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We investigate the possibility of inducing transitions between periodic orbits in two-
dimensional Hamiltonian systems by means of a time-localized external perturbation. We
show that the amplitude of the perturbation can be approximately calculated in the limit of
a delta-type force in terms of the initial and �nal periodic orbits. For a speci�c Hamiltonian,
we show several numerical examples where the external perturbation, varied from delta-type
to gaussian, allows transitions between speci�cally chosen members of families of periodic
orbits. The same mechanism is then applied to move aperiodic chaotic orbits into periodic
ones, presenting a new way to control chaotic behavior in Hamiltonian systems.

I Introduction

Hamiltonian systems with two or more degrees of free-

dom are known to be generically non-integrable. In

most cases the phase space shows a complex mixture of

regular and chaotic regions, both permeated densely

by periodic orbits. These orbits, as pointed out by

Poincar�e [1], play a crucial role in the theory of dy-

namical systems. Since each orbit is completely spec-

i�ed by its initial conditions, it is possible to map the

phase space into regular and chaotic zones and launch

the system in any desired phase space region. In prac-

tical situations however, like that of an electric circuit

[2] or cardiac systems [3], the precise initial conditions

are not available and, as the system is turned on, it

jumps to one of a large variety of possible states, many

of them corresponding to chaotic orbits. It is sometimes

very important to force the system to a particular non-

chaotic state, usually a periodic orbit. In this sense,

controlling chaotic systems has become an important

issue in a variety of scienti�c disciplines [4]. Several ad-

vancements and new methods have been proposed [5]

since the seminal paper by Ott, Grebogy and Yorke [6]

(the OGY method). Most of these methods were envis-

aged to move an orbit embedded in a chaotic attractor

to an unstable periodic orbit and are applicable only

to dissipative systems. The basic idea to achieve this

goal is to apply small and periodic perturbations to the

dynamical system, chosen according to which periodic

orbit one wants the system to move to.

Despite the enormous amount of work devoted to

applications and developments on control of chaos in

dissipative systems, very little has been done in this

direction for conservative systems. One possible exten-

sion of the OGY method for conservative maps was pro-

posed by Lai et al [7], which has been used to construct

rough orbits that achieve a desired transport rapidly [8],

also called time optimal control, or targeting. The aim

of this paper is to investigate an alternative mechanism

to induce transitions between trajectories in Hamilto-

nian systems. Our interest here is not exclusively on

the control of chaos, but rather on the possibility of
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induce transitions between two pre-speci�ed trajecto-

ries, especially periodic orbits. We shall restrict our at-

tention to non-integrable systems with two degrees of

freedom. Although we focus here mainly on transitions

between two periodic orbits, we show that transitions

from non-periodic chaotic orbits to periodic orbits can

be performed exactly in the same way, indicating a new

direction for controlling chaos in Hamiltonian systems.

Contrary to the OGY-type procedures, our method is

not based on the application of small periodic perturba-

tions to the original system, but on a single appropriate

perturbation induced by a time localized external �eld,

constituting what we call a single kick targeting.

This paper is organized as follows: in sec.II we in-

troduce our main ideas considering initially the e�ect

of a simple delta-like kick, given at an appropriate time

and with calculated intensity, on inducing the desired

transition between two periodic orbits. We then allow

for a more realist external perturbation in the form of a

gaussian pulse with controllable width. In section (III)

we exemplify the method with a particular Hamiltonian

system, the two degrees of freedom non-integrable Nel-

son Hamiltonian. We show several examples of transi-

tions between periodic orbits, and in particular a tran-

sition from a non-periodic chaotic orbit to a periodic

one. In section IV we make some concluding remarks.

II The Method

Let H(x; y; px; py) be the Hamiltonian of a system with

two freedoms and Oi and Ot two periodic solutions.

The indices i and t stand for initial and target respec-

tively. One possible way to promote a particle from Oi

to Ot is by kicking the orbit with appropriate forces.

Suppose the particle is at the point (xi; yi; pix; p
i
y), be-

longing to Oi, at time t0 and we want it to go to

(xt; yt; ptx; p
t
y), belonging to Ot. The addition of a per-

turbation of the form �xpx�(t� t0) to the Hamiltonian

would change Hamilton's equation for _x into

_x =
@H

@px
+ �x�(t � t0) :

Choosing �x = (xt� xi) has the e�ect of adjusting the

x coordinate by just the amount required to put it on

the desired point of Ot. Similar terms would give ap-

propriate kicks in y; px and py. Of course that would be

a rather complicated, if not practically impossible, way

to implement the transition, since it would require four

independent kicks at the same time. In what follows we

describe a method that reduces this complication to a

single kick and we give numerical examples of its real-

ization. This single delta-like impulse will be replaced

later by a gaussian, so that the external force acting on

the particle can be interpreted as, say, an electric �eld

that is turned on and o� smoothly.

The whole idea is very simple, and in order to

achieve our goal, we make the initial assumption that

the initial orbit Oi crosses (in coordinate space) the tar-

get orbit Ot. We shall denote the coordinates and the

momenta by two-vectors X = (x; y) and P = (px; py)

respectively. Let this crossing point be at X = �.

Therefore, kicking the orbit at X = � eliminates the

need for two of the four parameters initially necessary.

We are left with the two momenta to work with. Let

P = �i = (�ix; �
i
y) be the momenta of Oi at X = �.

The energy of the orbit is given by Ei = �i
2

=2 + V (�)

and the velocity _X makes an angle �i with the x-axis

given by tan �i = _y= _x = �iy=�
i
x. For the target orbit,

on the other hand, the velocity points in a di�erent di-

rection �t. If �� = j�t � �ij < �=2, we can align the

two velocities with a single kick in, say, the momentum

py. Indeed, the addition of the term Ay�(t � t0) to the

Hamiltonian produces a change �iy ! �iy �A that puts

the velocity in the desired direction if A is chosen to be

(�tx�
i
y � �ix�

t
y)=�

t
x.

The total energy after the kick is Ef = �t
2
=2 +

V (�) where  = (�ix=�
t
x)

2. Therefore, the change in the

particle's total energy is �fi = Ef�Ei = �t
2��i2 and

we also compute �ft = Ef �Et = (�1)�2
2
, the di�er-

ence between the actual energy after the kick and the

energy of the target orbit. Clearly we could not launch

the particle exactly onto a chosen new trajectory by ad-

justing a single parameter. Even requiring the two tra-

jectories to cross each other in coordinate space, tuning

the direction of the momentumwill change its modulus

and vice-versa. However, in most situations this change

in energy is not crucial: one is not interested in jumping

exactly to a particular orbit Ot, but rather in jumping

to some member of the Ot periodic orbit family, at an

appropriate energy. (It is well known that the peri-

odic orbits of a Hamiltonian system, without explicit

time-dependence occur in one-dimensional families of

varying energy [1], [9].)
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In the next section we shall see numerical exam-

ples where this simple procedure works well in induc-

ing transitions. The basic reason for this success is

that, in those cases, the member of the target family

to which the original orbit is being moved to, crosses

it at an angle that depends only weakly on the energy

of the member. Therefore, even if the change �ft is

not small, the orbit is launched on a direction that

still corresponds approximately to that of a periodic

orbit. In some cases, however, the angle between the

orbit velocities changes appreciably with the energy and

the kick fails to move the orbit to the desired target.

To contemplate these cases without changing the basic

idea discussed above, we replace the delta-like kick by a

smooth gaussian perturbation centered not necessarily

at the crossing point, but slightly before or after that,

as illustrated, for example, in Fig. (1.d). This modi-

�cation improves considerably the performance of the

method, as we shall show in section III . Therefore, we

de�ne the perturbative potential to be ��(t � t0)y or

��(t� t0)x, depending on whether we want the force to

act in the y or x direction, with

�� = A

"
1

�
p
�
exp

"
�
�
t� to
�

�2
##

(1)

where A measures the amplitude of the perturbation

and t0 and � are the center and the width of the gaus-

sian respectively.

III EXAMPLES

The examples to be discussed in this section are all from

the Nelson Hamiltonian [9]

HN =
1

2

�
p2x + p2y

�
+

�
y � 1

2
x2
�2

+ �
x2

2
: (2)

where � is a parameter that we shall �x at � = 0:1.

At low energies one can disregard the cubic and

quartic terms of HN and get a 2-D harmonic oscilla-

tor with frequencies
p
2 in the y-direction and

p
� in

the x-direction. As the energy is increased the periodic

solutions corresponding to the x-modes (or horizontal

modes) couple with the y coordinate (the vertical di-

rection) and bend upwards in the form of a wide 'u'.

The harmonic oscillation in the vertical direction con-

tinues to be an exact solution due to the symmetry of

the Hamiltonian. As the energy is further increased,

both periodic orbit families, that we call H, for Hori-

zontal, and V , for Vertical, undergo multiple bifurca-

tions generating several other families. The families of

periodic orbits of this system and their bifurcations are

well studied and a detailed account can be found in refs.

[9, 10].

At high energies the periodic orbits of the Nelson

Hamiltonian have complicated shapes when plotted in

the x-y coordinate space. Nevertheless, several fami-

lies can still be classi�ed as vertical, in the sense that

their oscillations are wider in the y-direction than in

the x-direction. It is clear that an external force in the

y-direction should be useful to jump from nearly hori-

zontal periodic orbits to these essentially vertical ones.

We shall see now that this is indeed the case. In order

to indicate the stability character of the periodic orbits

we add the letter S (for stable) or U (for unstable) at

the end of the family name.

External force in the y-direction

With the gaussian perturbation, the potential be-

comes :

V (x; y) =

�
y � x2

2

�
+ �

x2

2
+ yA��(t� to) (3)

The equations of motion are :

_x = @H
@px

= px
_y = @H

@py
= py

_px = �@H
@x

= 2x
�
y � x2

2

�
� �x

_py = �@H
@y

= 2
�
y � x2

2

�
� A��(t � to) :

(4)

As discussed in section II, we are going to switch on

the perturbation when the initial orbit approaches the

target orbit in coordinate space. For periodic librations

(self-retracing orbits) the crossing points are traversed

twice and we choose one of the two in order to have the

best agreement between the values of px on the original

and target orbits. The variable py will be impacted via

the adjustment of the perturbation potential parame-

ters and it is the most a�ected of the variables if � is

small.

To estimate A we �rst suppose that � = 0. Integrat-

ing the equations above about t = t0 produces a shift

in the momentum py of magnitude �py = �A. As dis-
cussed in section II we need to set A to (�tx�

i
y��ix�ty)=�tx.
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In the case of a Horizontal initial orbit we can approx-

imate �iy = 0 and get

A = ��ix�ty=�tx = ��ix tan �t (5)

Fig. 1(a) shows an example where the delta kick works

well. In this case a member of the Horizontal family

HS at energy Ei = 0:0048 is moved into a member of

the family V3U (see Table I) with Et = 0:0943. We

plotted separately in �g 1(a1) the original periodic or-

bit HS and the target orbit V3U, while in Fig. 1(a2)

we show the transition itself HS!V3U. The circle in

part (a1) shows the position where the perturbation is

turned on.

TABLE I : H!V and H!H transitions

In. Family A � Fi. Family jAcalcj �ft Figure
HS -0.43 0.01 V3U -0.4 0.0089 1.(a)
HS -0.25 0.01 V4U -0.2 0.0047 1.(b)
HS 0.7 1.0 V4S - 0.0028 1.(c)
HS -1.283 1.0 V4U - 0.2335 1.(d)

IS 0.6 0.57 V4S 0.36 0.0065 2.(a)
IS 0.5283 0.18 HS 0.44 0.0095 2.(b)
IS 0.428 0.80 IS 0.55 0.0063 2.(c)

TABLE II : V!H and V!V transitions
In. Family A � Fi. Family jAcalcj �ft Figure

V4S -0.57 0.1 HU 0.25 0.0077 3.(a)
V4S -0.706 0.4 IU 0.41 0.0101 3.(b)
V3S 0.4880 0.02 IU - 0.0193 3.(c)
V4S -0.533 0.1 V4S - 0.0178 3.(d)

Using the values of �ix '
p
2Ei ' 0:1 and tan �t '

�4 gives A = �0:4. The actual parameters used in this

transition were A = �0:43 and � = 0:01. The time step

used in the numerical integration is typically �t = 0:01

and the perturbation has been applied in such a way

that the center of the gaussian sits on one of the steps

of integration, no longer being e�ective at the next step,

therefore simulating a delta function. In this case, the

target orbit has period � = 13:05 and is slightly un-

stable: the Lyapunov exponent is approximately 0.024.

Therefore, we cannot expect the �nal trajectory to stay

in its neighborhood for times longer than about 3� .

Fig. 1(b) shows another example of transition in-

duced by a delta-like perturbation, namely HS!V4U.

In this case A is estimated to be �0:2 and the actual

value used was A = �0:25. As in part (a), this Fig.

(and the others to come) have two parts, displayed side

by side: part 1 contains the original periodic orbits (the

one to be perturbed and the one to be reached) with

a circle indicating the kick position. The transition it-

self is shown in part 2, so that the degree of success in

each case can be seen clearly. In Table I we display the

numerical values of the parameters used in each case.

Figs. (1c) and (1d) show examples of transitions

where the gaussian perturbation is used. The original

orbit is the same as in (1a) and (1b) and the target or-

bits are V4S an V4U respectively. The time-width used

in both cases is � = 1:0. It is important to notice that

these cases include a `S' (stable) and a `U'(unstable)

�nal periodic orbits.
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Figure 1. (a1)Initial p.o. of the HS family with Ei = 0:0048 and target p.o. of the V3a family with E = 0:0975. (a2) The
transition from the initial p.o. of the HS family to an orbit of the V3U family with energy Et = 0:0943, with A = �0:43
and delta kick (total time elapsed: t=100); (b1) Initial p.o. of the family HS and the target p.o. of the family V4U with
E = 0:2349 , (b2) H ! V4U with lower �nal energy (total time elapsed: t=100); (c1)Initial p.o. of the family HS and the
target p.o. of the V4S family with E = 0:1058 , (c2) HS ! V4S (total time elapsed: t=100); (d1) Initial p.o. of the HS
family and the target p.o. of the V4U family with E = 0:2349 , (d2) HS ! V4U (total time elapsed: t=47).

Figure 2. Transitions with the gaussian modulated force in the y-direction. The initial p.o. in all cases belongs to the I
family with Ei = 0:0394. (a1) Initial p.o. of the IS family and target p.o. of the V4S family with E = 0:1058 , (a2) IS !
V4S (total time elapsed: t=100); (b1) Initial p.o. of the IS family and target p.o. of the HU family with E = 0:1370 , (b2) IS
! HU (total time elapsed: t=100); (c1) Initial p.o. of the IS family and target p.o. of the same IU family with E = 0:1026
, (c2) IS ! IU (total time elapsed: t=100). See cases 6 to 8 of table I for the parameter values.
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Figs. 2(a) and 2(b) show transitions at higher ener-

gies from the IS family to V4S and HS respectively, and

Fig. 2(c) shows a transition IS!IS between two mem-

bers of the I family at E = 0:03943 and Et = 0:1026.

So, using the above-described procedure and mak-

ing a judicious choice of parameters for the perturbation

term, we have been able to make the transition from

horizontal to vertical periodic orbits on the Nelson

Hamiltonian given in Eq.(1) above.

External force in the x-direction

For completeness we have also studied the reverse

case, from a Vertical family to a Horizontal family,

which is also possible if we apply the force accordingly.

Since the same type of reasoning is involved, we just

show in Table II a few transitions in order to illustrate

this case.

Parts (a) and (b) of Fig. 3 show transitions from

V4S to HU and IU respectively. Part (c) shows a transi-

tion V3S to IU and part (d) shows a transition between

di�erent members of the same family, namely V4S.

Finally, having guaranteed the successful applica-

tion of this method for transitions between periodic

orbits (stable and unstable), we have also considered

the possibility of jumping from non-periodic chaotic

trajectories to the vicinity of a speci�c stable periodic

orbit. It turns out that it is indeed possible to produce

such transitions and the level of di�culty is the same

as in the case of periodic orbits. We illustrate this case

taking the chaotic trajectory shown in Fig. 4a, and

ending up in each one of the p.o. of the I family shown

in the inset of Figs. 4b (IS) and 4c (IU). These cases

C ! p:o: are shown in Figs. 4b and 4c. In Fig. 4b

the �nal torus is near the p.o. of the IS family with

energy Et = 0:0447, which is lower than the initial en-

ergy. In order to satisfy the condition given by Eq.(5)

for Et < Ei, we have to choose the crossing point (or

kicking region) such that:

jpyoj �
p
2(Ei � Et)

In Fig. 4c we show another case where the �nal p.o. is

in the IU family with energy Et = 0:1858.

Figure 3. Transitions with the gaussian force in the x-direction. The initial periodic orbit V4S family has Ei = 0:1058 and
V3S has Ei = 0:0962 . (a1)target p.o. from HU family with E = 0:1370, (a2) V4S ! HU (total time elapsed: t=40);
(b1)target p.o. of the IU family with E = 0:1895, (b2) V4S ! IU (total time elapsed: t=40); (c1) Initial p.o. from the V3S
family with Ei = 0:0962 and target p.o. from the IU family with E = 0:1370 , (c2) V3S ! IU (total time elapsed: t=70);
(d1) Initial p.o. from the V4S family with Ei = 0:1058 and target p.o. from the same family with higher energy (d2) V4S
! V4S (total time elapsed: t=100). See table II for the parameter values.
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Figure 4. The transition from a non-periodic chaotic tra-
jectory (C) with energy Ei = 0:5039 to periodic orbits. (a)
the chaotic trajectory evolved up to t=100; (b) transition
from the chaotic trajectory to a torus close to the p.o. of
the IS family with energy Et = 0:0447, A = 1:0000 and
� = 0:01. (c) transition from the chaotic trajectory to the
p.o. of the IU family with energy Et = 0:1858, A = 1:4918
and � = 0:01; In all cases the total evolution time t=100.

IV Concluding Remarks

The gaussian-modulated perturbations as in Eq.(1)

have proved to be very e�ective to perform p.o-p.o.

transitions, including aperiodic chaotic (C) to periodic

orbits. Several transitions have been obtained by means

of such a smooth time-localized perturbation, namely:

H ! V, H ! H, V ! H, V ! V and C! H orbits

of the Nelson Hamiltonian (Eq.(2)) taken as a testing

ground. All the transitions happened with some change

in energy, as expected, due to the time-dependent kick.

The time intervals where the transitions e�ectively oc-

cur have turned out to be very short compared to the

periods of the periodic orbits of the Nelson system.

In some cases, the time width � of the perturbation

was of the order of the step of numerical integration

(�t = 0:01), and the perturbation acted essentially like

a delta-function kick. To illustrate how the jump in

energy occurs, we plot one case in Fig. 5 which refers

to the transition of Fig. 2(a), with � = 0:57.

Figure 5. The time evolution of the energy during a short-
time kick with � = 0:57, much larger than the integration
step �t = 0:01, corresponding to the case of Fig.2(a).

Although the method proposed here is general and

may be applied to any two-degree-of-freedom non-

integrable Hamiltonian system, it is crucial that the

initial trajectory and the �nal p.o. actually cross each

other in the xy-plane. We point out the importance of

having a detailed study of the main families of periodic

orbits of the system in question: without such knowl-

edge, it becomes impossible to induce the transitions.

Finally, we note that this is still a preliminary study as

far as control of chaos is concerned. Although we have

demonstrated the feasibility of the single kick target-

ting, we have not derived the conditions under which

a chaotic trajectory would be moved to the neighbor-

hood of a desired periodic orbit given that only a lim-

ited knowledge of the system is available. This would
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be a very important result if the present method is to

be applied in practical situations.
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