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The �rst-order conservation laws associated with the symmetric zilch Z and its antisymmet-
ric companion Y previously derived in a chiral medium at rest are extended to an arbitrary
frame.

I. Introduction

Lipkin[1] discovered nine new conservation laws for

the electromagnetic �eld in vacuum, calling \zilch"

the corresponding conserved quantities. He showed

the existence of a third-rank tensor density Z��� (see

Eqs.(3.1) and (3.3)) which is a ��-symmetric com-

bination of bilinear functions of the electromagnetic

�eld F�� and containing a �rst-order derivative of it,

that is of the form F@F , which is conserved in the

sense that @�Z��� = 0. Therefore, the space integral

Z�� =
R
Z��od

3x is a constant of motion, which he

called the "zilch" of the electromagnetic �eld. This is

a symmetric tensor with nine independent components

since it is a traceless tensor Z�
� = 0. Later[2] we have

added one more set of six conservation laws of the type

discovered by Lipkin represented by an antisymmetric

combination Y��� (see Eq.(3.2)) of the �eld quantities

and its derivatives. The corresponding constants of mo-

tion Y�� =
R
Y��od

3x = �Y�� has been called the com-

panions of zilch. As all these laws involve a �rst-order

derivative of the �eld quantities they have been referred

to as �rst-order conservation laws. Next[3], Bailyn and

the author have extended these vacuum conservation

laws to the case of a �eld in a normal medium. In a

previous paper[4] (here after called I) we have extended

the study to chiral media, which are commonly known

as optically active media in the optical regime. The

term chirality refers to the lack of congruence between

an object and its mirror image, either by rotation and

or translation as manifested, for instance, in the hands

of a human being. A chiral medium is a medium car-

acterized by a left-handedness or right-handedness in

its microstructure. They can, for instance, rotate po-

larized light to the left or to the right depending on

its handedness. The chiral �rst-order conservation laws

were derived for a chiral medium at rest. Here we wish

to extend these rest frame laws to an arbitrary frame,

generalizing in this way the covariant approach already

studied for a normal medium[3].

The starting point for theoretical work on the interac-

tion of the electromagnetic �eld with a chiral medium

is the formulation of proper constitutive relations for

the medium. This is discussed in Sec.II together with

the presentation of the electromagnetic �eld equations

in the moving frame. In Sec.III we discuss the conser-

vation laws.

II. The �eld equations

We shall begin by writing the electromagnetic �eld

equations in the arbitrary frame starting from those in

the medium rest frame. We shall be concerned with a

chiral medium characterized by the Drude- Born- Fe-

dorov constitutive relations[5]

D(o) = "E(o) + "�r�E(o);

B(o) = �H(o) + ��r�H(o) ; (2.1)

in the rest frame So of the medium. As in I we

restrict ourselves to homogeneous and nondispersive

media, where ", � and � are constants. The pseu-

doscalar � measures the degree of chirality. As in I,
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Maxwell's equations in this frame in the absence of

charges (r:D(o) = 0;r:B(o) = 0 , r � H(o) = D
(o)
;o

and r � E(o) = �B
(o)
;o , where a;o = @a=@t) can be

rewritten in terms of the �elds E(o) and B(o) as

r:E(o) = 0 ; r�B(o) = �J(o) + "�E(o)
;o (2:2)

r:B(o) = 0 ; r�E(o) = �B(o)
;o ; (2:3)

where

J(o) = "�r�K(o) (2:4)

with

K(o) = 2E(o)
;o + �r� E(o)

;o

= 2E(o)
;o � �B(o)

;oo : (2.5)

We also have

J(o) = "�(�2B(o)
;oo � �r2E(o)

;o ) : (2:6)

Equations (2.2) and (2.3) are formally similar to

Maxwell's equations in a normal medium with current

J(o) and charge density �(o) = 0, obeying from (2.4) the

equation of continuity r:J(o) + �
(o)
;o = 0. We shall call

J(o) the rest frame chiral current. In an arbitrary frame

S Eqs. (2.2) and (2.3) can be written (@a=@x� = a;�).

F��
;� � ("� � 1)F��

;
u�u

 = �J� ; (2:7)

and

F��;
 + F
�;� + F�
;� = 0 ; (2:8)

respectively. Here u� is the uniform velocity of the

medium, F�� is the electromagnetic �eld tensor with

components Foi = Ei and Fij = �"ijkBk. We also

introduce the dual of the �eld tensor

G�� =
1

2
"��
�F
� ; (2:9)

with components Goi = Bi and Gij = +"ijkEk, with

which the chiral current can be written

J� = "�"����u�K�;� ; (2:10)

with "0123 = +1 and

K� = 2F � � � �G� ; (2:11)

where we used the indication

F � = F ��u� ; G� = G��u� (2:12)

and the dot operation is de�ned by

_a = u�a;� ; (2:13)

which reduces to the ordinary time derivative in the

medium rest frame. In this frame F i reduces to the

components of the electric �eld (and F o vanishes) and

Gi to those of the magnetic �eld (and Go vanishes).

Therefore, Jo and Ko will vanish and the space parts

of Eqs. (2.10) and (2.11) will reduce to (2.4) and (2.5),

respectively. Equations (2.7) and (2.8) reduce to (2.2)

and (2.3), respectively. We shall need also the current

in the form

J� = "�(�2 �G� + �h�� _F�
;��) (2:14)

where h�� is related to the metric tensor g�� by

h�� = g�� � u�u� : (2:15)

In the medium rest frame the space part of (2.14) re-

duces to (2.6) and, of course, Jo vanishes. Notice that

from (2.10) the equation of continuity is obeyed

J�;� = 0 : (2:16)

From Eq. (2.7) we have, upon contraction with u� and

noting that u�J
� = 0 from (2.10),

F�
;� = F��

;�u� = 0 : (2:17)

This is nothing but the �rst equation in (2.2) in the

medium rest frame.

We shall need the �eld equations expressed in terms of

the dual �eld. The inverse of (2.9) is

F�� = �
1

2
"����G�� : (2:18)

If we substitute this in the �rst term of Eq. (2.7) and

contract with "���
 we obtain

G�
;� + G��;
 + G
�;� � ("� � 1)"���
 _F� = �"���
J
� ;

(2:19)

where we have used the identity

"����"���
 = ���� �
�

[��
�


] + ��� �
�

[��
�


] � ��
 �
�

[��
�

�] ;

(2:20)

with [�
] = �
 � 
�. We could write (2.19) entirely in

terms of G ( since �"���
F��u� = G�
u� + G��u
 +

G
�u�) but we will �nd convenient not to do so. The

homogeneous equation (2.8) becomes

G
�
;
 = 0 ; (2:21)
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which immediatly follows from the contraction of (2.8)

with "
���. Finally, we shall need the wave equation

for the �eld tensor. If we di�erentiate Eq. (2.8) with

respect to 
 and use (2.7) we obtain

F��;


 + ("� � 1) �F�� = ��(J�;� � J�;�): (2:22)

Here use has been made of the relation

_F�� = u
F��;
 = F�;� � F�;� ; (2:23)

which follows from (2.8) upon contraction with u
 . In

the medium rest frame Eq. (2.22) reduces to Eqs. (I-8)

and (I-9).

III. The conservation laws

The symmetric zilch pseudotensor Z [1] and its an-

tisymmetric companion Y [2] can be written as

Z��� = X��� +X��� ; (3:1)

Y ��� = X��� �X��� ; (3:2)

where X is given by

X��
� = G��F�

�
;� �

1

4
g��G��F��;�: (3:3)

Notice that this pseudotensor is traceless in the �rst

two indices, X�
�� = 0. Z is symmetric and traceless

in the �rst two indices and Y is antisymmetric. If we

di�erentiate Eq. (3.3) with respect to � we obtain

X���
;� = G��F�

�
;�
� �

1

4
g��G��F��;�

�; (3:4)

where we have used the identity[3]

G��
;�F�

�; � =
1

4
g��G��

;�F��;
�; (3:5)

that can be veri�ed directly. Using the wave equation

(2.22) in (3.4) and making a dot-di�erentiation by parts

in the term proportional to ("� � 1) we obtain

c

X���
;� + ("� � 1) _X���u� = �

�
G�� (J�;� � J�;

�)�
1

2
g��G��J�;�

�
; (3:6)

d

where we have used a second identity[3],

_G�� _F�
� =

1

4
g�� _G�� _F�� ; (3:7)

which can also be veri�ed directly. We shall need later

the more general identity

G��
;�F�



;� + (�; �) =

1

2
g�
G��

;�F��;� ; (3:8)

where (�; �) stands for the previous term with � and

� interchanged. Of course, (3.5) follows from (3.8) by

contraction of � and � and (3.7) follows by contraction

with u�u�.

Notice also that contraction with u�u
 leads to

G�
;�F�;� + (�; �) =

1

2
G��

;�F��;� : (3:9)

Introducing

X
���

= X��� + ("� � 1)X���u�u
� ; (3:10)

we can write Eq.(3.6) as

X
���

;� = �T�� ; (3:11)

where T�� is the pseudotensor on the right-hand side

of that equation. Making a convenient �-di�erentiation

by parts and using (2.21), T�� can be put into the form

c

T�� =

�
G��J� � g��G��J� �

1

2
g��G��J�

�
;�

+G�
�;

�J� : (3:12)
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d

Our goal is to write T�� as a divergence and, there-

fore, the task now is to write the last term of (3.12)

as a divergence. Using (2.9) and (2.10) together with

(2.20), the last term of (3.12) can be written as

G��;�J
� = "�[A�� � u�B� � (F�;�K�);

� ] (3:13)

where

A�� = F�;�K
�

;� ; (3:14)

B� = F��;�K
�

;

 ; (3:15)

and we have used (2.17) for the last term of (3.13). Be-

fore we go on we call attention to the fact that there

are many ways one can proceed to write T�� as a diver-

gence. We could, for instance, use directly the expres-

sion (2.14) for J� with or without the �-di�erentiation

by parts. Also the transformations we shall perform

for A�� and B� are not unique, with other possibilities

sometimes even shorter than those we have followed.

However, those that we have chosen lead to a quicker

road when we want to recuperate the results for the rest

frame[4].

Using (2.11) in (3.14) and performing a few di�erenti-

ation by parts we obtain

A�� = (F� _F �
;�);� + (F�;� _F �)

;�
� (F �F�;��);

�u�

��
h
(F�;� �G

�)
;�
� F�;�� �G

�
i

: (3.16)

We show in the appendix that the last tensor can be

written as a divergence with the result

c

F�;�� �G
� = (F�;� �G

�)
;�
+ u�( _G��;�

_F �)
;
� + ( _G�;�

_F�);
�

�
1

2

h
( _G�;�

_F �)
;�
� ( _G�;�

_F �)
;�
� (G��

;�
_F��);�

i
: (3.17)

Taking this result back to (3.16) we can then write

A�� = A���;
� (3:18)

where

A��� = F� _F �
;�g�� + F�;� _F �g�� � F �F�;��u�

��[F�;� �G
�g�� � F�;� �G� � u� _G��;�

_F � � _G�;�
_F� +

1

2
_G�;�

_F �g�� (3.19)

�
1

2
_G�;�

_F �g�� �
1

2
_G�

�;�
_F��] :

Instead of using (3.15) for B� it is convenient to use the relation that follows from (3.13) itself upon contraction

with u�. As

u�K� = 0 ; (3:20)

from (2.11) and (2.12), and as

u�K�
;� = _K� ; (3:21)

as indicated in (2.13), we obtain, from (3.13) and (3.14),

B� =
1

"�
G�
;�J

�u
 + F�;� _K� : (3:22)

Next, with (2.19) we have

G�
;�J
�u
 = _G��J

� + (G�J
�);� + ("� � 1)"�
�� _F 
u�J� ; (3:23)
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where we have used (2.16) for the second term on the right-hand side. The �rst and the last can also be written as

divergences. We give the details in the appendix and quote here only the �nal results. We have

_G��J
� = "�C��;

� (3:24)

where

C�� =
1

2
u�u� _F�
 _F�
 + 2 _F� _F� � _F
 _F 
g��

+�h�
 ( _G�
�
_F�;�g
� +

1

2
u�G��;
F�

�) (3.25)

and

"�
�� _F 
u�J� = "�D��;
� (3:26)

where

D�� = K�
_F� � h�� _F
 _F 
 + �[ �G
 _F
g��

�
1

2
u� �G��

_F� � �G�
_F� � u�(u� �G


 _F
 �
1

2
�G��

_F�)] : (3.27)

With (3.24) and (3.26), Eq.(3.23) can then be written

G�
;�J
�u
 = ("�C�� + G�J

� + ("� � 1)"�D��);
� : (3:28)

Finally, we also show in the appendix that the last term of (3.22) can be put into the form

F�;� _K� = H��;
� (3:29)

where

H�� = 2F�;� _F �u� � _F� _F �g��

��

�
F�;� �G

�u� �
1

2
u� �G��

_F� � _F� �G�

�
: (3.30)

From (3.28) and (3.29) we see that B� in (3.22) is a divergence,

d

B� = B��;
� (3:31)

where

B�� = C�� +
1

"�
G�J� + ("� � 1)D�� +H�� : (3:32)

Substituting (3.31) and (3.18) in (3.13) we conclude

that T�� in (3.12) is in fact a divergence,

T�� = T���
;� (3:33)

where

T��� = G��J� �G��J�g
�� �

1

2
G��J�g

��

+"�[A��� � u�B�� � F �
;
�K�] :(3.34)

A��� and B�� are given in Eqs.(3.19) and (3.32) to-

gether with (3.25), (3.27) and (3.30). From (3.33) and

(3.11) it then follows that

I��� ;� = 0 (3:35)

where

I��� = X
���

� �T��� : (3:36)

From (3.35) we conclude that I��o is to be interpreted

as the density of a conserved quantity and I��i as ex-

pressing its 
ux. The conserved quantity, when the 
ux

across a closed surface S involving a volume V vanishes,

is

I�� =

Z
I��od3x (3:37)
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where the density is

I��o = X
��o

� �T��o : (3:38)

As I��� is traceless in the �rst two indices, I�� is trace-

less I� = 0. This leaves us with �fteen independent

�rst-order conservation laws as anticipated in the non-

covariant calculations done in the medium rest frame[4].

If we add and subtract I�� to I�� we shall have the con-

servation laws associated to the symmetric zilch and

its antisymmetric companion, which are then the irre-

ducible parts of I�� . The divergence in (3.35) splits

into

I(��)� ;� = 0 I [��]� ;� = 0 (3:39)

where, from (3.36), (3.1), (3.2) and (3.10),

I(��)� = Z
���

� �T (��)� ; (3:40)

I [��]� = Y
���

� �T [��]� ; (3:41)

with Z and Y de�ned as in (3.10) forX . The symmetric

constants of motion are

I(��) =

Z
I(��)od3x (3:42)

with nine independent components, and the antisym-

metric are

I [��] =

Z
I [��]od3x (3:43)

with six independent components.

In the medium rest frame So we recuperate the results

obtained before[4].. In fact, let us calculate (3.38) in

So. From (3.10) and (3.3) we obtain for � = i, � = 0

then � = 0, � = i and then � = i, � = j,

c

X
ioo

(o) = "�(E(o) �E(o)
;o)i ; (3:44)

X
oio

(o) = "�(B(o) �B(o)
;o)i = �"�

�
B(o) � (r�E(o))

�
i

; (3:45)

X
ijo

(o) = "�

�
�B

(o)
i

_E
(o)
j +E

(o)
j

_B
(o)
i +

1

2
�ij(B

(o): _E(o) � _B(o):E(o))

�
: (3:46)

Next we calculate T��o
(o) . From (3.34) we get

T ioo
(o) = �(E(o) � J(o))i ; (3:47)

T oio
(o) = "�

��
Ek

_Ek);i �
�

2
( _B

(o)
k;i

_E
(o)
k + �B(o)

a "iaj _B
(o)
j

��
; (3:48)

and

T ijo

(o) = B
(o)
i J

(o)
j �

1

2
B(o):J(o)�ij

�"�

�
E

(o)
k E

(o)
k;ij +

�

2
_B(o)
k;i "jkm

_B(o)
m

�
: (3.49)

Taking (3.44) and (3.47) in (3.38) we obtain from (3.37), and the second Maxwell equation (2.2)

Iio(o) =

Z
E(o) � (r�B(o))d3x : (3:50)

This is the constant of motion in Eq.(I-16), with its integrand displayed in (I-14). Now we substitute (3.45) and

(3.48) in (3.38) and calculate (3.37). Let us show that all of (3.48) can actually be written as a 3-divergence and,

therefore, will not contribute to (3.37). Using Maxwell's equations we get

T oio
(o) = "�

�
�(Ek

_Ek);i +
1

2
�
h
( _B(o): _E(o));i � ( _B

(o)
k

_Ei
(o));k

i�
; (3:51)
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whose volume integral will then vanishes. Therefore, only (3.45) can contribute to (3.37) and we obtain,

Ioi(o) = �"�

Z
B(o) � (r�E(o))d3x ; (3:52)

which agrees with Eq.(I-22).

For the last case we use in the last tensor of (3.49) _B(o)
k;i =

_B(o)
i;k + "ikj(r� _B(o))j and perform an integration by

parts to obtain

_B(o)
k;i "jkm

_B(o)
m = ( _Bi

(o)"jkm _Bm
(o));k � 2 _Bi

(o)(r� _B(o))j

+�ij(r� _B(o)): _B(o) : (3.53)

The 3-divergence in this expression cannot contribute to the volume integral and we obtain, from (3.46),

Iij(o) =

Z
[�B

(o)
i (r�B(o))j � "�Ej

(o)(r� E(o))i

+
1

2
�ij(B(o):(r�B(o)) + "�E(o):(r� E(o))) (3.54)

�"��(Ek
(o)E

(o)
k;ij + B _Bi

(o)r2Ej
(o)

�
1

2
��ij _Bk

(o)r2E
(o)
k )] :

This agrees with the result that we have in (I-32) when we use in that paper the relation

( _B(o))2 = �E
(o)
i r2E

(o)
i + (E

(o)
j E

(o)
j;i );i � (E

(o)
j E

(o)
i;j );i ; (3:55)

that follows from Maxwell's equations.

Appendix

1. Using (2.23), the last term in (3.16) can be written

F�;�� �G
� = _F��;� �G

� + (F�;� �G
�);� : (A1)

With (2.9) and (2.18) the �rst contribution can be written

_F��;� �G
� =

1

2
u� _G��;�

�F �� + _G�
;�
�F�� : (A2)

Using again (2.23) and performing a few di�erentiation by parts we get

_F��;� �G
� = u�( _G��;�

_F �);
� + ( _G�;�

_F�);
� � ( _G�;�

_F �);� + _G�;��
_F � : (A3)

For the last term we write, with the help of (3.9) for dotted quantities,

_G�;��
_F � =

1

2

�
( _G�;�

_F �);� + ( _G�;�
_F �);� �

1

2
_G��

;�
_F��;�

�
: (A5)

Finally, for the last term of this expression we use (2.8) to write it as

�
1

2
_G��

;�
_F��;� = ( _G��

;�
_F��);� : (A6)

Substituting this in the preceeding equation and going from there to (A3) we can see that (A1) leads to

(3.17).

2. Using (2.14) for the �rst term on the right-hand side of (3.23) we can write

_G��J
� = "�(�2C1� + �C2�) (A6)
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where, after using (2.9), (2.18) and (2.23),

C1� = �
1

2

h
u� _F�
 �F

�
 + 2( _F� _F
);

 � 2 _F
 _F 


;�

i
: (A7)

and

C2� = h��
h
( _G��

_F�
;�);� � _G��;�

_F�
;�

i
: (A8)

From (3.8) the last term of (A8) gives, after using Eqs.(2.8) and (2.21),

h�� _G��;�
_F�

;� = �
1

2
h��u�(G

��
;�F��);� : (A9)

Taking this in (A8) we see that (A6) leads to (3.24).

3. Consider now the last term of (3.23). From (2.10) we obtain

"�
�� _F 
u�J� = "�
h
(K�

_F 
);
 �K
;�
_F 
 + u� _K


_F 

i

: (A10)

Next we use (2.11) to write the middle term as

K
;�
_F 
 = ( _F
 _F 
);� � �( �G


_F 
);� + � �G

_F 


;� : (A11)

For the last term of this expression we obtain, with (2.23) and (3.7),

�G

_F 


;� =
1

2
u�( �G

�� _F�);� + ( �G

_F�);


 : (A12)

For the last term in the right-hand side of (A10) we use (2.11), perform a dot-di�erentiation by parts in the

term proportional to �, use (3.9) contracted write u�u� and use (2.23) followed by (2.21). The �nal result is

_K

_F 
 = ( _F
 _F 
);�u

� � �

�
( �G


_F 
);�u
� �

1

2
( �G�
 _F�);


�
: (A13)

Taking (A13) and (A12) in (A10) we obtain (3.26).

4. Finally, we consider the last term of (3.22). Using again (2.11), making a dot-di�erentiation by parts and

using (2.23) followed by (3.7) contracted with u�, we obtain

F�;� _K� = 2(F�;� _F �);�u� � ( _F� _F �);� � �

�
(F�;� �G

�);�u
� �

1

2
u�( �G

�� _F�);� � ( _F� �G
�);�

�
: (A14)

This result leads to (3.29).

d
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