if we consider the 0 < q << 1 limit,

we obtain[89]

c

Sq=k =
1�

PW
i=1 p

q
i

q � 1
� W � 1 + q[W � 1�

WX
i=1

(� ln pi)]; (70)

hOiq �
WX
i=1

pqi Oi �
WX
i=1

Oi � q

WX
i=1

(� lnpi) Oi (71)

and

hhOiiq �

PW
i=1 p

q
i OiPW

i=1 p
q
i

�

PW
i=1Oi

W

n
1 + q

hPW
i=1(� ln pi)

W
�

PW
i=1(� ln pi) OiPW

i=1Oi

io
(72)

d

where O is an arbitrary observable. Leaving aside sev-

eral constant quantities that appear above, we imme-

diately observe the prominent role which � ln pi plays

in these expressions. Consistently, the q ! 0 limit of

the present formalism could well be of some utility in

the theoretical analysis of the physiological phenomena

focused here.

IV Experimental evidences and

connections

IV.1 D = 2 turbulence in pure-electron plasma

A few years ago, in 1994, Huang and Driscoll[6] ex-

hibited some quite interesting nonneutral plasma exper-

imental results obtained in pure-electron plasma (con-

�ned in a 20 cm long and 6 cm wide metallic cylindric

Penning trap with a 10�10 torr vacuum in its interior)

in the presence of an external axial magnetic �eld (507

Gauss). In the interval 2-100 ms after every single elec-

tric shot (generating the electron plasma), it was ob-

served a turbulent axisymmetric metaequilibriumstate,

the electronic density radial distribution of which was

measured. Its average (over typically 100 shots) mono-

tonically decreased with the radial distance, disappear-

ing at some radius sensibly smaller than the radius of

the container (i.e., a cut-o� was observed). The ex-

periment was recently redone[90] under slightly modi-

�ed experimental conditions (a slow external rotation

was imposed in such a way as to compensate the small
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energy dissipation.. exis ting in the plasma), and es-

sentially the same metaequilibrium state was observed

during lapses of time as long as 27 hours, or even longer.

In addition to the 1994 experiment, the authors also

proposed[6] a phenomenological theory trying to repro-

duce the experimentally observed pro�le. Their pro-

posal consisted on the optimization, for a given model,

of a functional of the electron density �(r) under con-

straints, namely conservation of total mass, angular

momentum and energy. They presented four di�erent

attempts. The �rst one (Point Vortex Maximum En-

tropy) consisted in optimizing, for a point vortex repre-

sentation of the plasma, the BG entropy: it failed in re-

producing the experimental data. The second attempt

(Fluid Maximum Entropy) was essentially the same as

the previous one, but using a uid model for the plasma:

the failure was even bigger. They assumed next that

the problem possibly relied, not so much in the partic-

ular plasma model, but rather in the chosen functional

to be optimized. In their third attempt (Global Min-

imum Enstrophy), they turned back to the point vor-

tex model, but optimized the enstrophy instead of the

BG entropy. The result was better than the two �rst

attempts, but had the physically unacceptable feature

of producing a negative electron density at su�ciently

high radius. They then addressed their fourth attempt

(Restricted Minimum Enstrophy), whose only di�erence

with the third one was the fact of introducing an out-of-

the pocket cut-o� of the electron density at the proper

value of the radius. This procedure was �nally suc-

cessful, and a very good �rst-approximation �tting was

obtained. The e�ort done by Huang and Driscoll was,

on top of the high merit of a remarkable experiment,

extremely pedagogical and elucidating: the main theo-

retical problemwas not the model, but rather the choice

of the functional to be optimized, i.e., the statistics.

The next important step in this story was done by

Boghosian. He realized in 1995 and published[43] in

1996 that the Huang and Driscoll fourth, successful at-

tempt precisely corresponds to the optimization of Sq

with q = 1=2. Indeed, by following the recipes of the

present generalized thermostatistics, he re-obtained, for

the electron density pro�le, the same di�erential equa-

tion produced within the Restricted Minimum Enstro-

phy phenomenological theory, with the supplementary

bonus of not having to introduce in an ad hoc manner

the necessary cut-o�. Indeed, as already argued, all

q < 1 cases exhibit a cut-o� intrinsic to the formalism,

and the radial position of that cut-o� nicely �ts the

experimental value.

The next step was performed in 1997 by Ante-

neodo and myself[91] (in fact, after related remarks by

Boghosian himself). The Restricted Minimum Enstro-

phy theory is based on the enstrophy functional, which

belongs to the general discussion of Casimir invariants;

its form is in fact that of the order 2 Casimir invariant.

Consequently, an epistemologically conservative theo-

retical viewpoint is to appreciate Boghosian's e�ort as

just a formal interesting remark, with no real physi-

cal necessity. It happens, however, that, for r! rc�0,

(rc � cut-o� radius) the enstrophy theory yields �(r) /

(rc � r) whereas the experimental data �t much bet-

ter a vanishing derivative at rc. We followed[91] along

Boghosian's lines and generalized his theory for arbi-

trary q. We obtained the generalized di�erential equa-

tion for �(r) and showed that �(r) / (rc � r)q=(1�q).

Consequently, the experimental data �t better for q

slightly above 1=2. This, together with the numerical

solution of the di�erential equation, advanced q ' 0:55

as a better value for satisfactory overall �tting. (Better

�ttings would probably demand for a model more so-

phisticated than the point vortex one used here). The

conceptually important point of this discussion is that

Casimir invariants are characterized by integer expo-

nents (in �(r)), hence none of them can be related to

a value of q close to 0:55. From this standpoint, the

present formalism appears as the only satisfactory phe-

nomenological theoretical approach available in the lit-

erature at the present time.

The last step of this analysis was performed very

recently by Anteneodo[92]. Indeed, the calculations

above recalled[43, 91] were done by using unnormalized

q-expectation values. However, as already mentioned

and used in the present review, it has been recently

argued[15] that normalized q-expectation values should

be used instead. It is therefore important to check that

the present discussion and results for turbulence remain

essentially invariant. This is now done[92], and it is this

theory that we present in what follows.

The generalized entropy and associated constraints

are given by
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c

Sq [g] �
1

q � 1

Z
(g � gq)d2r; (73)

Z
gd2r = 1 (mass conservation)R

r2gqd2rR
gqd2r

= Lq � L (angular momentum conservation)

�1
2

R
�
�? g

qd2rR
gqd2r

= Uq � U (energy conservation); (74)

where g(r) is the probability distribution. Moreover, the scaled electrostatic potential

�(r)

�?
�

R
gq(r0)G(r; r0)d2r0R

gqd2r
with r2G(r; r0) = 4��(r� r0); (75)

satis�es

r2 �

�?
= 4�

gqR
gqd2r

: (76)

The constrained optimization of Sq [g] (�(Sq � �
R
gd2r� �Lq � �Uq )) now yields

1� q gq�1q

q � 1
� ��

�

N
qr2 gq�1q +

�

N
q
�q
�?

gq�1q + q(L
�

N
� 2U

�

N
)gq�1q = 0 (77)

(where
R
gqd2r � N ) or

g1�qq � q

q � 1
� �q1�q �

�

N
qr2 +

�

N
q
�q
�?

+ q(L
�

N
� 2U

�

N
) = 0 (78)

or, taking the Laplacian of both sides,

[1 + �(1� q)]
r2g1�qq

q � 1
� 4

�

N
q + 4�

�

N2
qgqq = 0 (79)

which can be rewritten as

g00q � q
(g0q)

2

gq
+
g0q
r
= gqq(B

ygqq � Ay) (80)

where Ay � 4q �
N =[1 + �(1� q)] and By � 4�q �

N2 =[1 + �(1� q)].

Alternatively, identifying �q � gqq=N , we have

�00q �
2q � 1

q

(�0q)
2

�q
+
�0q
r

= q�
2q�1
q

q (B�q � A); (81)

d

with A � AyN
q�1
q and B � ByN

2q�1
q . This equa-

tion precisely is the one appearing in [91], which, for

q = 1=2, recovers that of [43]. For any chosen q, the

values of the parameters (A;B) are obtained by impos-

ing the experimental values of total angular momentum

and energy. This phenomenological theory has, there-

fore, only one �tting parameter (q). As said before,

q = 1=2 exactly reproduces the Huang and Driscoll's
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Restricted Minimum Enstrophy pro�le. The best over-

all �tting is, however, obtained for a value of q slightly

above 1=2.

IV.2 Solar neutrino problem

As easily conceivable, the core of the Sun is a very

complex and turbulent plasma, within which an enor-

mous amount of nuclear reactions take place. Many

of them constitute chains of nuclear reactions in which

neutrinos are produced. For instance, the p-p chain

is described in [93]. Through a quite complete analy-

sis of the production of neutrinos within the so called

Solar Standard Model (SSM), it is possible to predict

the neutrino ux onto the Earth. However, the actual

ux measured in a variety of underground laboratories

(Gallex, Sage, Kamiokande, Super-Kamiokande, Home-

stake) roughly amounts to only half of the predicted

value. This problem is currently referred to as the "so-

lar neutrino problem". Two nonexclusive sources of ex-

planation of this enigmatic discrepancy are: (i) the pos-

sible neutrino oscillations, which would make that only

part of the predicted value would be detectable on the

Earth; (ii) the current use of the SSM might be incor-

rect because it uses BG thermal statistics, which could

be inappropriate for the solar plasma. Clayton[10] was

the �rst to address the second possibility, as far as 25

years ago. Indeed, he assumed an hypothetic distribu-

tion of energies essentially given by

p(E) / e��E e��(�E)2 (82)

The particular value � = 0 obviously recovers BG

statistics. Clayton showed that a small value of �

(� ' 0:01) was enough to make the theory consistent

with the experimental data that were available at that

time. Quarati and co-workers remarked (preliminar-

ily in 1996[94], and in more re�ned calculations since

then[95]) that, since the needed � is very small, the

ansatz distribution could as well be the power-law one

which appears in the present formalism. By identifying

the �rst corrections (to BG) of both distributions, they

obtained

� =
1� q

2
(83)

Consequently, values of q quite close to unity are enough

to �t the solar neutrino discrepancy. Once again, we

verify the extreme e�ciency that modi�cations of the

statistics can have.

IV.3 Peculiar velocities in Sc galaxies

From the data obtained by the Cosmic Background

Explorer (COBE), it has been possible to infer the dis-

tribution of peculiar velocities of certain groups of spi-

ral (Sc) galaxies (we recall that by peculiar velocity we

mean the residual velocity after the global universe ex-

pansion velocity has been substracted). Bahcall and

Oh[11] developed four theoretical attempts (namely

Cold Dark Matter with 
 = 0:3 and with 
 = 1:0,

Hot Dark Matter with 
 = 1:0 and Primeval Barionic

Isotropic with 
 = 0:3). All the attempts were done

within BG statistics. The less unsatisfactory �tting was

obtained for the CDM model with 
 = 0:3. In fact, all

the attempts exhibit a long tail towards high velocities,

whereas the experimental data show a pronounced cut-

o� at about 500 Km s�1. It is relevant to mention

that all the models that were used had several �tting

parameters, and nevertheless could not get rid of the

tail. A �tting was then advanced[96] using the present

formalism with only two free parameters, one of them

being q and the other one a characteristic velocity. The

function that was used was the q-generalized Maxwell

distribution, essenti ally corresponding to an ideal clas-

sical gas. The quality of the �tting is quite remarkable,

far better than those corresponding to the already men-

tioned four attempts. Once again, one sees that modi-

�cations of the statistics can be sensibly more e�cient

than modi�cations of the model. A famous example

along this line is provided by the completely di�erent

physics associated with a gas of free fermions or of free

bosons, i.e., a Fermi-Dirac ideal gas or a Bose-Einstein

ideal gas (same model but di�erent statistics).

IV.4 Nonlinear inverse bremsstrahlung absorp-

tion in low pressure argon plasma

Liu et al[12] provided in 1994 strong evidence of the

existence of non-Maxwellian velocity distributions in a

speci�c plasma experiment, where low pressure argon

is exposed to pulsed discharges. During the afterglow,

measurements of the inverse bremsstrahlung of intense
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microwaves is performed. The experimental setting is

such that Coulombian collisions are dominant. The

experimental data were �tted with the following at-

topped distribution:

f(v) / exp[�(v=vm)
m] (84)

with m � 2. Souza and myself[97] showed in 1997 that

the same data can equally well be �tted with

f(v) / [1� (1� q)(v=vq)
2]q=(1�q) (85)

with q � 1. Furthermore, if we expand both �tting

functions in the neighborhood of the Gaussian case, we

obtain that

q =
m

2
(86)

In both �ttings, the exponents m and q depend on the

microwave power. In order to discriminate between the

two �tting functions, quite precise and systematic ex-

periments would be needed, in particular exploring the

actual dependence of the results on the power.

IV.5 Cosmic background microwave radiation

The most accurate data concerning the cosmic mi-

crowave background radiation have been obtained with

the FIRAS (Far-infrared absolute spectrophotometer)

instrument in the COBE (Cosmic background explorer)

satellite[98]. These data are known to follow, in the

2� 20 cm�1 region, Planck's black-body law. In 1995,

Sa Barreto, Loh and myself[99], as well as Plastino,

Plastino and Vucetich[100] (and several others since

then), analyzed within what precision one is allowed

to assume q = 1. The result that has systematically

come out from these analyses is jq � 1j < 10�4. If new

observations were performed in the future which would

be say 10 times more precise than the available ones[98],

this bound would be attained. Consequently, we would

know better within what degree of con�dence exten-

sive thermostatistics can be used for this cosmological

problem. If q 6= 1 turns out to be clearly con�rmed,

it is not excluded that we would have to revise our

notions about the structure of space-time at the appro-

priate scales (possibly, Planck's length). It might come

out that the physics at that level are better described

by �nite-di�erence equations than by di�erential equa-

tions.

IV.6 Electron-positron collisions

The electron-positron annihilation into a virtual

photon and the subsequent creation of a quark-

antiquark pair provides the cleanest environment for

the hadroproduction. Each of the two initial partons

begins a complex cascade related to the strong-coupling

long-distance regime of Quantum Chromodynamics. A

partially successful global description of the hadropro-

duction has been provided through a thermodynami-

cal equilibrium approach, mainly that of Hagedorn in

1965[101]. This theory provides the following predic-

tion:

1

�

d�

dpT
' cp

3=2
t exp�pT=T0 (pT > T0) (87)

where � is the distribution of the transverse momenta

pT , T0 is a characteristic temperature which Hagedorn

predicts to be independent from the electron-positron

collision energy W in the mass center referential, and

c is a constant. This theory �ts the data quite well for

small W , say W < 10 Gev, but exhibits a pronounced

failure for W increasing up to say 160 Gev. Very re-

cently, Bediaga, Curado and Miranda[102] have used,

along Hagedorn's lines, the present generalized statis-

tics. The results are indicated in Figs. 8 and 9. Remark

that (i) q varies smoothly and monotonically with vary-

ing W (Hagedorn's theory is recovered in the W ! 0

limit), and (ii) T0 ' 0:11 Gev and practically inde-

pends fromW as desirable from Hagedorn's arguments.

These results can be considered as a strong evidence of

the applicability of the nonextensive thermostatistics to

speci�c anomalous systems.

IV.7 Emulsion chamber observation of cosmic

rays

Cosmic rays can be observed by using a variety of

detectors (such as Pb detectors; see [103] and refer-

ences therein). Typically, showers of (clustered or in-

dividual) elementary particles appear which start at

the so called vertex. These vertex are localized at

various depths. The distribution of their depths can

be measured (see[104] and references therein for the
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measurements done at the Mount Pamir lead cham-

bers) . This distribution was recently �tted by Wilk

and Wlodarcsyc[105] with the q = 1:3 function which

emerges within the present formalism.

Figure 8. Distribution of the transverse momenta pT ob-
tained in electron-positron frontal collisions of energy W
varying from 14 to 161 Gev. The dotted line corresponds to
q = 1 (i.e., a Hagedorn type of �tting as given by Eq. (87))
for all values of W . The solid lines correspond to q 6= 1
�ttings.

Figure 9. The values of q and T0 used in the �ttings of
Fig. 8. When W approaches zero, q approaches unity, i.e.,
Hagedorn's theory; T0 is essentially insensitive to W , as
physically desirable.

IV.8 Reassociation of heme-ligands in folded

proteins

In the folded conformational state, proteins might

exhibit fractal e�ects. One such case might be the

time evolution of the re-association of molecules that

have been taken away from their natural positions.

For instance, if O2 molecules are dissociated, through

light ashes, from their natural Fe positions in a heme

protein and reach positions outside the heme pocket,

they tend to start rebinding, and, for so doing, they

might have to follow a fractal path, or be under the

dynamical inuence of fractal excitations (e.g., frac-

tons). Anyhow, this re-association phenomenon has

been lengthily studied by Frauenfelder et al[106]. If

we de�ne � � N (t)=N (0) where N (t) is the number

of molecules that have not yet re-associated at time t,

the �(t) monotonically vanishes with t. The results ob-

tained by photo-dissociating CO molecules from Sigma

Type 2 sperm whale Myoglobin (Mb) dissolved in a

glycerol-water solution are shown in Fig. 10. For times

not too long, the experimental data have been �tted by

Frauenfelder et al[106] with

� = (1 + t=t0)
�n (88)

where t0 and n smoothly depend on the temperature

T . Bemski, Mendes and myself[107] have argued that,

within the generalized formalism, the following equa-

tion naturally appears:

d�

dt
= ��q �

q (�q � 0; q � 1) (89)

Its solution is given by

� =
1

[1 + (q � 1)�qt]
1

q�1

(90)

This expression recovers, for q = 1, the usual ex-

ponential relaxation, and reproduces the Frauenfelder

form through the identi�cations 1=(q � 1) � n and

1=[(q�1)�q] � t0. Besides reobtaining the Frauenfelder

empiric law, the present scheme allows for a better ap-

proximation if a crossover is admitted. More precisely,

the above di�erential equation can be generalized as

follows:

d�

dt
= ��r �

r � (�q � �r) � (r � q) (91)

The general solution involves[107] a hypergeometric

function. The �tting is shown in Figs. 10 and 11.

A detailed model which would justify the above phe-

nomenological di�erential equation would be welcome.
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Figure 10. Time evolution of � � N(t)=N(0) associated
with MbCO in glycerol-water. Dots: experimental data.
Dashed lines: �ttings with Frauenfelder's empiric law (Eq.
(88) or Eq. (90)). Solid lines: �ttings with the solutions of
Eq. (91) (see Fig. 11).

Figure 11. Temperature dependences of the parameters
used to �t the experimental data of Fig. 10.

IV.9 Di�usion of Hydra Vulgaris

Upadhyaya et al[108] are presently performing in-

teresting experiments on Hydra Vulgaris (a cylindrical

body column with inner and outer cells, respectively re-

ferred to as endodermal and ectodermal respectively) in

physiological solution. The endodermal cells are more

adhesive than the ectodermal ones. The authors have

measured the velocity distribution P (jVyj) of the \ver-

tical" component of the velocity during the di�usion

of endodermal Hydra cells in an ectodermal aggregate.

The results are presented in Fig. 12, where the velocity

unit is 10�6m=hour and the probability is represented

by the histogram of the number of counts. These results

were �tted with

P (jVyj) =
a

(1 + bjVyj2)c
(92)

with the values of (a; b; c) indicated in the �gure.

Through the identi�cation

a = P (0); b = (q � 1)=V 2
0 ; c =

q

q � 1
(93)

we precisely have the law which emerges within the

present formalism, namely

P (jVyj) =
P (0)

[1 + (q � 1)(Vy=V0)2]q=(q�1)
(94)

with q = 1:53. The next desirable step of course is to

formulate a speci�c model for Hydra which would lead

to this law, but this remains to be done.

IV.10 Citation of scienti�c papers

An interesting study was recently done by

Redner[109], in which the statistics of citations of scien-

ti�c papers is focused. He exhibited the number N (x)

of papers which have been cited x times for two long se-

ries, namely one (6 716 198 citations of 783 339 papers)

from the Institute of Scienti�c Information (ISI) and

another one (351 872 citations of 24 296 papers) from

the Physical Review D (PRD). As expected, in both

examples, N (x) monotonically decreases with x. Red-

ner �tted the (relatively) low-x data with a stretched

exponential of the form

N (x) = N (0) e�(x=x0)
�

(95)

with � = 0:44 and 0:39 for the series ISI and PRD

respectively. Also, he remarked that the large-x data

exhibit a power law, namely close to / 1=x3. He argues

that this di�erent functional behavior for low and large

values of x must reect di�erent phenomenologies in
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these two regimes. In contrast with this viewpoint, Al-

buquerque and myself[110] argue that this is not neces-

sarily so since the data can be quite satisfactorily �tted

with a single function, namely

N (x) =
N (0)

[1 + (q � 1)�x]q=(q�1)
(96)

with q = 1:53 and 1:64 for the series ISI and PRD re-

spectively: see Fig. 13 The satisfactory quality of the

�ttings is, after all, not so surprising, since we have

mentioned earlier in this paper the connection[84] of

this formalism with the Zipf law.

Figure 12. Distribution of the \vertical" velocities during
di�usion of endodermal Hydra cells in an ectodermal aggre-
gate. The abcissa units are 10�6 m=hour. The �tting was
obtained using q = 1:53 (see the text).

Figure 13. Distribution of ISI and PRD papers having received x citations. (a) and (b) exhibit the �ttings in [109]; (c) and
(d) exhibit our present �ttings (see the text).

IV.11 Electroencephalographic signals of

epilepsy

It is since long known that the analysis of sig-

nals can be done within formalisms which use entropic

forms. One such application has been recently done

on EEG records of epilleptic humans and turtles[111].

The simultaneous use of wavelet-based multiresolution

analysis including the nonextensive entropy Sq leads

to signals whose interpretation can be clinically neat

and pharmacologically convenient. The authors of this

novel processing suggest perspectives for building up

automatic detection devices.



22 Constantino Tsallis

IV.12 Cognitive psychology

The development of arti�cial neural networks and

their connections with statistical mechanics (e.g., the

Hop�eld model for associative memory) makes quite

natural the approach of cognitive problems with the

present nonextensive formalism. Within this phi-

losophy, we performed[112] an experiment of learn-

ing/memorization (of 5 � 5 and 7 � 7 square matrix

having circles and crosses randomly distributed once

for ever) with students of the University level; 150 stu-

dents were interviewed, the �rst 30 in order to opti-

mize the experimental protocole, and the other 120 to

make the measurements of the time-evolution of the to-

tal amounts of errors when the original matrix was suc-

cessively shown and hidden. The average results were

then �tted with those obtained, for the same task, with

a learning machine[113] having a perceptron architec-

ture and an internal dynamics based on the Langevin

equation[44] generalized by Stariolo to arbitrary q. The

(average) learning time of the machine turned out to

monot onically increase with q, exhibiting a practically

divergent derivative at q = 1. The best human-machine

�t occurred for q slightly above unity. More experi-

ments and comparisons along these lines would be very

welcome. Indeed, they would help better understanding

some cognitive phenomena, on one hand, and could gen-

erate e�cient machines for speci�c tasks, on the other.

IV.13 Turbulence and time evolution of �nancial

data

In 1996 Ghashghaie et al[114] compared �nancial

data with those obtained from turbulent behavior and

showed very similar behaviors when appropriate scal-

ings are used. Ramos et al[115] have recently shown

that all these data can be satisfactorily �tted with the

functional form which emerges from the present for-

malism. Olsen and Associates data containing bid-

ask quotes for US dollar-German mark exchange rates

(1,472,241 records) are presented in Fig. 14 (probability

density P�t(��) of price changes; �� = �(t)��(t+�t)

with �t = 640s; 5120s; 40960s; 163840s from top to

bottom in the �gure). The turbulent ow data[116] are

presented in Fig. 15 (probability density P�r(�v) of

velocity di�erences; �v = v(r) � v(r + �r) for spatial

scale delays �r = 3:3�; 18:5�; 138�; 325� from top to

bottom in the �gure, where � is the Kolmogorov scale,

i.e., the critical limit for occurence of viscous dissipa-

tion). All these data exhibit a slight left-right assym-

metry, which has been taken into account by Ramos et

al: they used the same q for both sides but di�erent

widths. Needless to say that speci�c models leading to

these �tting functions are very welcome.

Figure 14. Distributions of price changes for US dollar-
German mark exchange rates and �ttings using assymetric
q-distributions (see the text).

Figure 15. Distributions of velocity di�erences and �tting
using assymetric q-distributions (see the text).
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V Computational evidences

and connections

V.1 Thermalization of a hot gas penetrating in

a cold gas

In 1991, Waldeer and Urbassek[117] made, assuming

d = 3 Newtonian mechanics, a computational simula-

tion in which a certain amount of high energy particles

penetrate into a cold gas and are thermalized through

the interactions between molecules. The cold gas is ini-

tially put at BG thermal equilibrium at temperature

TC . The high energy particles at time t = 0 are ran-

domly distributed in energy at a quite high energy per

particle. The interaction potential was assumed to be

hard sphere at short distances and decreasing, at long

distances, like r��. They analyzed three typical situa-

tions, one with � ! 1, hence well above d (i.e., very

short range interactions), the second one with � = 4

(i.e., short range interactions), and the last one with

� = 8=3, which is below d (i.e., long range interac-

tions). In their simulation, they follow the time evo-

lution of the energy distribution of the hot particles.

After a transient, this distribution evolves with a regu-

lar pattern. For � > d, this pattern basically is the BG

distribution with a temperature T (t) which gradually

approaches TC from above (with limt!1T (t) = TC),

in other words, through curves which approximatively

are straight lines in a log-linear plot. For � < d, this

approximation occurs through curves which are close to

straight lines... in a log-log plot. (Notice that the cur-

vature in log-log plots tends to be upwards for � < d,

whereas it is downwards for � > d; see Figs. 1, 2

and 3 of [117]). This power-law behavior is typical of

q > 1. This pecualiarity was invoked by Koponen[9] in

1997 as a justi�cation for using the present generalized

formalism to discuss electron-phonon relaxation in ion-

bombarded solids if the interactions are long-ranged.

A study like that of Waldeer and Urbassek[117] which

would systematically address the details of that ther-

malization by gradually varying � across d is missing

and would certainly be very welcome.

V.2 Long-range classical Hamiltonian systems:

Static properties

Let us focus here on what we refer to as weak vio-

lation of BG statistics. We use this expression to dis-

tinguish it from what we call strong violation of BG

statistics. Both of them lead to nonextensive quanti-

ties, but, whereas the strong violation concerns q 6= 1,

the weak one concerns q = 1 calculations. To make all

this explicit we shall here focus on classical systems,

i.e., all observables are assumed to commute. Let us

consider the following paradigmatic Hamiltonian:

H =
1

2m

NX
i=1

p2i +
X
i6=j

V (rij) (97)

where m is a microscopic mass, fpi; rig are the d-

dimensional linear momenta and positions associated

with N particles, and rij � rj � ri. A typical situation

is that of a �nite con�ned system but, if some care is

taken, the system could as well be thought of as hav-

ing periodic boundary conditions. To be speci�c, let us

assume

V (rij) =
A

r12ij
�

B

r�ij
(A > 0; B > 0; 0 � � < 12) (98)

where, in order to avoid any singularity at the origin

(for any dimension d not exceedingly high), we have

assumed, for the repulsive term, the Lennard-Jones ex-

ponent 12. What we desire to focus on in the present

discussion is possible singularities associated with in-

�nite distances, i.e., the e�ects of long-range (attrac-

tive) interactions. The case (�; d) = (6; 3) precisely

recovers the standard Lennard-Jones uid; the case

(�; d) = (1; 3) is asymptotically equivalent to Newto-

nian gravitation; the case (�; d) = (d�2; d) is asymptot-

ically equivalent to d-dimensional gravitation (i.e., the

one associated with the solutions of the d-dimensional

Poisson equation); the case (�; d) = (3; 3) basically re-

produces the distance dependance of permanent dipole-

dipole interaction. The range of the (attractive) inter-

action increases when � decreases; �! 12 corresponds

to very short-ranged interactions, whereas � = 0 corre-

sponds to the situation of the Mean Field A pproxima-

tion, where every particle (attractively) interacts with

every other with the same strength, in all occasions.

A typical quantity to be calculated within BG statis-

tics is the following one (basically related to the T = 0

internal energy per particle):

Z 1

1
dr rd�1 r�� (99)

where the distances r have been expressed in units of a

characteristic length of the problem. We immediately

verify that this integral converges if � > d, and diverges
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if 0 � � � d. Consequently, thermodynamic calcula-

tions in the 0 � � � d case have to be done with some

care, and not blindly following the standard rules as-

sociated with BG statistics (i.e., q = 1). It is in this

sense that we use the expression \weak" violation of

BG statistics. The care to which we refer is the fact

that we have to strictly consider the �nite size of the

physical system. Consistently, a relevant quantity that

emerges naturally is

N� � d

Z N1=d

1

dr rd�1 r�� =
N1��=d � 1

1� �=d
(100)

We can check that, in the N !1 limit, we have

N� �

8><
>:

1
�=d�1 if �=d > 1;

ln N if �=d = 1;
N1��=d

1��=d if 0 � �=d < 1:

(101)

As it will become transparent later on, what these

regimes imply is that the system is extensive for �=d >

1 (hence standard thermodynamics apply), whereas it

is nonextensive for 0 � �=d � 1, and special scalings be-

come necessary [118, 119] in order to have both a math-

ematically well posed problem, and a physical unfold-

ing (or quali�cation) of the nonextensive region. The

�=d > 1 regime has since long been analyzed[120], and

it is well known that extensivity (or, stability, as also

referred to) is lost for �=d � 1. However, to the best of

our knowledge, the scalings associated with the quan-

tity N�, as well as its numerically e�cient collapsing

properties, were introduced for the �rst time by Jund

et al[119] in 1995.

A quantity related to N�, namely ~N turns out to

be even more convenient. It is de�ned through[121]

~N � N� + 1 =
[N1��=d � �=d]

1� �=d
(102)

In the N !1 limit, we have

~N �

8><
>:

�=d
�=d�1 if �=d > 1;

ln N if �=d = 1;
N1��=d

1��=d
if 0 � �=d < 1:

(103)

In the limit�=d!1, ~N ! 1; in the limit�=d! 1+0,
~N � 1=(�=d � 1); in the limit �=d ! 0, ~N � N .

Roughly speaking, ~N characterizes the e�ective num-

ber of neighbors that can be associated with a given

particle. This is the convenience to which we referred

above.

We are ready now to present the kind of size-scalings

we expect to be necessary for thermodynamically de-

scribing a generic classical Hamiltonian system with the

type of interactions above mentioned. Let us focus on

a simple uid, and start with the standard case, i.e.,

� > d. Its Gibbs energy G(T; p;N ) is given by

G(T; p;N )

N
�

U (T; p;N )

N
�T

S(T; p;N )

N
+p

V (T; p;N )

N
(104)

where U; S; V; N; T and p respectively are the to-

tal internal energy, total entropy, total volume, total

number of particles, temperature and pressure. In the

N !1 limit, we obtain

g(T; p) = u(T; p) � T s(T; p) + p v(T; p) (105)

where the corresponding densitary variables have been

introduced.

In contrast with the above, if we have 0 � � � d,

the scalings are di�erent, namely

G(T; p;N )

N ~N
�

U (T; p;N )

N ~N
�
T
~N

S(T; p;N )

N
+
p
~N

V (T; p;N )

N
(106)

Consistently we have

g( ~T ; ~p) = u( ~T ; ~p) � ~T s( ~T ; ~p) + ~p v( ~T ; ~p) (107)

where

~T �
T
~N
; ~p �

p
~N

(108)

These equations recover the previous ones, i.e., those

associated with the � > d, as a particular case. Indeed,

for � > d, ~N becomes a constant.

So, we see that long range interactions have impor-

tant thermodynamical consequences, namely

(i) the energy quantities (G; U , which normally ap-

pear alone) that were extensive for � > d loose their

extensivity;

(ii) the non-energy quantities (S; V , which normally

appear in canonical pairs with intensive quantities) that

were extensive for � > d preserve their extensivity;

(iii) the control parameters (T; p) that were inten-

sive for � > d loose their intensivity.

Consistently, to have mathematically well de�ned

and physically useful equations of states and related

quantities, everything must refer to �nite quantities,

hence, we must express all relations with the above

rescaled variables. This does not imply that thermal

equilibriumoccurs through sharing equal values of ~T ; ~p,

etc. The zero-th principle of thermodynamics appears

to hold in the usual way, even if we have long range in-

teractions in the system. Although we have illustrated
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these features on a uid, it is clear that the same consid-

erations hold for all types of thermodynamical systems

(magnets, dielectric substances, elastic solids, etc).

Two particular remarks must be made at this point:

(i) When every element of the system equally inter-

acts with each other (i.e., � = 0), ~N = N , and conse-

quently ~T = T=N . In what concerns the thermostatis-

tical approach of a system, this is equivalent to divid-

ing the microscopic coupling constants by N , a familiar

feature that is arti�cially imposed in allMean Field cal-

culations. We have used the word \arti�cial" because,

whenever � � d, the Hamiltonian which includes the

microsopic interactions indeed is nonextensive (and so

is U ). To divide the two-body coupling constants by N

when � = 0 (or, by ~N , when � > 0) certainly is an ar-

ti�cial manner of forcing to be extensive a Hamiltonian

which physically is not. This practice is traditionally

frequent among magneticiens (who divide J by N ), but

certainly not among astronomers, who normally do not

even think about what would be a very strange way of

renormalizing the gravitational constant G.

(ii) If a singularity (for example, a critical phe-

nomenon) occurs under particular physical conditions,

it must generically occur at �nite values of ~T ; ~p, etc,

and not at �nite values of T; p, etc. Let us illus-

trate this for the simple case of a critical tempera-

ture: ~Tc must be �nite, hence, if �=d > 1, it must be

Tc(�; d) / 1=(�=d�1) This implies that Tc must gener-

ically diverge for all classical systems at the extensive-

nonextensive frontier. More precisely

Tc(�; d) �
A(d)

�=d� 1
(�=d! 1 + 0) (109)

where A(d) is a system-dependent �nite constant.

In fact, let us anticipate that this precise behavior

has been observed in the systems available in the

literature[119] (d = 2 and d = 3 Lennard-Jones-like

uids, d = 1 and d = 2 Ising and Potts ferro- and an-

tiferromagnets, etc), with no exception. To illustrate

the connection between uid models like the extended

Lennard-Jones one above considered, and localized spin

systems, let us briey focus on the Ising ferromagnet.

The simplest long-range N -spin cubic-lattice Hamilto-

nian of this kind is given by[122]

H = �J
X
i6=j

SiSj
r�ij

(J > 0; � � 0; Si = �1 8i)

(110)

where, for d = 1, rij =1, 2, 3, ...; for d = 2, rij =

1; 21=2; 2; :::; for d = 3, rij = 1; 21=2; 21=3; 2; ::: ;

and so on. Clearly, the limit �!1 recovers the �rst-

neighbor d-dimensional spin 1/2 ferromagnet, whereas

� = 0 corresponds to the Mean Field Approxima-

tion. For this model, kTc(�; d)=J diverges for 0 �

�=d < 1, decreases for �=d increasing above unity,

and approaches the �rst-neighbor value (0 for d = 1,

2.269... for d = 2, etc) for �=d ! 1. Also, kTc=J �

A(d)=[(�=d) � 1] in the �=d ! 1 + 0 limit. The in-

troduction of ~T nicely enables the unfolding of the re-

gion where Tc diverges. Indeed, k ~Tc=J � kTc=(J ~N )

is �nite in both extensive (�=d > 1) and nonextensive

(0 � �=d � 1) regions, thus providing an enlightening

uni�cation. Finally, let us mention that, it seems that

all equations of states (e.g., limN!1M (T;N )=N can

be, for all �=d � 1, mapped into that associated with

the Molecular Field Approximation. This simplifying

feature appears to hold only for the static thermody-

namic properties, and not for the dynamical ones, as

will become clear later on (in Subsection V.G).

To close this subsection, let us emphasize that what

we have been focusing on here is what we refer to as

the weak violation of BG statistical mechanics (see Fig.

4). These are analytical or Monte Carlo q = 1 calcula-

tions (i.e., the energy distribution obeys the Boltzmann

factor), but the variables must be scaled with ~N , which

is not at all necessary for the standard, short-ranged

interacting systems.

V.3 Long-range tight-binding systems

In the previous subsection we addressed classical

systems. It is clear, however, that similar nonextensiv-

ity is expected to emerge in quantum systems if long-

range interactions are present. One such Hamiltonian

is the tight-binding-like which follows[123, 124]:

H =
NX
i=1

�ic
+
i ci +

X
i;j 6=i

V

r�ij
c+i cj (111)

where c+i and ci are the creation-annihilation opera-

tors associated with electrons on site i, the f�ig are

the on-site energies, and V is the inter-site energy. The

T = 0 electron di�usive properties corresponding to this

Hamiltonian exhibit a variety of anomalies intimately

related to ~N , as preliminary shown by Nazareno and

Brito[123] and studied with more details in [124].

V.4 Granular systems

In 1995, Taguchi and Takayasu[8] simulated a ver-

tically vibrated bed of powder with inelastic collisions
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and studied the distribution of horizontal velocities. In

the lower layers (so called solid phase) they observed a

standard Maxwellian (Gaussian) distribution of veloci-

ties. The situation was sensibly di�erent in the upper

layers (so called uidized phase). Indeed, there the dis-

tribution was a Student's t-distribution, precisely the

one appearing in Eq. (42) with q = 3, and assum-

ing an energy proportional to the (velocity)2 (together

with d = r = 2, hence a constant density of states).

This anomaly must be related to the fractal-like gran-

ular clusterization which occurs in real space[125] but

a deep analysis would be welcome. Also would further

simulations, for instance of the cooling type. Studies

of such computational models, either externally forced

or just left to their own isolated evolution, can provide

important physical insights, especially if quantities like

the energy distribution, the Lyapunov spectrum (or at

least its maximumvalue) or possible multifractality are

focused on.

V.5 d = 1 dissipative systems

One-dimensional maps constitute the simplest sys-

tems which might present chaos. Basically they consist

of the following recurrent equation:

xt+1 = h(xt; a) (t = 0; 1; 2; :::) (112)

where h(x; a) is a rather simple nonlinear function, and

a is a control parameter. Typically, both x and a are

real numbers (but higher-dimensional situations are of

course possible, and frequently studied). The logistic

map, for instance, exhibits this structure. Typically,

for a < ac, the system exhibits simple orbits, the at-

tractor being a cycle whose number of elements is �nite.

For a > ac, the system can exhibit attractors with an

in�nite number of elements. The value ac is the criti-

cal one, usually referred to as the chaos threshold; the

associated attractor typically constitutes a multifrac-

tal characterized by the so called multifractal function

f(�H ), where �H is the Holder exponent. The f(�H )

function is generically concave, attains its maximum at

a value of �H in the interval [�min
H ; �max

H ] and this max-

imum equals the fractal or Haussdorf dimension df . An

important feature of this type of maps is the sensitivity

to the initial conditions (and, of course, the rounding

at any intermediate calculation). More precisely, if we

note �x(0) a small variation in the initial condition x0,

and follow its time evolution �x(t), we can de�ne the

sensitivity function �(t) as �(t) = lim�x(0)!0
�x(t)
�x(0) . At

most values of a, �(t) satis�es d�=dt = �1�, hence

� = exp�1 t (113)

where �1 is the so called Lyapunov exponent. If �1 > 0

(�1 < 0) the system is said strongly sensitive (insensi-

tive) to the initial conditions. The �1 = 0 possibility

can also occur and is referred to as the marginal case. In

this situation �(t) satis�es[38, 126, 127] d�=dt = �q �
q,

hence

� = [1 + (1� q)�q t]
1

1�q (114)

which recovers Eq. (25) as the q = 1 case. Two

�1 = 0 possibilities exist, namely q < 1 with �q > 0

(weakly sensitive to the initial conditions), and q > 1

with �q < 0 (weakly insensitive to the initial condi-

tions). For instance, the logistic map exhibits q = 1

for almost all values of a but exhibits q < 1 at the

chaos threshold and q > 1 at every doubling-period

as well as tangent bifurcations. Moreover, it has been

shown that a large class of such systems (for which

f(�min
H ) = f(�max

H ) = 0) verify, at the chaos thresh-

old, the following scaling law[127]:

1

1� q
=

1

�min
H

�
1

�max
H

(115)

This is a fascinating relation. Indeed, its left-hand

member concerns the dynamics of the sensitivity to ini-

tial conditions of the map, whereas its right-hand mem-

ber concerns pure, though nontrivial, geometry. Un-

der what precise mathematical conditions does it hold?

How should it be generalized in order to also cover the

standard case of Euclidean geometry (�min
H = �max

H =

df = 1) for which one expects q = 1? (Should we

also consider simultaneously f(�min
H ) = f(�max

H ) = 1

?; Could Eq. (115) be generalized into say 1=(1� q) =

1=[�min
H �f(�min

H )]�1=[�max
H �f(�max

H )], the Euclidean

case thus corresponding to a special limit of the type

�min
H =f(�min

H ) = �max
H =f(�max

H ) = q = 1 ?). What

happens for two- or more-dimensional maps? What

happens if, instead of maps, we have ordinary (or even

partial) di�erential equations? To answer all these

questions, computational e�ort is invaluable.

Before closing this Subsection it is mandatory to

clarify what the index q appearing in the di�erential

equation yielding Eq. (114) has to do with the one ap-

pearing in the present generalized entropy. In fact, they

are one and the same, and the connection is established

through the so called Pesin equality or identity. Let us

illustrate the basic ideas on the logistic map herein con-

sidered. Assume that we make a partition of the x in-

terval into a large numberM of equally small windows,
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chose arbitrarily one of those windows and randomly

put a large number N of points inside. We then calcu-

late (by using the set of M probabilities corresponding

to the ratios of numbers of points belonging to each win-

dow) the t = 0 value of the BG entropy S1(0), which

is going to be very close to zero (strictly zero in the

(M;N )! (1;1) limit). We then allow each of the N

points to evolve according to the logistic map until an

attractor is achieved. The entropy S1(t) will grow with

t until arrival to a saturation value S1(1) which de-

pends on (M;N ) (necessarily limN!1S1(1) < ln M ).

In the M !1 limit, the growth of S1(t) is in fact lin-

ear (see, for instance, [128], which enables the following

characterization of the so called Kolmogorov-Sinai en-

tropy:

K1 = limt!1limM!1limN!1
S1(t)

t
(116)

Quite generically, the Pesin inequality holds, which

states (for one-dimensional nonlinear dynamical sys-

tems) that

K1 � �1 if �1 > 0 (117)

and K1 = 0 otherwise. Since we are only presenting a

sketch of the situation, let us from now on address those

particular systems for which the equality holds[129]. For

those it is

K1 = �1 if �1 > 0 (118)

and K1 = 0 otherwise. This type of analysis is con-

venient either if we have simple orbits (i.e., strong in-

sensitivity to the initial conditions, i.e., for �1 < 0) or

if we have strong chaos (i.e., strong sensitivity to the

initial conditions, i.e., �1 > 0). But this analysis is a

very poor one at say the edge of chaos, where �1 = 0

and we have weak sensitivity to the initial conditions.

It is to unfold this type of situation that Sq becomes ex-

tremely useful. Let us show how. At the chaos thresh-

old we have K1 = �1 = 0. But if we follow the same

procedure we just described for calculating K1, but us-

ing instead Sq(t), an interesting phenomenon can be

revealed, which we describe now. Let us �rst de�ne the

following generalized Kolmogorov-Sinai entropy:

Kq = limt!1limM!1limN!1
Sq(t)

t
(119)

A value q� is generically expected to exist[130] such

that, for q > q� (q < q�), Kq = 0 (Kq diverges), and

Kq� is �nite. Furthermore, it can be argued[38] that

the above Pesin equality can be generalized as follows:

Kq = �1 if �q > 0 (120)

andKq = 0 otherwise. It is through this important type

of (in)equality that the connection emerges between

Sq and the power-law time-dependence of the sensitiv-

ity to the initial conditions. The particular value q�

above described is what was numerically calculated in

[38, 126, 127], and satis�es the scaling (115)

Some of the above statements can be trivially

checked with the logistic map at its chaotic region (i.e.,

for �1 > 0). We know in that case that S1(t) / t, hence

(assuming the simple case of equiprobability) the total

number of possibilities W (t) grows exponentially with

t. For any q > 1, Sq(t) is always bounded, then Kq nec-

essarily vanishes. For any q < 1, Sq(t) grows like the

1=(1� q) power of W (t), which in turn, as said before,

grows exponentially with t, hence necessarily Kq !1.

We conclude that q� = 1. The same picture is expected

to hold for weak chaos.

V.6 Self-organized criticality

In the previous example, �ne tuning (e.g., a = ac)

is necessary to observe the anomalous (q 6= 1) behavior.

Let us address dissipative systems with many degrees

of freedom, very particularly those which do not need

�ne tuning. Would robust systems like those exhibiting

self-organized criticality[131] (SOC) also present q 6= 1

behavior? The answer is yes, as it has been clearly ex-

hibited in at least three computational systems, namely

the Bak-Sneppen model for biological evolution , the

Suzuki-Kaneko model for imitation games and the Bak-

Tang-Wiesenfeld model for sandpiles [132]. In these

systems, the Hamming distance plays the role played by

� in the previous ones. Also, the relevance of the order

of the t ! 1 and N ! 1 limits has been exhibited.

Like in the conjectural Fig. 4, the q 6= 1 behavior is

observed only in the limt!1limN!1 order. On what

model ingredients does q depend? Is a taxonomy in uni-

versality classes analogous to that of standard critical

phenomena possible? Is a multifractal f(�L) function

hidden somewhere? Does a scaling law like that of Eq.

(115) still hold? Again, additional computational e�ort

is very welcome.

V.7 Long-range classical Hamiltonian systems:

Dynamic properties

Let us �nally focus on the \heart" of statistical me-

chanics, the dynamics of the systems on which Boltz-

mann himself was meditating, namely the Hamiltonian
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systems with many degrees of freedom. Although lots of

interesting quantum nonextensive phenomena must ex-

ist, here we shall restrict ourselves to the classical ones.

We expect them to be able to provide nonextensive

anomalies in a kind of pure, or simpler manner. Since a

classical canonical Hamiltonian must satisfy the Liou-

ville theorem, the Lyapunov spectrum must be symmet-

ric with respect to zero, the corresponding eigenvalues

being necessarily coupled in pairs of positive and nega-

tive values with the same absolute value. Consequently,

to study the sensitivity to the initial conditions it suf-

�ces to study the maximumLyapunov exponent. If it is

positive, the system will generically be strongly chaotic,

and will therefore easily satisfy the ergodic/mixing hy-

pothesis (equality of time and ensemble averages). If,

however, the maximum Lyapunov exponent vanishes,

the entire spectrum will necessarily vanish, hence the

system will be, at most, weakly chaotic, and will there-

fore have di�culties in satisfying the ergodic/mixing

hypothesis, at least at not extremely large times (re-

ecting the macroscopic size of the system). The d = 1

coupled planar rotators N -body model with a two-body

coupling constant proportional to 1=r� (r � distance

between two given rotators) has been recently studied

(for � = 0 in [133], and, for � � 0 in [134]) in the

microcanonical ensemble. It has been established that,

above a critical (conveniently normalized) total energy,

the maximum (conveniently normalized) Lyapunov ex-

ponent is, in the N !1 limit, positive (zero) for � > 1

(0 � � � 1). More precisely, this maximum Lyapunov

exponent is proportional to 1=N� where �(�) appears

to be a monotonic function which decreases from �(0) to

zero while � increases from 0 to 1, and remains zero for

all � � 1). It must be recalled that it is only for � > 1

that the standard BG prescriptions provide �nite inte-

grals in the relevant calculations. If we were to discuss

the d-dimensional version of the same model, we would

certainly have �(�; d). It is certainly possible that it

is �(�=d), and it would be interesting to check such a

hypothesis. If we were to consider not planar (like the

XY ferromagnet) but rather three-dimensional (like the

Heisenber g ferromagnet) rotators, would � be insensi-

tive to that, or it would depend on the speci�c model?

What would happen if, instead of localized rotators, we

were to consider a long-ranged Lenard-Jones-like uid,

or d-dimensional gravitation? All these questions are

certainly interesting, and worthy of further computa-

tional e�orts.

In a recent paper, an essentially � = 0 model

was considered[135], and, under certain circumstances,

a crossover was found between anomalous (at times

smaller than � (N )) and normal (at times larger than

� (N )) di�usion, with � (N ) / N . What happens if

� > 0? Does � scale like ~N � N�(1 + �=d) =

(N1��=d � 1)(1 + �=d)=(1� �=d) ? What happens for

other models? The behavior observed for the particu-

lar model that was studied is consistent with Fig. 4.

But is it exactly that conjecture that is going on? Only

the study of the energy distributions (of single particles

or of relatively large subsystems of the N -body sys-

tem) themselves can provide the answer. What about

the distributions of velocities? Are they Maxwellian

(i.e., Gaussian) for �=d > 1 and non-Maxwellian oth-

erwise? Are they Levy's or Student's t-distributions

for �=d � 1? If so, what is the dependence of q(�; d)

? Maybe q(�=d) ? Are the associated uctuations

anomalously time-correlated? Can Nonmarkovian pro-

cesses be present when the system is nonextensive (i.e.,

when 0 � �=d < 1)? Plenty of intriguing ques-

tions that, sooner or later, will have to be answered,

mainly through computational work (at least the �rst

approaches). Better sooner than later!

V.8 Optimization techniques; Simulated anneal-

ing

The so called Optimization problem consists basi-

cally in determining the global minimum (or minima,

if degeneracy is present) of a given cost funtion E(x),

where x is a discrete or continuous d-dimensional vari-

able. This problem can become extremely complex de-

pending on the cost function having a large number

of local minima, and on the dimension d being high.

For the ubiquitous cases (in physics, chemistry, neu-

ral networks, engineering, �nances, etc) for which ana-

lytic discussion is not tractable, a variety of computa-

tional algorithms have been developed. A special place

among these is occupied, because of its e�ciency and

paradigmatic value, by the Simulated Annealing (SA)

introduced in 1983 by Kirkpatrick et al[136]. Its de-

nomination comes from its total analogy with the well

known annealing technique, frequently used in Metal-

lurgy for making a molten metal to reach its crystalline

state (global minimum of the relevant thermodynamic

energy). In SA, one or more arti�cial temperatures are

introduced and gradually cooled, acting as a source of

stochasticity, extremely convenient for eventually de-

trapping from local minima. Near the end of the pro-

cess, the system hopefully is in the attractive basin of
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one of the global minima, the temperature is practi-

cally zero, and the algorithm asymptotically becomes

a steepest descent one. The challenge is to cool the

temperature the quickest we can but still having the

guarantee that no de�nitive trapping in any local mini-

mumwill occur. More precisely speaking, we search for

the quickest annealing (i.e., in some sense approaching

a quenching) which preserves the probability of ending

in a global minimum being equal to one. SA strictly

follows a BG scheme. Let us illustrate for continuous

x. The system \tries" to visit, according to a visiting

distribution assumed to be Gaussian in the neighbor-

hood of its actual state. The jump is always accepted

if it is \downhill", i.e., if the cost function decreases. If

it is \uphill", the jump might be accepted with a prob-

ability given by the Boltzmann factor corresponding to

that cost function. It has been shown that the prob-

ability of ending on the global minimum equals unity

if T (t) decreases logarithmically with time t. This al-

gorithm is sometimes referred to as Classical Simulated

Annealing (CSA) or Boltzmannmachine. We easily rec-

ognize that, if instead of decreasing, the temperature

was maintained �xed, this procedure precisely would

be the well known Metropolis et al one for simulating

BG thermostatistical equilibrium.

This optimization machine has been generalized

within the present statistics as follows[58]. The visit-

ing ditribution is generalized to be a qV -Gaussian, and

the acceptance Boltzmann factor is generalized to be a

qA-generalized factor, where qV and qA respectively are

the visiting and acceptance entropic index. The cooling

schedule is generalized as follows:

T (t) = T (1)
lnq [1=2]

lnq [1=(t+ 1)]
(t = 1; 2; 3; :::) (121)

This is the Generalized Simulated Annealing. This ma-

chine is characterized by (qV ; qA). The choice (1; 1)

corresponds to CSA, and the choice (2; 1) corresponds

to the so called Fast Simulated Annealing (FSA). The

CSA corresponds to a cooling given by

T (t) = T (1)
ln 2

ln(1 + t)
(t = 1; 2; 3; :::) (122)

The FSA corresponds to a faster cooling given by

T (t) = T (1)
1

t
(t = 1; 2; 3; :::) (123)

The limiting case qV = 3 corresponds to

T (t) = T (1)
3

(t + 1)2 � 1
(t = 1; 2; 3; :::) (124)

These particular cases illustrate the great computa-

tional advantage that can be obtained by speeding up

the algorithm by conveniently choosing qA (see also

[68]). In practice, a convenient choice for qA is slightly

below 3. The choice of qV seems to be more model-

dependent. Details can be seen in a by now vast

literature[59, 60, 61, 62, 63, 64, 65, 66], in which appli-

cations have been done and variations have been per-

formed concerning a variety of classical and quantum

physical problems, the Traveling Salesman Problem,

and many others. The �rst application[67] in quan-

tum chemistry concerned simple molecules of the series

CH3 �R and some others, including the H203 one, by

using the MOPAC program package. Nowadays, Straub

(in Boston), Okamoto (in Okazaki), and Ellis-Mundim-

Bisch (respectively in Chicago, Salvador and Rio de

Janeiro) and co-workers are currently improving and

applying these techniques to complex mo lecules such

as polypeptides, in particular with the aim of studying

the important, though hard, protein folding problem.

VI Final remarks

Boltzmann-Gibbs statistical mechanics and standard

thermodynamics do not seem to be universal. They

have domains of applicability quite poorly known nowa-

days. The precise knowledge of the restrictions for their

validity is conceptually and practically very important.

A nonextensive generalization of these formalisms is

now available[1, 14]; see Table I. It has been developed

to cover at least some of these di�culties. Several im-

portant types of systems have been considered in the

present paper. They should substantially clarify the

situation. These e�orts span a wide epistemological va-

riety, which goes from clear-cut theories to phenomeno-

logical ones, to quite well or less well understood �ttings

and connections. As exhibited at length here, the areas

on which this formalism has been satisfactorily applied

include physics, astronomy, chemistry, mathematics, bi-

ology, economics, linguistics, cognitive psychology, etc.

However, in spite of all this progress, some inter-related

crucial points are still to be understood and established

on a neat and transparent basis. These include (i) the

zeroth principle of thermodynamics and its connections

with the thermodynamic limit, properties which would

in principle exhibit the mathematical connection of the

weak violation of the BG statistics (i.e., introduction

of ~N within the q = 1 formalism) with the strong one
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(q 6= 1); (ii) the functional dependence of q on (�; d)

for long-range interacting Hamiltonians (0 � �=d � 1)

and its connection with anomalous di�usion; (iii) the

physical interpretation of the fpig distribution and of

the escort one fPig, as well as clear-cut prescriptions

for using one or the other when �tting experimental

data (in the meanwhile, it appears that fPig is the one

to be used for equilibrium distributions of kinetic, po-

tential or total energies, whereas fpig is the one to be

used for real-space di�usive nonequlibrium phenomena,

either Levy or Student's[137] distributions according to

whether correlations between jumps are suspected to be

absent or present); (iv) what are the generic physical

conditions for using the microcanonical, canonical and

grand-canonical ensembles, under what exact and fully

speci�ed conditions they are expected to be thermody-

namically equivalent, and the possible relevance for the

so called thermogravitational catastrophe; (v) the clear

connection with microscopic dynamic properties such

as (partial) lack of ergodicity and mixing, the gener-

alization (to weak chaos) of the Pesin inequality, the

complete domain of validity of scaling relations connect-

ing q to multifractality, and the possible relevance for

SOC, spin-glasses and similar phenomena; (vi) the clear

physical connection with quantum groups and, in gen-

eral, deformations of relevant Lie algebras, and through

these, the possible relevance for quantum gravity and

the deep (possibly discrete, multifractal-like) structure

of space-time.

Some useful formulae written, through Eqs. (9) and (10), in a Boltzmann-Gibbs-like form

Equiprobability entropy Sq = k lnq W

Generic entropy Sq = �khlnq �iq

Canonical equilibrium distribution �q =
e
��(H�Uq)=Tr�

q
q

q

Tr e
��(H�Uq )=Tr�

q
q

q

=
e��

0
H

q

Tre��
0H

q

(�0 � �
Tr�qq+(1�q)�Uq

)

Partition functions �Zq = Tr e
��(H�Uq)=Tr�

q
q

q (lnq Zq = lnq �Zq � �Uq )

Internal energy Uq = � @
@� lnq Zq

Free energy Fq = Uq � TSq = � 1
�
lnq Zq

Anomalous di�usion probability distribution pq(x) =
e��x

2

qR
dy e��y

2
q

Sensitivity to the initial conditions (d = 1) lim�x(0)!0
�x(t)
�x(0) = e

�q t
q

Likelihood function Wq(fpig) / e
Sq(fpig)
q

Power-law interactions (/ R��) U(N;T )

N ~N
� u( T~N ) ( ~N � N�[1 + (�=d)]; N� � ln[�=d]N )

Simulated annealing (cooling rythm) T (t)
T (1) =

lnq [1=2]
lnq [1=(t+1)]

On speculative grounds, one might think of two con-

jectures, to be clari�ed (i.e., rigorously formulated),

con�rmed or refuted. The �rst of these conjectures

can somehow (on intuitive grounds) be formulated as

follows. Strongly ergodic/mixing phenomena are ubiq-

uitous in Nature; essentially, they are driven by mi-

croscopic interactions which are short-ranged in space-

time (short-range forces, short-range memory, nonfrac-

tal boundary conditions); their basic geometry tends

to be continuous, Euclidean-like; their thermodynam-

ics is extensive; their central laws (energy distribution

at equilibrium, time-relaxation towards equilibrium)

are exponentials; and their thermostatistical founda-

tion is Boltzmann-Gibbs statistics (i.e., q = 1). But

weakly ergodic/mixing phenomena also are ubiquitous

in Nature (e.g., biological, socio-economical, human

cognitive phenomena, etc); essentially, they are driven

by microscopic interactions which are long-ranged in

space and time (long-range forces, nonmarkovianmem-

ory, fractal boundary conditions); their basic geome-

try tends to be discrete, multifractal-like; their ther-

modynamics is nonextensive; their central laws (en-

ergy distribution at equilibrium, time-relaxation to-

wards equilibrium) are power-laws; and the thermosta-

tistical foundation of (at least some of) them (hope-

fully) is the q 6= 1 statistics. The allowance for nonex-

tensivity, in general, and for a nonextensive entropy,

in particular, appears to be the \price" to be payed in

order that Boltzmann's \mechanical" (i.e., one system

evolving along time) manne of thinking about macro-
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scopic systems coincides, at the level of the concrete

mathematical results to be compared with the exper-

imental data, with Gibbs' \ensemble" (i.e., many sys-

tems at a �xed time) way of thinking. There is one

century that this coincidence of results is well known

and understood for standard sytems. Our aim is to

extend it to a large variety of anomalous systems.

The second of these conjectures is, at the present

moment, so hard to rationalize that I dare to mention

it here only because, after having been exposed to so

many mathematical and physical arguments (that have

been included in the present review), the reader might

accept to honor me with his (her) indulgence, and have

a look at the following few, intuitive lines. I believe that

a deep analogy (maybe a kind of isomorphism, through

the use of mathematical structures like the co-homology

groups) exists between crystallographic structures such

as crystal - quasicrystal - uid, and nonlinear dynamics

such as integrable - (weak) chaotic - (strong) chaotic.

In some sense, they appear as space and time versions

of the same mathematical structures. The �rst case

concerns crystals (i.e., d-dimensional Bravais lattices)

and integrable dynamics (i.e., motion on simple orbits),

and its essential invariance is the discrete translational

one. The third case concerns strongly disordered sys-

tems like uids (liquid, gases) and strongly chaotic dy-

namics, and its essential invariance is the continuous

translational one. Finally, the second, and intermedi-

ate, case is by far the most subtle one (and probably this

is why it is the one that humanity took the longest time

to discover), and concerns quasicrystals (e.g., Penrose

tilings, amorphous substances like glasses, spin-glasses,

and other structures known to have (multi)fractal scal-

ings; probably most of the so called complex spatial

phenomena belong to this group) and weakly ergodic

dynamics (e.g., edge of chaos, strange attractors, self-

organized criticality, probably most of the so called

complex time phenomena); its essential invariance is

dilatation. In the �rst case we have the (space or time)

highest predictability, and statistical methods are out of

place. In the third case we have the (space or time) low-

est predictability, and statistical methods exhibit their

full power. Finally, in the second case, we have an inter-

mediate predictability, and the statistical methods have

to be \intrinsically nonlinear" in some sense, in order

to be applicable and useful. There will be no surprise

for the reader if, at this point, I admit that I believe

that the statistical mechanics to be associated with the

third present case of course is the BG one, whereas it

might be the q 6= 1 statistical mechanics the one to be

associated with the present second case (see also [138],

where some preliminary, but nevertheless concrete, cal-

culations that exhibit this kind of connection). Let us

now remind that Wiles' 1995 celebrated proof[139] of

Fermat's last theorem was deeply related to quasicrys-

tals since it was based on the proof of the Taniyama-

Shimura conjecture about modular elliptic curves and

used certain Hecke algebras. Consequently, I hardly

dare to explicitly state a simple and unavoidable corol-

lary, namely that, if my present second conjecture turns

out to be, in some nontrivial and precise sense, correct,

then the q 6= 1 statistical mechanics must be related to

Fermat's last theorem.

Through the complete analysis, in more detailed

terms, of the various aspects tackled in the present re-

view, we could learn a lot and, very especially, (pre-

cisely) when the celebrated Boltzmann factor is the

correct theoretical description of natural systems at

thermal equilibrium. This famous and so useful fac-

tor would then become, not a \dogma", as referred to

by Takens[140], but a theorem.
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