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A one dimensional model of a peculiar con�guration of charged layers in equilibrium com-
posed by one electron rich layer surrounded by two ion rich layers adjacent to plasmas at
distinct potentials and which is formed in a low pressure arc discharge (usually known as
a triple layer) has been constructed using the BGK method [1]viz., with the help of the
Poisson-Vlasov's system of equations applied to the free and reected populations of elec-
trons and ions in a supposedly existing electrostatic potential with the free populations
assumed to be monoenergetic beams and the reected ones obeying the Maxwell-Boltzmann
distribution. Sagdeev potentials derived for the charged region and matched by appropriate
plasma boundary conditions are numerically integrated to obtain the electrostatic potential
for some set of free input parameters, compatible with those of a speci�c group of experi-
ments. Limitations of the model are addressed to.

I.Introduction

Space con�gurations of multiple charged layers,

from single sheaths to quadruple ones, have long been

reported in gas discharge experiments, either as the in-

termediate media separating a plasma from electrodes

and probes [2�5] or as a region well inside the plasma

where charge neutrality is violated and potential jumps

are created [6;7;8] . They have also been held respon-

sible for the anomalous resistivity in current carrying

plasmas when the current density exceeds a certain crit-

ical value [9] and for particle acceleration in the ion-

ization and excitation processes of neutrals in auroras
[10] . Distinct physical reasons have been given for its

onset but in many cases this is still an open question.

Our concern in this work however is with the conditions

which sustain the layer in its steady state. Hence, a one-

dimensional model of a triple layer in steady state was

constructed to numerically simulate the experimental

potential pro�les observed in some experiments on low

pressure arc discharges.

The numerical solutions yield by this model are

checked against a speci�c group of experimental results
[6] , with most of the free input parameters of the model

compatible with the corresponding ones in the exper-

iment. However,some of these are left undetermined

(there are more free parameters than boundary condi-

tions to �x them all) so that the solutions are found in

limited regions of the input parameter space (windows)

rather than a unique solution for a speci�c set of input

parameters. Also, direct comparisons with experiment

were not possible in view of the fact that two of these

free parameters were reported in the experiments as es-

timates (not measured values) of some crude model of
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their own.

II. Basic assumptions

The triple layer commonly observed in practice is

described in this work as the result of �ve distinct pop-

ulations of charged particles coexisting in equilibrium

in some region along the discharge column, viz., an ion

beam (free ions) coming from the anode region (the

right side of the potential trough), thermal ions which

are reected by the potential barrier at the anode re-

gion, an electron beam (free electrons) directed from

left to right and thermal electrons on the left and on

the right of the potential trough (see Fig.1.a). The re-

sulting eletrostatic potential pro�le is determined by

the Poisson-Vlasov's system of equations with the free

populations assumed to be monoenergetic and the ther-

mal ones obeying the Maxwell-Boltzmann distribution.

Phase space for both electron populations is illustrated

in Fig.1.b. The model presents an ion "hole" in phase

space,i.e., there is no thermal ions in the potential

trough (see Fig.1.c). The equations are written down in

two separate regions along the distance x of the column

with the origin (separation plane) at the bottom of the

potential trough �m , the cathode side on the left with

the eletrostatic potential � ! 0 and the anode side

on the right with � ! �0 , the last quantity standing

for the at top of the potential barrier; these values are

supposed to be known from the experiments. The other

relevant quantities in this model are the electron density

of the beam directed left to right and near the cathode

(at x ! �1 ) ne0 , the ion density of the beam from

right to left and near the anode (at x! +1 ) ni0 , the

electron density and temperature of the thermal elec-

trons near the cathode, nec and Tec , and near the

anode, nea and Tea , the ion density and temperature

of the thermal ions ni and Ti , and �nally, the electron

and ion beams initial kinetic energies e�e0 � mev
2
e0=2

and e�i0 � miv
2
i0=2 , respectively.

Finally, with typical values for temperature and

density around 2.eV and 1015m�3, mean free path is

about 104cm ,i.e., much larger than the typical layer

width observed in the experiments (� cm); also, spe-

cial laboratory conditions can provide ionization rate

below 1% [8] .For these reasons, the layer is assumed to

be free of collisions and ionization processes.

Figure 1. (a) A sketch of a triple layer potential pro�le
with its �ve populations indicated by the arrows; (b) phase
space for the electron populations; (c) phase space for the
ion populations.

III. The model equations

Having established the basic assumptions,we now

write down the various elements leading to Poisson's

equation and the Sagdeev potential in analytical forms

in two adjacent regions inside the charged region sepa-

rately viz., to the left and to the right of the potential

minimum.

Firstly, steady-state assumption and continuity

equation lead to nebveb = ne0ve0 and nibvib = ni0vi0

for the electron and ion beam respectively and energy

conservation applied on each of them leads to

neb = ne0=(1 + 2e�=me v
2
e0)

1=2; (1)

and

nib = ni0=[1 + 2e(�0 � �)=mi v
2
i0]

1=2; (2)
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where the index (0) for the electrons indicates values on

the far cathode side (left on the Fig.1a. diagram) and

for the ions on the far anode side (right on the same

diagram).

According to assumptions, the electron and ion

number densities of reected populations are obtained

from their velocity distribution functions,

c

fe = ce(me=2� kTe)
1=2exp[�(mev

2
e=2� e�)=kTe]; (3)

fi = ci(mi=2� kTi)
1=2exp[�(miv

2
i =2 + e�)=kTi]; (4)

d

where ce and ci are normalization factors to be de-

termined according to the number densities of reected

electrons and ions, nec and ni , both de�ned on the

far cathode side. The distribution function for the elec-

trons reected to the right have the same form as in

eq.3 but the normalization factor is determined by its

number density on the far anode side,nea .

The integrations in velocity space in order to get the

number densities are restricted to well de�ned intervals

which depend on the potential pro�le: for both elec-

tron populations ( the one reected to the left and the

other to the right of the potential trough), the limits

are � (2e=me)1=2(� � �m)1=2 but for the ion popula-

tion, the limits are � [2e(�0 � �)=mi]1=2 for � > 0

and �[2e(�0 � �)=mi]1=2 , �(�2e�=mi)1=2 together

with (�2e�=mi)1=2 , [2e(�0 � �)=mi]1=2 for � < 0 ,

the gap between the two subintervals accounting for

the void in phase space of the reected ions (there is

no trapped ions in the potential trough). Now, having

in mind the even parity of the distribution functions

in velocity space and the respective adjustment of the

normalization factors, the integrations yields

c

nec(�) = necexp(e�=kTec)erf [e(� � �m)=kTec]
1=2=erf(�e�m=kTec)1=2; (5)

where �m � � � 0 (cathode side, left on Fig.1b diagram),

nea(�) = neaexp[e(�� �0)=kTea]erf [e(� � �m)=kTea]
1=2=erf [e(�0 � �m)=kTea]

1=2; (6)

where �m � � � �0 (anode side, right on Fig.1b diagram),

Nic(�) = ni
exp(�e�=kTi)
erf(e�0=kTi)1=2

ferf [e(�0 � �)=kTi]
1=2 � erf(�e�=kTi)1=2g; (7)

valid for the cathode side (left on Fig.1c diagram) and

Nia(�) = ni
exp(�e�=kTi)
erf(e�0=kTi)1=2

ferf [e(�0 � �)=kTi]
1=2 �H(��)erf(�e�=kTi)1=2g; (8)

d

valid for the anode side (right on the same diagram).In

the formulae above,the square roots must be read as

applied on the argument of the error function and H

is the usual Heaviside function, used here to describe

two distinct expressions for Nia , viz., the one for

� > 0 (H = 0) and the other for � < 0 (H = 1) ; this
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is a consequence of the "ion hole" in phase space (see

Fig.1c).

Poisson's equation can then be written as

(�0=e)d
2�=dx2 = neb � nib + nec �Nic (9)

and

(�0=e)d
2�=dx2 = neb � nib + nea � Nia ; (10)

valid for x < 0 and x > 0 , respectively.

At this point, the following non-dimensional

quantities are de�ned in order to simplify the

notation used hereinafter:the normalized potentials

 = e�=kTec ,  0 = e�0=kTec and  m =

e�m=kTec , the electron and ion Mach numbers

Me = (2e�e0=kTec)1=2 , Mi = (2e�i0=kTec)1=2; the

temperature ratios ri = Tec=Ti and ra = Tec=Tea , the

number density ratios �e0 = ne0=nec , �i0 = ni0=nec ,

�ea = nea=nec and �i = ni=nec and the normalized

distance � = x=�D , where �D = (�0 kTec=nec e2)1=2

is the Debye lenght and x is the distance measured

from the point where � = �m . Pre-sheat boundary

conditions[11] have been circumvented by solving the

problem in a Debye's length scale where the in�nities

are located at both ends of the layer.

With notation above[12] , Poisson's equations are

integrated from  m to  making use of the identity

2d2 =d�2 = (d=d )(d =d�)2 and the boundary condi-

tion [d =d�] m = 0 . The double integrations implicit

in the integration of an error function (erf) are reduced

to a single one (another erf) by inversion in the order

of integration and the de�nition of error function (see

any recommended textbook of di�erential and integral

calculus on the topic reduction of multiple integrals).

The results for both intervals read,

c

d2 =d�2 = �e0=(1 + 2 =M2
e )

1=2 � �i0=[1 + 2( 0 �  )=M2
i ]

1=2

+e erf( �  m)
1=2=erf(� m)1=2

��ie�ri ferf [ri( 0 �  )]1=2 � erf(�ri )1=2g=erf(ri 0)
1=2; (11)

(
d 

d�
)2 = 2�e0M

2
e [(1 + 2 =M2

e )
1=2 � (1 + 2 m=M

2
e )

1=2]

+2�i0M
2
i f[1 + 2( 0 �  )=M2

i ]
1=2 � [1 + 2( 0 �  m)=M

2
i ]

1=2g
+

2

erf(� m)1=2 [e
 erf( �  m)

1=2 � 2p
�
( �  m)

1=2e m ]

+
2�i

rierf(ri 0)1=2
fe�ri erf [ri( 0 �  )]1=2 � 2p

�
[ri( 0 �  )]1=2e�ri 0

�e�ri merf [ri( 0 �  m)]
1=2 +

2p
�
[ri( 0 �  m)]

1=2e�ri 0

�e�ri erf(�ri )1=2 + 2p
�
(�ri )1=2 + e�ri merf(�ri m)1=2 � 2p

�
(�ri m)1=2g ; (12)

valid for  m �  � 0 ,� � 0 and

d2 =d�2 = �e0=(1 + 2 =M2
e )

1=2 � �i0=[1 + 2( 0 �  )=M2
i ]

1=2 +

�eae
�ra( 0� )erf [ra( �  m)]

1=2=erf [ra( 0 �  m)]
1=2

��ie�ri ferf [ri( 0 �  )]1=2 �H(� )erf(�ri )1=2g=erf(ri 0)
1=2; (13)

(
d 

d�
)2 = 2�e0M

2
e [(1 + 2 =M2

e )
1=2 � (1 + 2 m=M

2
e )

1=2] +

2�i0M
2
i f[1 + 2( 0 �  )=M2

i ]
1=2 � [1 + 2( 0 �  m)=M

2
i ]

1=2g
+

2�ea
raerf [ra( 0 �  m)]1=2

fe�ra( 0� )erf [ra( �  m)]
1=2 �

2p
�
[ra( �  m)]

1=2e�ra( 0� m)g+ 2�i
rierf(ri 0)1=2

fe�ri erf [ri( 0 �  )]1=2 �



Brazilian Journal of Physics, vol. 28, no. 3, September, 1998 187

2p
�
[ri( 0 �  )]1=2e�ri 0 � e�ri merf [ri( 0 �  m)]

1=2 +

2p
�
[ri( 0 �  m)]

1=2e�ri 0 +H(� )[�e�ri erf(�ri )1=2 + 2p
�
(�ri )1=2] +

e�ri merf(�ri m)1=2 � 2p
�
(�ri m)1=2g : (14)

valid for  m �  �  0 ,� � 0 .

Now, in order to integrate equations (12) and (14) numerically, boundary conditions (plasma conditions) have

to be imposed over the pair of eqns.(11), (12) and (13),(14), viz., d2 =d�2 = 0 and (d d� )
2 = 0 , the former pair at

 (�1) = 0 and the latter at  (+1) =  0 . The resulting set of equations relating the free parameters reads

�i = �e0 � �i0
(1 + 2 0=M2

i )
1=2

+ 1 ; (15)

�ea = � �e0
(1 + 2 0=M2

e )
1=2

+ �i0 ; (16)

�e0 M
2
e [1� (1 + 2 m=M

2
e )

1=2] +

�i0 M
2
i f(1 + 2 0=M

2
i )

1=2 � [1 + 2( 0 �  m)=M
2
i ]

1=2g+
�i

rierf(ri 0)1=2
ferf(ri 0)

1=2 � 2p
�
(ri 0)

1=2e�ri 0 �

e�ri m erf [ri( 0 �  m)]
1=2 +

2p
�
[ri( 0 �  m)]

1=2e�ri 0 +

e�ri merf(�ri m)1=2 � 2p
�
(�ri m)1=2g+ 1� 2p

�

(� m)1=2e m
erf(� m)1=2 = 0 ; (17)

�e0M
2
e [(1 + 2 0=M

2
e )

1=2 � (1 + 2 m=M
2
e )

1=2] + �i0M
2
i f1� [1 + 2( 0 �  m)=M

2
i ]

1=2g+
�ea

raerf [ra( 0 �  m)]1=2
ferf [ra( 0 �  m)]

1=2 � 2p
�
[ra( 0 �  m)]

1=2e�ra( 0� m)g+
�i

rierf(ri 0)1=2
f�e�ri merf [ri( 0 �  m)]

1=2 +
2p
�
[ri( 0 �  m)]

1=2e�ri 0 +

e�ri merf(�ri m)1=2 � 2p
�
(�ri m)1=2g = 0 : (18)

d

An additional relation between the electron density

of the thermal electrons near the cathode, nec ,and

normalized parameters associated with the beams, can

be obtained if the current density J is supposed to

be known in the experiment. In this case, we write

J=e = ne0ve0 + ni0vi0 , divide by nec (kTec)
1=2 , and

make use of the normalized parameters de�ned before;

from the resulting relation one gets

nec =
1:48 � 1013j=ptec

�e0 Me + (me=mi)1=2 �i0 Mi
[m�3] ; (19)

where j and tec are the numerical values of the (uni-

form) current density J in Amps=m2 and the temper-

ature Tec in eV respectively.

At this point, the model is now ready for at least

a partial feasibility proof. Partial because experimen-

tal data available are not so proliferous and su�ciently

precise so as to give it (or not) support within its lim-

ited validity. Qualitative comparisons however are al-

ways possible. This checking has been made by feeding

a computing code prepared for solving the equations

above with a speci�c set of experimental data parame-

ters available at present. In doing so,we have gone far

beyond the scope of the initial objective by searching

for larger parametric spaces where other solutions can
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be found.

IV.Numerical results and discussion

Now, the boundary conditions together

with the additional constraint (19) above,

make up �ve equations relating the ten

free parameters �i; �e0; �i0; �ea , Me (or,

alternatively, �e0 ), Mi (or, alternatively,�i0 ),

ri (or,alternatively,Ti ), ra; nec and Tec .

Experimental conditions [8] suggest ri values between

10: and 50: , and the known value of the current den-

sity �xes the value of nec through relation (19),so that

one ends up with four equations having to be solved

for four of these in terms of the other four. We chose

�e0; �i0; ra and Tec as the independent free parameters

and ran the computing code, inputing values of the last

two for each pair of the �rst two. The input values of

ra were such as to exclude negative values of densities

in the process of solving the set of boundary conditions.

The resulting set of conditions, in its turn, feeds a nu-

merical integration scheme for equations (12)and (14)

by putting S1=2( ) = d =d� and integrating in  , i.e.,

� =

Z  

 m

d =S1=2( ) (20)

where the upper limit in the integration is always kept

under  0 for � > 0 and under  = 0 for � < 0 .

Invariably in the middle of the numerical process, fur-

ther changes on the values of ra were needed so as to

exclude negative values of S.

Fig. 2 illustrates one tipical case, with  ; � and S

standing for the potential, charge density and Sagdeev's

potential normalized to kTec , enec and (kTec=�D)
2

respectively, with the values (see Fig.2) of the input

parameters compatible with the experimental condi-

tions leading to the formation of charged layers in low

pressure mercury-arc discharges(compare with Fig. 4

and 5 in ref.[6]). For all cases run we kept me=mi =

2:716 � 10�6 , J = 1:414 � 104Amps=m2 , �0 = 24:V olts

and �m = �7:5V olts , the �rst two used and the last

two measured on the axis of the discharge tube [6] .

Searching for solution in the parametric space

�e0 vs:�i0 by a double iteration procedure in �e0 or

�i0 and ra and with a �xed value of ri (e.g.,ri = 36: )

one �nds a region like the one shown in Fig.3 and de-

scribed by the curve which limits the minimum values

of �e0 and �i0 for solution. The smallest minimum for

�e0 , the electron beam energy, is limited by the value

of ��m (the potential energy barrier for electrons as-

sociated with the dip of the potential pro�le) but the

smallest value of �i0 depends on the (�xed) values of

ri and Tec , the last remark also applied to the asymp-

totes to the curve. For relevant values of ri and Tec

other than the one used in the example of Fig.3 how-

ever, the new curves constructed on the same basis do

not show appreciable departures from it so that one can

grossly speaking, take that curve as the representative

one which delimits the region in the parametric space

�e0 vs:�i0 for solution. Next, for each point (�e0; �i0)

in such a region, the solutions can only be found in its

complementary parametric space Tecvs:Tea over a lim-

ited and bounded region (window). The windows were

constructed with speci�c sets of free input parameters

borrowed from the ones used in an incomplete model

�tting the experimental results in ref.[6] so as to allow

comparisons. Just two tipical cases are shown in the

plots of Fig.4 , viz., window (a) corresponding to the

values of (�e0; �i0) = (30.,16.)eV and window (b) to

(31.4,46.)eV. Each of these windows has its boundary

represented by two curves having common points at its

closure at its lower and upper bound values. Inciden-

tally, the inequality �i0 > Tea=2 is always satis�ed in

this model, which is reminiscent of a Bohm's criteria

in its inequality form for the onset of a plasma-sheat

edge near a negative wall [4] . This imposes an upper

limit for Tea which, as a consequence, drives an up-

per bound for Tec . Notice that by �xing the value of

ri for each window, one is imposing one further con-

straint on the model. Comparison of windows (a) and

(b) of Fig.4 hint at the way the parameters Tec and

Tea evolve with increasing values of �e0 and �i0 , viz.,

the increase in the range of their values. The widths of

the layer for these cases are illustrated in Fig.5, where

w1 stands for the length of the region where � < 0

and w2 the length joining the two points of maximum

� , each one averaged over their values in the window

for each Tec . Comparison of widths in both windows

shows that a signi�cant increase in widths is obtained

the larger the range of de�nition of Tec , i.e., the larger

the extension of the window along the Tec values. One

can also see that the upper bound for Tec is more sen-

sitive to the values of �i0 , viz., greater will be Tec

as �i0 increases. Unfortunately, the complexity of the

system of equations turns it impossible to de�ne a scale
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length, representative of the layer, in terms of the rel-

evant free parameters, in analitical form. Besides, the

entire (graphical) picture would demand a great num-

ber of extra computations which might only be appro-

priate in a more compreensive version of this work.

Figure 3. A typical solution with initial in-
put values �i0 = 16:V olts; �e0 = 30:V olts;
Tec = 2:eV , iterated ra = :11396 , and calculated
nec = 4:88 � 1015m�3 ; �D = :150mm .

Figure 4. Windows a and b for solutions of the
triple layer in the parametric space Tecvs:Tea with
�xed values of (�e0; �i0) = (30.,16.)eV and (31.4,46.)eV
respectively, both with a common value of ri =
36: . Upper bound values for (Tec; Tea) are, for (a),
(4.00,19.19)eV, and for (b), (8.32, 36.18)eV; lower bound
values are for (a), (.10, 15.67)eV, and for (b), (.10, 21.76)eV.

Figure 5. Average widths of the triple layer for the windows
a and b in Fig.4, w1 standing for the length of the region
where � < 0 and w2 the length joining the two points
of maximum � , each one averaged over their values in the
window for each Tec .

V. Limitation of the model

A close look at the sequence of experimental plots

in Fig.10, ref.[7], shows that the potential pro�les along

the direction of the discharge depend strongly on the

radial distance from the axis where they were measured.

One can see for example that the nearer to the axis the

potential were measured the thinner and higher became

the pro�le in the discharge direction. The potential pro-

�les exhibited show clearly that charge distribution is at

least two-dimensional in character and a corresponding

2D model should be more appropriate to describe the

layer. Some radial pro�les would have to be prescribed

for the distribution functions of the thermal popula-

tions through their parallel and perpendicular temper-

atures, along and across the discharge direction as well

as for the number densities on the far cathode and an-

ode sites. Besides,the maximum and minimum poten-

tial should be left to be determined self consistently by

the resulting system of equations describing the model.

In our 1D model the radial dependency of the charge

distribution was circumvented to extend our 1D code

to any line parallel to the axis by the prescription of

�m and �0 with a corresponding set of measured val-

ues on that line,at the expense of self consistency. This

is clearly one limitation of the model. To turn it en-

tirely self consistent however, one would need two more

restrictions on the free parameters (for exemple,one re-

striction could be to get solutions with the potential

pro�le satisfying a certain value at a typical inversion

point of these pro�les, like in ref.[6]), which can only
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be done at the expense of a reduction on the class of

solutions we are looking for, since all the boundary con-

ditions on the free parameters have been employed.

A quick comparison of the width of the potential

pro�le exhibitted in Fig.2 (� 2 mm) with the width of

the experimental pro�le presented at ref.[6] (� 1 cm)

might show at a �rst sight another limitation of the

model. However, the experimental pro�le has not been

presented together with measured parameters associ-

ated with all of our free parameters, e.g., �e0 and �i0 ;

for instance, thicker layer can be found at higher val-

ues of �i0 as can be seen from Fig.5. Comparison is

made even more di�cult for the lack of further exper-

imental data and corresponding potential pro�les. In

particular, the ones mentioned in Fig.10, ref.[7], cast

some doubts about the precision of the experiments for

measurements on the axis (the potential dip in the last

plot seems more like a spike). This leaves somewhat

undetermined such a comparison and gives no grounds

to discard the present model.

As one can infer, the least necessary number of

boundary conditions and constraints were used in the

present model. Additional boundary condition like
@�
@� = 0 at plasma-sheath boundary (�1;+1 in the

present model) [13] or some additional constraint re-

stricting the potential pro�les to some form [6] would

reduce the windows regions to lines or even to points,

which are done in these works in order to solve their

respective model equations in a closed and self consis-

tent way. Whatever the physical and mathematical rea-

sons to justify the use of the additional boundary con-

dition or constraint (in particular, the mentioned one

in ref.[13] does not apply in the present model since

the quantity above is singular at those points, unless

a non-maxwellian velocity distribution is used), it is

not easy to reproduce them in the laboratory, and one

might conclude that perhaps windows rather than lines

or points would be more like a rule than an exception

in practice.

VI. Conclusion

One can say in conclusion that although the results

above may seem pertinent to a particular laboratory

experiment since most of the input parameters used

in the exhibitted graphs in this work have been bor-

rowed from the results of an incomplete model whose

aim was to try to �t them with their experimental re-

sults [6] , they are nevertheless representative enough

to validate the model for other aplications. All the ex-

hibitted cases will show similar features for any point in

the region delimited by the curve shown in Fig.3. By

studying the windows boundaries one can draw some

conclusions about the relationships of the relevant pa-

rameters used in the experiments which would sustain

the layer in its steady-state. Even though these rela-

tionships are, most of them, of qualitative character,

since even the more obvious simpli�cation of the com-

plete equations are analitically intractable and there is

no Bohm's-like criterion [4] for such a model, the �nd-

ings in this work may be useful in the sense that they

point out the way of establishing the relevant input pa-

rameters to be chosen in similar experiments.

Further results and discussion will be published else-

where.
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