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The linear wave propagation is analyzed for inhomogeneous collisionless cylindrical plasmas
in a helical magnetic �eld. Using the geometric optics approximation the electron Landau
damping of the kinetic Alfv�en, fast Alfv�en, fast magnetosonic and atmospheric whistler
waves are studied in a current-carrying plasma with \hot" electrons and one kind of ions.
The expressions obtained for real and imaginary parts of the radial refractive indexes can be
used in the wide range of the wave phase velocities relative to the electron thermal velocity.
The ion-cyclotron damping of fast magnetosonic waves is estimated taking into account the
magnetic shear corrections.

I. Introduction

The problems of plasma heating and current drive

by the Alfv�en and ion-cyclotron waves in tokamaks have

stimulated an interest renewed in a study of the waves

excited in magnetized current-carrying plasmas. The

theory of magnetohydrodynamic (MHD) waves, in ho-

mogeneous magnetic �eld plasmas, has been basically

completed (see, for example, Ref. [1, 2] and the refer-

ences therein). In the last years, using the kinetic mod-

els of high-temperature cylindrical and toroidal plas-

mas in a helical magnetic �eld, the MHD waves were

intensively studied[3�7] in connection with laboratory

experiments. It was shown that the properties of MHD

waves depend strongly on the magnetic �eld structure,

on the ratio of the wave phase velocity to the thermal

velocity of particles, and on the density and tempera-

ture gradients of the background plasma.

As is well known, the theory of linear waves is based

on the solution of Maxwell's equations for the compo-

nents of the perturbed electromagnetic �elds E;H and

current density j. The set of Maxwell's equations will

be closed if we know the relation between of j and E.

Usually, this connection is de�ned via the wave con-

ductivity tensor �̂ik: ji = �̂ikEk, or via the dielectric

tensor �̂ik: �̂ik = �ik+ i4��̂ik=!, where �ik are the Kro-

neker constants. Depending on the various plasma pa-

rameters, the elements of �̂ik can have di�erent forms,

which is related to the nature of the wave phenomena

observed in the plasma, in particular, by its oscillation

spectra and by the magnetic �eld con�guration. On the

other hand, every plasma model needs to justify the di-

electric tensor components valid at a given frequency

range. For collisional plasmas, to derive the tensor �̂ik,

it is possible to use the ideal MHD plasmamodel or two-


uids MHD equations[8]. Usually, the laboratory fusion

plasma is collisionless, it means that the wave frequency

! is larger than the electron-ion collision frequency �ei

and the mean free path of electrons is bigger than the

wavelength along the magnetic �eld lines. The corre-

sponding expressions for �̂ik of a collisionless plasma

can be derived solving the linearized Vlasov equation

for the perturbed distribution functions of plasma par-

ticles. The solution of the Vlasov equation and the eval-

uation of the dielectric tensor components are shown in

Ref. [9], which are applied for Alfv�en heating and cur-

rent drive problems in a current-carrying plasma.

Our purpose in this paper is to �nd the real and

imaginary parts of the radial refractive index for the

basic eigenmodes, using the geometric optics approxi-

mation in cylindrical current-carrying plasmas for the

frequency range of Alfv�en and ion cyclotron waves. In

this range of the frequencies, it is possible the excitation

of kinetic Alfv�en waves[10], the fast Alfv�en (see Refs.

[1; 2], called sometimes as sheared Alfv�en[4]) waves, and
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fast magnetosonic (called sometimes as compressional

Alfv�en[4]) waves. Analyzing the dissipation character-

istics of these waves in collisionless plasmas, we should

take into account two kinds of collisionless damping:

the electron Landau damping (Alfv�en heating prob-

lem); and the ion-cyclotron damping, when the reso-

nant ions absorb the wave energy via the Doppler ef-

fect (ion-cyclotron resonant heating). In this paper we

prolong the analysis of those phenomena taking into ac-

count a plasma inhomogeneity and extending results in

Refs. [4-6],[9] .

The present paper is organized as follows. In sec-

tion II, we describe the plasma model. The disper-

sion characteristics of the Alfv�en and fast magnetosonic

waves we analyze in section III, taking into account the

Landau damping by the plasma electrons. In section

IV, we present the contribution of the resonant ions,

to the dielectric tensor, for wave frequencies near the

ion-cyclotron frequency, and evaluate the ion-cyclotron

damping of the fast magnetosonic wave in current-

carrying plasmas.

II. Cylindrical plasma model

II.1. Equilibrium current and helical magnetic �eld

Here, we use a simple model of a cylindrical current-

carrying plasma, when the equilibrium current j0 is par-

allel to the helical magnetic �eld B0. Under the equi-

librium conditions, we assume that the ions have no

directed current velocity, so that only electrons are the

source of the current j0 in the plasma. This longitudinal

current induces the poloidal magnetic �eld B0�(r) . In

this case, the magnetic surfaces may be represented by

the circular and concentric cylinders. For this model we

use cylindrical coordinates (r; �; z), and the same type

of a stationary magnetic �eld, as in Ref. [4]:

c

B0r = 0; B0� = h�B0; B0z = hzB0; B0 =
q
B2
0� +B2

0z; (1)

d

where h� = B0�=B0 and hz = B0z=B0 are the cylin-

drical projections of the unit vector, h = B0=B0. The

magnetic �eld con�guration (1) is de�ned by the pa-

rameters �1 and �2:

c
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2 @

@r
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dq
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hz
2

r

@

@r

�
rh�
hz

�
= 2

hzh�
r

�
1� r

2q

dq

dr

�
: (2)

d

Here, q = rhz=Rh� corresponds to the tokamak safety

factor, where R is the tokamak major radius. Keep-

ing in the mind that many of our results are valid for

toroidal systems, we shall consider the plasma cylin-

der of length 2�R as an approximation of a large

aspect ratio torus where the trapped particle e�ect

will be neglected. Furthermore, we assume that the

poloidal magnetic �eld is much smaller than the ax-

ial magnetic �eld, B0� << B0z. In the used plasma

model, we also take into account the radial inhomo-

geneity of the plasma density n0(r) via the parameter,

�n = @ lnn0=@r. This model is reasonable for plasma

devices with low pressure, � = c2s=c
2
A � 1, where cs =p

T0e=Mi is sound velocity and cA =
p
B2
0=4�n0Mi

is Alfv�en velocity. The current velocity v0 is assumed

to be much smaller than the electron thermal velocity,

v0 << vTe =
p
T0e=me, where T0e is the plasma (elec-

tron) temperature andMi and me are mass of ions and

electrons, respectively.

Using the Maxwell's equation, for equilibrium cur-
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rent density, and magnetic �eld,

(rotB0)k =
4�

c
j0 = �4�

c
en0v0; (3)

we can �nd the following expression for the current ve-

locity v0:

v0 = ��2cA
2

!ci
(4)

where !ci = eB0=Mic is the ion cyclotron frequency.

This velocity should be taken into account (see Ref.

[9]) to describe correctly the steady-state distribution

function of plasma electrons.

Using this model, we can consider three di�erent

limits ("submodels"):

a) when the current velocity is equal to zero, the

poloidal magnetic �eld is absent, and we have a plasma

con�ned in a straight magnetic �eld;

b) when the plasma current is uniform, j0 = const, the

safety factor q is constant too, B0� � r; dq=dr = 0 ,

and we have a helical magnetic �eld without shear;

c) when the equilibrium current is nonuniform, the ra-

dial derivative of q is not equal to zero, dq=dr 6= 0,

which is the characteristic of a sheared magnetic �eld,

and we have general model.

II.2. Maxwell's equations in the current-

carrying plasma

We use the normal A1, binormalA2 and parallel A3

components, relative to the B0 �eld line, for the set

of vector values A = f E, H, jg, which are related to

the cylindrical components Ar; A�, and Az, through the

following relationships:

c

A1 = Ar ; A2 = A�hz �Azh�; A3 = Azhz + A�h�: (5)

Since the equilibrium parameters are independent of time t, angle � and variable z, the dependence of oscillating

values on these variables may be represented by exp(�i!t + im� + ikzz) (one plane wave approximation). Here, !

is the wave frequency, kz is the axial projection of the wave vector, m is the azimuthal wave number. It means

that we deal with waves (m and kz are arbitrary), propagating in the nonuniform current-carrying low � plasma.

For such waves, the Maxwell's equations can be rewritten as

H1 =
c

!
(kbE3 � kkE2);

H2 =
c

!
(kkE1 � i�1E2 + i

@E3

@r
+ i

h2�
r
E3); (6)

H3 =
c

!
(�kbE1 � i

1

r

@

@r
rE2 + i

h2�
r
E2 � i�2E3);

kbH3 � kkH2 = �!

c
�̂1jEj ;

kkH1 � i�1H2 + i
@H3

@r
+ i

h2�
r
H3 = �!

c
�̂2jEj ; (7)

kbH1 +
i

r

@

@r
rH2 � i

h2�
r
H2 + i�2H3 = �!

c
�̂3jEj;

d

where kk =kzhz + h�m=r and kb = hzm=r � kzh� are

the parallel and binormal components of the wave vec-

tor relative to B0. Here, we have taken into account

the magnetic shear e�ect via the dependence of kk on

r, which is the principal e�ect in our model. If the

expressions for dielectric tensor elements are known,

the equations (6) and (7) are basic to study the eigen-

modes of current-carrying plasmas in the helical mag-

netic �eld. In this paper, we use these equations to eval-

uate the dispersion characteristics of fast magnetosonic,
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fast Alfv�en, kinetic Alfv�en, atmospheric whistler waves.

III. Electron Landau damping of short wave-

length oscillations in a current-carrying plasma

III.1. Dielectric tensor-operator for MHD waves

In a �rst step, we are going to analyze the waves of

a small scale wavelength in the direction perpendicu-

lar to B0, in a nonuniform current-carrying plasma for

the frequency range, !dr << ! << !ci, where !dr �
kb�nc

2
s=!ci is the diamagnetic (or drift) frequency. The

assumption of a small scale wavelength permits us to

use the geometric optics approximation to describe an-

alytically the waves in a broad frequency range for an

arbitrary plasma density inhomogeneity. Here, we use

the general expressions �̂ij given in Ref. [9] and the ap-

proximationof cold plasma ions, k2kv
2
Ti=!

2
ci << 1. After

the summation over electrons and ions, we can obtain

the following expressions for the operator representing

the dielectric tensor of current-carrying plasmas:

c

�̂11 = �1 + i~�
k2bc

2

!2
; �̂12 = ig � ~�

kbc
2

r!2

@

@r
(r:::); �̂13 = i

kb
kk
�?;

�̂21 = �ig � ~�
kbc

2

!2
r
@

@r

�
1

r
:::

�
; �̂22 = �2 � i~�

c2

!2

@

@r
r
@

@r

�
1

r
:::

�
; �̂23 = ��?

kk

�
@

@r
+ �n

�
;

�̂31 = �i kb
kk
�?; �̂32 =

�?
kkr

@

@r
(r:::); �̂33 = �3 + �?

�nkb
k2k

; (8)

where

�1 =
c2

c2A

�
1 +

!2

!2
ci

�
; ~� = 2�

p
�ZeWe;

�2 = �1 +
c2
c2A

�1v0!ci
!2

; g =
c2

c2A

�
!

!ci
+

kkv0!ci

!2

�
;

�3 =
c2

c2A

!2
ci

k2
k
c2S

(1 + i
p
�ZeWe); �? =

c2!ci
c2A!

�
1 + i

p
�ZeWe

�
:

In (8), We is the plasma dispersion function of electrons

We = We(Ze) = exp(�Z2
e )

"
1 +

2ip
�

Z Ze

0

exp(t2)dt

#
; Ze =

! � kkv0p
2kkvTe

: (9)

d

Note that, in the expressions �̂ik, we keep only the

main terms, which are proportional to the electron cur-

rent velocity v0 and the radial gradient of plasma den-

sity �n. The terms in �̂ik, which are proportional to

the �1 and �2 parameters, are of the same order as the

shear induced terms in the Maxwell's equations (6) and

(7). Furthermore, we take into account the Doppler ef-

fect via the term, kkv0, in the argument of the plasma

dispersion function (9). Supposing that v0 = 0 (or

h� = 0), we get the known result for the dielectric per-

meability, of a nonuniform cylindrical plasma, in the

straight magnetic �eld (see Ref. [11]).

Using (8), we can see that the o�-diagonal elements

�̂13; �̂23; �̂31, �̂32 are not small, and allow to evaluate the

so called "transit-time magnetic pumping" dissipation

for MHD waves[1;2]. Moreover, these elements of �̂ik are

important and give a contribution to the Alfv�en current

drive via ponderomotive forces[9] .

III.2. Dispersion equation

To obtain the dispersion equations for Alfv�en and

fast magnetosonic waves, we should solve the equations
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(6) and (7). The corresponding solutions can be repre-

sented in the form:

E1;2;3(r) exp

�
i

Z r

0

kr(�)d�

�
;

where E1;2;3(r) are the slowly varying amplitudes, and

kr is the normal (radial) component of the wave vec-

tor, which satis�es the condition kr(r)=�n >> 1. In

this paper, we do not consider the mode conversion ef-

fects because the geometric optics approximation is not

valid[2] at the conversion zones where �1 � k2kc
2=!2.

Using expressions (8) and (6), the equations (7) can

be written as

c

h
�1 � N2

k �N2
b (1� i~�)

i
E1 +

�
NbNr(1� i~�) + ig + iNkN1

�
E2

+

�
NkNr + iNb

�
�?
Nk

�N2

��
E3 = 0;

�
NbNr(1 � i~�) � ig � iNkN1 + iNkN2

�
E1 +

h
�2 � N2

k � N2
r (1� i~�)

i
E2 (10)

+

�
NkNb � iNr

�
�?
Nk

�N1 � N2

�
� Nn

Nk
�?

�
E3 = 0;�

NkNr � iNb

�
�?
Nk

� N2 + N1

��
E1 +

�
NkNb + iNr

�
�?
Nk

� N1 � N2

��
E2

+
�
�3 �N2

r �N2
b

�
E3 = 0;

where Nr;b;k = c kr;b;k=! are corresponding to the normal (radial), binormal and parallel refractive index components

relatively to B0, Nn = c �n=!; N1;2 = c �1;2=!. Using the condition when the determinant of (10) is equal to zero,

we obtain the dispersion relation for Alfv�en and fast magnetosonic waves. These two wave branches are coupled by

the !=!ci terms and by the e�ects connected with equilibrium current, magnetic shear, and density gradient. To

simplify this equation, we assume that �? >> NkN1; NkN2. In this case, we can derive the following equation, for

the complex radial refractive index:

�3(�1 � N2
k )

"
�2 � N2

k � (N2
r +N2

b )(1� i~�)� i
NbNrNkN2

�1 � N2
k

+
N2
bN1N2 � (g + NkN1)(g +NkN1 � NkN2)

�1 �N2
k

#

+
�
N2
r + N2

b

� h
�1(N

2
r + N2

b ) � �2(�1 �N2
k ) + (g + NkN1)(g +NkN1 �NkN2)

� N1N2

N2
rN

2
b +N4

b � N2
kN

2
r

N2
r + N2

b

+ iNrNbNkN2

#
(11)

�(N2
r + N2

b )
�2?
N2
k

(�1 �N2
k ) + iNnNr

�2?
N2
k

(�1 � N2
k )

"
1�

N2
k (g + NkN1)

�?(�1 � N2
k )

#
= 0:

d
Using (11), it is possible to analyze some interesting

limits for the wave vector in parallel and perpendicu-

lar directions to the ambient magnetic �eld (the cold

plasma limit, �nal Larmor radius e�ects and so on).

III.3. Fast waves

Retaining in zero approximation the largest terms

proportional to �3 (i.e., assuming that �3 !1), we can

get from (11) the equation for the real part of the radial

refractive index, ReNr for the fast waves. In the next
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approximation (by ��1
3 ), we obtain the damping coe�-

cient � = ImNr=ReNr , where N
2
r = (ReNr)

2(1 + 2i�)

and � << 1. As a result, for the fast waves we have:

c

(ReNr)
2
FW = �2 � N2

k �N2
b +

N2
bN1N2 � (g + NkN1)(g +NkN1 � NkN2)

�1 �N2
k

; (12)

�FW =
1

2

(�
1 +

N2
b

(ReNr)2

�
�
p
�Ze exp(�Z2

e )�
1 +N2

b =(ReNr)2

�3(�1 � N2
k )

p
�Ze exp(�Z2

e )

j 1 + i
p
�ZeWe j2

�
h
�1
�
(ReNr)

2 + N2
b

�� �2(�1 � N2
k ) + (g +NkN1)(g +NkN1 �NkN2) (13)

� N1N2

N2
b + N4

b =(ReNr)2 �N2
k

1 +N2
b =(ReNr)2

#
� NbNkN2

ReNr(�1 �N2
k )

+ �
Nn

ReNr

"
1�

k2kc
2
A(g +NkN1)

!!ci(�1 �N2
k )

#)
:

It should be noted that the dispersion equation (12) is

corresponding to the well known dispersion relations de-

rived in Ref. [4] for the compressional and shear Alfv�en

waves if we omit the terms, which are proportional

to the current density gradients in equation (12) (i.e.,

N1; N2 ! 0). Using equations (12) and (13), we can es-

timate the radial refractive index, and the damping co-

e�cient of the fast magnetosonic (FMS) and fast Alfv�en

(FA) waves. In the frequency range ! << !ci, for the

fast magnetosonic wave with !2 � (k2r + k2b + k2k)c
2
A,

these expressions can be simpli�ed to:

c

(ReNr)
2
FMS = �1 � N2

k � N2
b �N1N2; (14)

�FMS =

�
1 +

N2
b

(ReNr)2

�
�

2

p
�Ze exp(�Z2

e )�
NbNkN2

2ReNr(�1 � N2
k )

+
�Nn

2ReNr

: (15)

For the fast Alfv�en wave with ! � kk cA, we have

(ReNr)
2
FA =

N2
bN1N2 � (g + NkN1)(g +NkN1 � NkN2)

�1 �N2
k

� N2
b �N1N2; (16)

�FA =

�
1 +

N2
b

(ReNr)2

�
�

2

"
p
�Ze exp

��Z2
e

�� k2kc
2
A

!2
ci(�1 � N2

k )

p
�Ze exp

��Z2
e

�
j 1 + i

p
�ZeWe j2

#

� NbNkN2

2ReNr(�1 � N2
k )

+
�Nn

2ReNr

 
1� !(g +NkN1)

!ci(�1 � N2
k )

!
: (17)

The dispersion characteristics of the fast Alfv�en waves in the current-carrying plasma depend on the relation between

two small parameters kkv0=! and !2=!2
ci. In particular, for kkv0=! << !2=!2

ci, we have the following expression of

(ReNr)2FA, to consider the FA-wave radial structure:

(ReNr)
2
FA =

!2�21
!2
ci(N

2
k � �1)

�N2
b � N1N2: (18)

For kkv0=! >> !2=!2
ci for (ReNr)2FA, we have

(ReNr)
2
FA =

N2
bN1N2 � N2

k (2N
2
2 � 3N2N1 + N2

1 )

�1 � N2
k

�N2
b � N1N2: (19)
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From equation (18), assuming v0 ! 0, we obtain the

well-known condition of the FA-wave propagation in

the plasma with a straight magnetic �eld, N2
k > �1.

In the case, v0=cA >> !2=!2
ci, the FA-waves can be

excited in the plasma with a strong nonuniform cur-

rent (dq=dr 6= 0) under the condition, N2
k < �1. For

the waves with kb = 0 (that usually corresponds to the

wave excitation with a poloidal wave number m = 0),

the propagation condition becomes the usual one. Note

that the radial wavelength of the fast Alfv�en waves, in

the current-carrying plasma, can be smaller than it is

in the plasma in the straight magnetic �eld under the

same values of !;m; and kz. These values can be given,

for example, by the antenna/generator system.

The resonant conditions of the fast wave excitation

substantially depend on the distribution of the equilib-

rium current. If we assume that the current velocity is

equal to zero in equations (12) and (13), the real and

imaginary parts of the radial refractive index, respec-

tively, will be the same as the well-known results for the

homogeneous magnetic �eld [1,4,7]. For plasmas with

an uniform equilibrium current (a nonsheared magnetic

�eld, N1 = 0) it is necessary to take into account the

current velocity in the dielectric tensor elements �̂12 and

�̂21, which are important to derive the dispersion rela-

tion for the fast waves. For plasmas with a nonuniform

current (N1 6= 0 and dq=dr 6= 0) the frequencies of the

fast magnetosonic and fast Alfv�en waves will depend

also on the terms driven by shear in �̂22 and g.

The correction related to the density gradient in

(15) and (17) is important to evaluate the damping

of the fast magnetosonic and fast Alfv�en waves in the

nonuniform plasma. Moreover, the third term in equa-

tion (15), which depends on the sign of ReNr under

the given sign of �n, can cause either decrease or in-

crease of the wave dissipation. In laboratory plasmas,

the density usually decreases to the boundary; it means

that in this case �n < 0. Using (15), we �nd that the

waves propagating into the plasma are absorbed more

e�ectively due to the density gradient than it is in an

uniform plasma. On the other hand, the waves propa-

gating in opposite direction ( ReNr > 0; �n < 0, and

j p2�nNkvTe=
p
�ReNr! j> 1) may become unstable.

III.4. Kinetic Alfv�en wave

Another solution of the dispersion equation (11) cor-

responds to the so called kinetic Alfv�en (KA) wave. In

this case, the refractive index N2
rKA

of KA waves is a

large value proportional to �3 and we have respectively:

c

(ReNr)
2
KA +N2

b =
�3
�1

�
�1 � N2

k

�
; (20)

�KA =

�
1 +

N2
b

(ReNr)2

� p
�

2
Ze exp

��Z2
e

�

+
NbNkN2

2ReNr(�1 �N2
k )
� �Nn

2ReNr

 
1� !(g + NkN1)

!ci(�1 �N2
k )

!
: (21)

d

Analyzing these expressions, we see that the equi-

librium current does not make a substantial e�ect on

the dispersion characteristics of the kinetic Alfv�en wave

in the weakly nonuniform low beta plasma, if � <<

NrKAcA=NnvTe. As is in the uniform plasma[10], the

damping rate of these waves is de�ned by the Im�3 with

a shifted argument for the plasma dispersion function,

Ze = (! � kkv0)=
p
2kkvTe.

Note that the in
uence of the current on the radial

attenuation of the kinetic Alfv�en, fast Alfv�en and fast

magnetosonic waves with kb = 0 (or m = 0) will be

smaller by a factor � than the corresponding damping

rates, �, in equations (15), (17) and (21). The e�ect of

the shear terms in these expressions shows us that FA

and FMS waves, which have the small damping coe�-

cients, �FW � �Ze, can be unstable in the nonuniform

current-carrying plasma.

The exact solutions for Ez; Hz; and @(rEr)=@r +

imE� components of the perturbed electromagnetic

�eld are proportional to � Jm(k?r)exp(�i!t + im� +

ikzz) (see Ref. [11]) in homogeneous plasmas con�ned

in the homogeneous magnetic �eld. Here, Jm(k?r)
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is the Bessel function. It means that the expressions

obtained for real and imaginary parts of the consid-

ered waves become corresponding to the expressions for

cylindrical waves[11] in the uniform plasma, under the

following conditions: k2? = k2r + k2b and k2r >> k2b .

III.5. Atmospheric whistlers

Now we are going to analyze the high-frequency fast

magnetosonic waves in the frequency range, !ci <<

! << !ce = eB0=mec. These waves are called as

atmospheric whistlers (AtW). To obtain the real and

imaginary parts of the AtW's radial refractive index,

we should take into account that for these frequencies

the values of �1 and g in (11) are given by expressions:

c

�1 = �!2
pi

!2

�
1 +

!2
ci

!2

�
; g = �c2!ci

c2A!

�
1� kkv0

!
+
!2
ci

!2

�
; (22)

where !pi =
p
4�n0e2=Mi is the plasma ion frequency, and the other components of the dielectric tensor will be

de�ned by the electron contributions to �̂ik in (8). In this case, the expressions for dispersion characteristics of

atmospheric whistlers, !2
AtW � (k2r + k2b + k2k)c

2
A(!

2
ci + k2kc

2
A)=!

2
ci, are given by:

(ReNr )
2
AtW = �1 �N2

k � N2
b +

g2

N2
k � �1

;

�AtW =

�
1 +

N2
b

(ReNr)2

�
�

2

"
p
�Zeexp

��Z2
e

�
+

k4kc
4
A

p
�Zeexp

��Z2
e

�
(!2

ci + k2kc
2
A)

2 j 1 + i
p
�ZeWe j2

#

+
N2kbkkc

2
A

2ReNr(!2
ci + k2kc

2
A)

+
�Nn

2ReNr

!2
ci

(!2
ci + k2kc

2
A)

: (23)

d

One can see above that the radial damping rate of at-

mospheric whistlers have the order of the magnitude

as higher as the damping rate (15) for FMS waves

in the low-frequency range, !; kkcA << !ci. When

!2
ci << k2kc

2
A (or kk � kr and j Ze j<< 1), the damp-

ing rate of the high-frequency fast magnetosonic wave

is two times higher than the damping rate of the low-

frequency magnetosonic waves.

IV. Ion-cyclotron damping of the fast magne-

tosonic waves in a magnetic shear plasma

IV.1. Contribution of ion-cyclotron resonance

to the dielectric tensor

In the previous section, we have studied the wave

dissipation via the electron Landau damping. In mag-

netized plasmas, besides of the electron damping, it is

possible to obtain the ion cyclotron damping. The ion

cyclotron damping occurs, for example, when the wave

interacts with plasma ions in the resonant condition

! � kkvk � !ci. As is well known (see Ref. [7]), the

presence of a small group of the resonant particles mod-

i�es strongly the plasma dielectric properties. To calcu-

late the contribution of the resonant ions to the plasma

conductivity, it is necessary to solve the Vlasov equa-

tions for an arbitrary parameter kkvTi=(! � !ci). In

this case we obtain the following expressions for contri-

butions of the resonant ions to �̂
(i)
jk , at the fundamental

(�rst) harmonic of the ion cyclotron frequency:

c

�̂
(i)
11 = �̂

(i)
22 = � !2

pi

2!(! + !ci)

�
1� ! + !ci

! � !ci
(��i � 1)

�
;

�̂
(i)
12 = ��̂(i)21 =

i!2
pi

2!(! + !ci)

�
1 +

! + !ci
! � !ci

(��i � 1)

�
;
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�̂
(i)
13 = � i!2

pi

2!2

��i
kk + �

�
@

@r
� kb

�
; �̂

(i)
31 = � i!2

pi

2!2

��i
kk + �

�
1

r

@

@r
(r:::) + kb

�
; (24)

�̂
(i)
23 = � !2

pi

2!2

��i
kk + �

�
@

@r
� kb

�
; �̂

(i)
32 =

!2
pi

2!2

��i
kk + �

�
1

r

@

@r
(r:::) + kb

�
; �̂

(i)
33 = �!2

pi

!2
;

where

��i = 1 + i
p
�Z�i Wi(Z

�
i ); Z

�
i =

! � !cip
2 j kk + � j vTi

; � = 2
h�hz
r

�
1� r

4q

dq

dr

�
:

d
In these expressions we have omitted the gradient terms

of the ion density, assuming that it will be not impor-

tant for excitation of high-frequency waves in the fre-

quency range, ! � !ci. As can be seen in (25), the

characteristic peculiarity of �̂
(i)
jk is the gradient shift � of

the kk wave number, in the plasma dispersion functions

��i . This shift can be related to the di�erence between

the conditions of the cyclotron resonances in the plas-

mas with the helical and straight equilibrium magnetic

�elds. When plasmas are in straight magnetic �eld, the

cyclotron resonance condition is ! � kzvk = l!c�, and

the corresponding condition for current-carrying plas-

mas (in the helical magnetic �eld) is given by

c

! � kkvk = l

�
!c� + 2

hzh�
r

�
1� r

4q

dq

dr

��
; (25)

d
where � = e; i is a kind of the plasma particles,

l = �1;�2; ::: is the number of resonant cyclotron har-

monic. The similar current e�ect on the cyclotron reso-

nance condition has been found for the passing particles

in the toroidal plasmas (see Ref. [12]).

Putting together the expressions (25) and (8), it is

possible to obtain the dielectric tensor-operator, which

can be used to study the wave phenomena, in the fre-

quency range !dr << ! << !ce; that allows us to

analyze the ion cyclotron resonance (ICR) dissipation

of eigenmodes in the current-carrying plasma.

IV.2. Ion-cyclotron damping of FMS waves in

the current-carrying plasma

To estimate the ion cyclotron dissipation of the fast

magnetosonic wave, at the fundamental cyclotron fre-

quency we use the conditions, ! � krcA � !ci, and

Z�i << 1. In this case, we have

c

�
(i)
11 = �

(i)
22 = � c2

4c2A

�
1� i

r
�

2

! + !ci
j kk + � j vTi

�
;

�
(i)
12 = ��(i)21 = ig = � ic2

4c2
A

�
3� i

r
�

2

! + !ci
j kk + � j vTi

�
; (26)

and using the conditions

N2
k << N2

r � c2=c2A <<j �11 j; kkv0 << !ci; NkN1 <<j �12 j;

the following dispersion equation for fast magnetosonic waves can be obtained

N2
rFMS

=
�
�211 + �212

�
=�11:
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As a result, the real and imaginary parts of the radial refractive index of these waves are given by

(ReNr)
2
FMS =

c2

c2A
; �FMS =j kk + 2

h�hz
r

�
1� r

4q

dq

dr

�
j vTip

8�!ci
: (27)

In this case, the ion cyclotron damping of the fast mag-

netosonic waves (28) and analogous damping for plas-

mas in an uniform magnetic �eld[1] are the same order

of magnitude if the wavelength along the magnetic �eld

is much smaller than the screw step of the helical mag-

netic �eld line, kk = (m+nq)h�=r >> h�=r. The main

di�erence of the obtained result from the well-known[1]

is: in the uniform magnetized plasma, the FMS waves,

with ! = !ci and propagating exactly perpendicular to

a straight magnetic �eld (kz = 0), are not absorbed by

the plasma ions; in the helical magnetic �eld case, the

absorption of FMS waves, with kk = 0 and ! = !ci,

may be substantial due to the magnetic shear correc-

tion in the resonant condition (26). In this case, the

ion-cyclotron damping rate of FMS waves propagating

exactly across to the magnetic surfaces in the current-

carrying plasmas is

�FMSjkk=0 =j
h�
r

�
1� r

4q

dq

dr

�
j vTip

2�!ci
: (28)

This feature of the ion cyclotron absorption, of the fast

magnetosonic waves, should be taken into account to

analyze the wave dissipations and stability questions in

the current-carrying plasmas near the so-called rational

magnetic surfaces, where the kk(r) change the sign.

V. Conclusions

To analyze the wave dispersion for eigenmodes,

propagating in cylindrical current-carrying plasmas, we

use the dielectric tensor elements obtained through the

solution of the linearized Vlasov equation for plasmas

in a helical magnetic �eld, taking into account the ef-

fects of the equilibrium current, magnetic shear, and

the density gradient. To evaluate the dispersion equa-

tion for eigenmodes in a magnetized current-carrying

plasma, we used all nine dielectric tensor components.

Account of these components is necessary for the cor-

rect estimation of the damping rate of the basic MHD

waves. This e�ect is related especially to the transit

time magnetic pumping[1;2] dissipation of waves in the

frequency range much smaller than the ion-cyclotron

frequency, ! << !ci.

Using the geometric optics approximation, for small

amplitude waves, we derived the analytical expressions

for the electron Landau damping of fast magnetosonic

waves (see the equations (14) and (15)), fast Alfv�en

waves (see the equations (16)- (19)), kinetic Alfv�en

waves (see the equations (20) and (21)), and atmo-

spheric whistlers (see the equations (23) and (24)), in

the plasma with "hot" electrons and one kind of ions,

taking into account current, shear, and density inhomo-

geneity. It is shown that the radial gradients of plasma

density and equilibrium magnetic �eld in
uence sub-

stantially on the damping rate of the eigenmodes. The

damping rate of these modes contains three indepen-

dent terms (see the equations (15), (17), (21) and (24)),

which are associated to three "submodels" of plasmas in

the helical magnetic �eld. The �rst term corresponds to

the damping rate of eigenmodes in uniformmagnetized

plasmas without the equilibrium current; these expres-

sions are corresponding to the well known results (see,

for example, Refs. [1] and [7]). The second and third

terms describe the in
uence of the radial gradients of

the safety factor (by dq=dr) and the plasma density (by

dn0=dr) on the damping rate of eigenmodes in nonuni-

form current-carrying plasmas.

The expressions for real and imaginary parts of the

radial refractive indexes of the considered waves, when

the wave frequency, azimuthal, and longitudinal wave

numbers are given, are valid in a wide range of the wave

phase velocities relative to the electron thermal veloc-

ity in the argument of the dispersion plasma function,

Ze = (! � kkv0)=
p
2kkvTe). It allows us to analyze the

"hot" and "cold" limits related to wave propagation,

Ze << 1 and Ze >> 1, respectively.

The contributions of resonant ions to the dielectric

tensor elements are presented in equation (25). The

ion-cyclotron damping of the fast magnetosonic waves,

in the frequency range ! � !ci, is evaluated taking into

account the magnetic shear correction (see the equa-

tions (28) and (29)). It is shown that the ion-cyclotron

damping of FMS waves, propagating perpendicular to

the ambient helical magnetic �eld, is not equal to zero in

contrast to the uniform magnetic �eld case. The mag-

netic shear corrections in the argument of the plasma
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dispersion function, Z�i = (! � !ci)=
p
2 j kk + � j vTi,

are also important to analyze the drift cyclotron insta-

bilities. These instabilities can be excited around the

rational magnetic surfaces where the longitudinal pro-

jection of the wave vector is equal to zero.

The results of this paper can be applied to study the

Alfv�en wave heating and current drive phenomena in

tokamak plasmas with circular magnetic surfaces and

a large aspect ratio. However, in a general case, the

one-mode approximation for waves (typical for cylin-

drical plasmas) is not suitable for plasmas in toroidal

geometry. Here, it is necessary to take into account the

"non-local" e�ects, connected with the poloidal mode-

coupling e�ect and the in
uence of trapped and un-

trapped particles on the wave dissipation [13].
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