Study of the anomalous magnetic behavior of nanostructures by X-ray magnetic circular dichroism

Rogerio Magalhães-Paniago#,*,

#Departamento de Física, UFMG, Belo Horizonte, Brazil* Laboratório Nacional de Luz Síncrotron, Campinas SP, Brazil

Overview

- 1. Tutorial: what is X-ray Magnetic Circular Dichroism
- 2. Scientific cases:
 - A. Anomalous Palladium magnetism in nanostructures
 - **B.** Giant orbital magnetic moment of Co/Au nanostructures
 - C. Magnetic domain reconfiguration in MnAs/GaAs films
 - **D.** Fe/MnAs magnetic coupling
 - E. Microscopy with magnetic domain sensitivity
- 4. Conclusion

1. Tutorial: what is X-ray Magnetic Circular Dichroism (XMCD)

XMCD reflects the dependence of photon absorption of a material on polarization. X-ray absorption spectroscopy utilizes the energy dependent absorption of x-rays to obtain information about the elemental composition

X-ray absorption spectra of a wedge sample, revealing the chemical composition

1. Tutorial: what is X-ray Magnetic Circular Dichroism (XMCD)

It also gives information on the chemical environment of the atoms and their magnetic state. Core electrons are excited in the absorption process into empty states above the Fermi energy and thereby probe the electronic and magnetic properties of the empty valence levels.

L-edge x-ray absorption edge spectra of Fe, Co and Ni in the form of the elemental metals and as oxides. They two main structures are called the L3 (lower energy) and L2 absorption edges. The two main peaks in the spectra arise from the spin orbit interaction of the 2p core shell and the total intensity of the peaks is proportional to the number of empty 3d valence states.

1. Tutorial: what is X-ray Magnetic Circular Dichroism (XMCD)

The metals are usually ferromagnetic and their magnetic properties are best studied with X-Ray Magnetic Circular Dichroism spectroscopy, while the oxides are usually antiferromagnetic and are studied with X-Ray Magnetic Linear Dichroism.

Linear Dichroism - Antiferromagnets

Circular Dichroism - Ferromagnets

1. Tutorial: The concept of XMCD – Spin and Orbital Moments

- X-ray absorption process \rightarrow spin dependent
- Use of right or left circularly polarized photons \rightarrow transfer angular momentum to the excited photoelectron
- $p_{3/2}$ (L3) and $p_{1/2}$ (L2) levels have opposite spin-orbit coupling \rightarrow spin polarization opposite at the two edges

Electronic transitions in conventional L-edge x-ray absorption (a), and x-ray magnetic circular x-ray dichroism (b,c), illustrated in a one-electron model. The transitions occur from the spin-orbit split 2p core shell to empty conduction band states. By use of circularly polarized x-rays the spin moment (b) and orbital moment (c) can be determined from linear combinations of the dichroic difference intensities A and B, according to other sum rules.

1. Tutorial: The concept of XMCD – Spin and Orbital Moments

UF

1. Tutorial: The concept of XMCD – Spin and Orbital Moments

UΕ

$$m_{spin} = -\frac{6\int_{L_3}(\mu_+ - \mu_-)dE - 4\int_{L_3 + L_2}(\mu_+ - \mu_-)dE}{\int_{L_3 + L_2}(\mu_+ + \mu_-)dE} * (10 - n_{3d})$$

$$m_{orb} = -\frac{4\int_{L_3}(\mu_+ - \mu_-)dE}{3\int_{L_2 + L_3}(\mu_+ + \mu_-)dE} * (10 - n_{3d})$$

UF

G

UF M G

$$m_{spin} = -\frac{6\int_{L3}(\mu_{+} - \mu_{-})dE - 4\int_{L3+L2}(\mu_{+} - \mu_{-})dE}{\int_{L3+L2}(\mu_{+} + \mu_{-})dE}(10 - n_{3d})(1 + \frac{7\langle T_{z}\rangle}{2\langle S_{z}\rangle})$$

$$m_{orb} = -\frac{4\int_{L3}(\mu_{+} - \mu_{-})dE}{3\int_{L3+L2}(\mu_{+} + \mu_{-})dE}(10 - n_{3d})$$

$$m_{orb}/m_{spin} = \frac{2\int_{L3+L2}(\mu_{+}-\mu_{-})dE}{9\int_{L3}(\mu_{+}-\mu_{-})dE - 6\int_{L3+L2}(\mu_{+}-\mu_{-})dE}$$

B. T. Thole et al., Phys. Rev. Lett. 68, 1943 (1992) P. Carra et al., Phys. Rev. Lett. 70, 694 (1993)

VOLUME 75, NUMBER 1

PHYSICAL REVIEW LETTERS

3 JULY 1995

Experimental Confirmation of the X-Ray Magnetic Circular Dichroism Sum Rules for Iron and Cobalt

C. T. Chen,¹ Y. U. Idzerda,² H.-J. Lin,^{1,*} N. V. Smith,^{1,†} G. Meigs,¹ E. Chaban,¹ G. H. Ho,^{3,*} E. Pellegrin,¹ and F. Sette^{1,‡}

¹AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974 ²Naval Research Laboratory, Washington, DC 20375 ³Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (Received 12 May 1994; revised manuscript received 30 September 1994)

	Fe (bcc)			Co (hcp)		
	$m_{\rm orb}/m_{\rm spin}$	morb	$m_{\rm spin}$	$m_{ m orb}/m_{ m spin}$	morb	$m_{ m spin}$
MCD and sum rules	0.043	0.085	1.98	0.095	0.154	1.62
Gyromagnetic ratio [16]	0.044	0.092	2.08	0.097	0.147	1.52
OP-LSDA [17]	0.042	0.091	2.19	0.089	0.140	1.57
OP-LSDA (with OP off) [17]	0.027	0.059	2.19	0.057	0.090	1.57
SPR-LMTO [10]	0.020	0.043	2.20	0.054	0.087	1.60
FLAPW [11]	0.023	0.050	2.16	0.045	0.071	1.58
MCD and sum rules (corrected)	0.043	0.086	1.98	0.099	0.153	1.55

2. Scientific cases: A. Anomalous Palladium magnetism in nanostructures

VOLUME 91, NUMBER 19

PHYSICAL REVIEW LETTERS

week ending 7 NOVEMBER 2003

1.0

0.

0.

300K--350K-→

2

Magnetic Field(10⁴Oe)

3

5

Magnetization (emu/g)

Surface Ferromagnetism of Pd Fine Particles

T. Shinohara* and T. Sato

Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan

T. Taniyama

Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8502, Japan (Received 17 July 2003; published 4 November 2003)

We report clear evidence of the ferromagnetism of gas-evaporated Pd fine particles with a clean surface. The clean Pd particle is found to have a magnetic heterostructure: the surface of the particle is ferromagnetic and the rest is paramagnetic. The size dependence of the magnetic saturation component reveals that the ferromagnetic ordering occurs only on (100) facets of the particle and that the topmost two to five layers from the surface contribute to the ferromagnetism with a magnetic moment of $(0.75 \pm 0.31)\mu_B/\text{atom.}$

DOI: 10.1103/PhysRevLett.91.197201

PACS numbers: 75.50.Gg, 75.50.Tt, 75.70.Rf, 75.75.+a

2. Scientific cases: A. Anomalous Palladium magnetism in nanostructures

VOLUME 91, NUMBER 23

PHYSICAL REVIEW LETTERS

week ending 5 DECEMBER 2003

Ferromagnetism in fcc Twinned 2.4 nm Size Pd Nanoparticles

B. Sampedro,^{1,2} P. Crespo,^{1,2} A. Hernando,^{1,2} R. Litrán,³ J. C. Sánchez López,³ C. López Cartes,³ A. Fernandez,³ J. Ramírez,⁴ J. González Calbet,^{1,4} and M. Vallet^{1,5}

¹Instituto de Magnetismo Aplicado, "Salvador Velayos," UCM, RENFE, CSIC, Las Rozas, P.O. Box 155, Madrid 28230, Spain ²Departamento de Física de Materiales, UCM, Madrid 28040, Spain

³Instituto de Ciencias de Materiales de Sevilla (ICMSE), Centro Mixto CSIC-UNIV, Sevilla 41092, Spain ⁴Departamento de Química Inorgánica, Facultad de Química, UCM, Madrid 28040, Spain ⁵Departamento de Química Inorgánica, Facultad de Farmacia, UCM, Madrid 28040, Spain (Received 24 July 2003; published 4 December 2003)

The onset of ferromagnetism has been experimentally observed in small Pd particles of average diameter 2.4 nm. High-resolution studies reveal that a high percentage of the fcc particle exhibits single and multiple twinning boundaries. The spontaneous magnetization close to 0.02 emu/g seems to indicate that only a small fraction of atoms holds a permanent magnetic moment and contributes to ferromagnetism. The possible origin of ferromagnetism is briefly discussed according to different models recently reported.

DOI: 10.1103/PhysRevLett.91.237203

PACS numbers: 75.50.Cc, 75.50.Tt, 75.70.Cn

Techniques: HRTEM, SQUID

Ferromagnetism due to defects (stacking faults)!

2A. Palladium magnetism: Stoner Criterion for Magnetism of Conduction Electrons

$$\Delta E_{\rm kin} = \frac{1}{2}g(E_F)(\delta E)^2$$
$$\Delta E_{\rm pot} = -\frac{1}{2}U \cdot (g(E_F)\delta E)^2$$
$$U = \mu_0 \mu_B^2 \lambda$$

$$\Delta E = \Delta E_{\rm kin} + \Delta E_{\rm pot}$$
$$= \frac{1}{2}g(E_F)(\delta E)^2 \left(1 - U \cdot g(E_F)\right)$$

 $\Delta E < 0 \implies$ Energetically favorable

Stoner Criterion: U ⋅ g(E_F) ≥ 1

2A. Palladium magnetism: Stoner Criterion for Magnetism of Conduction Electrons

2A. Observation of Ferromagnetism in PdCo nanoparticles encapsulated in Carbon Nanotubes

UF

2A. Observation of Ferromagnetism in PdCo em nanoparticles encapsulated in Carbon Nanotubes

Microscopia Eletrônica de Transmissão (TEM)

Homogeneidade da amostra;

Anisotropia de forma das partículas;

Estrutura cristalina: PdCo (fcc) próxima a do Paládio *bulk*.

Concentração de Pd em relação ao Co ao longo da partícula é aproximadamente constante

2A. Observation of Ferromagnetism in PdCo em nanoparticles encapsulated in Carbon Nanotubes

<u>Magnetometria de amostra</u> <u>vibrante (VSM)</u> Comportamento magnético global da amostra;

Temperatura ambiente;

Campo de saturação: 1500 Oe

Anisotropia magnética uniaxial:eixo duro: H perpendicular;eixo fácil: H longitudinal.

H_{longitudinal}

2A. A. Observation of Ferromagnetism in PdCo em nanoparticles encapsulated in Carbon Nanotubes

UF 🖊

<u>Magnetometria de amostra</u> <u>vibrante (VSM)</u> Comportamento magnético global da amostra;

Temperatura ambiente;

Campo de saturação: 1500 Oe

Anisotropia magnética uniaxial:eixo duro: H perpendicular;eixo fácil: H longitudinal.

Hlongitudinal

2A. Observation of Ferromagnetism in PdCo em nanoparticles encapsulated in Carbon Nanotubes

2A. Observation of Ferromagnetism in PdCo em nanoparticles encapsulated in Carbon Nanotubes

2A. X-ray magnetic circular dichroism of PdCo nanoparticles

XMCD at LNLS

UF

Informação magnética com informação química-estrutural!

Temperatura ambiente;

LNLS, linhas de luz: bordas L_2 e L_3 Co - PGM (100-1000ev); Pd - SXS (1000-3000eV);

Campo magnético aplicado: ~10000 Oe (1 T) <6x o necessário

2A. Observation of Ferromagnetism in PdCo em nanoparticles encapsulated in Carbon Nanotubes

Dicroísmo Circular Magnético de Raios-X (XMCD)

Cobalto: $m_{orb}/m_{spin} = (0, 12 \pm 0, 05)$

Paládio: $m_{orb}/m_{spin} = (0,07\pm0,05)$

Cobalto bulk: 0,099

APPLIED PHYSICS LETTERS 96, 253114 (2010)

Observation of ferromagnetism in PdCo alloy nanoparticles encapsulated in carbon nanotubes

Daniel Bretas Roa,¹ Ingrid David Barcelos,¹ Abner de Siervo,^{2,3} Kleber Roberto Pirota,² Rodrigo Gribel Lacerda,¹ and Rogério Magalhães-Paniago^{1,a)}

¹Departamento de Física, Universidade Federal de Minas Gerais, 30123-970 Belo Horizonte, Brazil

²Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-970 Campinas, Brazil

³Laboratório Nacional de Luz Síncrotron, 13084-971 Campinas, Brazil

2. Scientific cases: B. Room temperature observation of orbital momentum enhancement of Co nanoclusters grown on Au(110)

Low dimensional systems (nanoparticles, clusters, 1d systems) exhibit anomalous magnetic behavior)

<u>XMCD at LNLS</u> New Beamline PGM

EPU-type Undulator beamline VLS PGM monochromator Polarized soft-X-rays Energy = 100-1100eV

Applications: X-ray magnetic circular dichroism X-ray photoelectron Difraction X-ray photoelectron Spectroscopy Electron spectroscopy of liquids Among others...

Test experiment: Magnetism of Cobalt nanoparticles grown on Au (110)

UFN

Preparation of Au(110) surface (2x1) reconstruction observed by lowenergy electron diffraction) Surface prepared by 1.5 KeV Ar+ sputtering, 400° C annealing , P_{base} =2 x 10⁻¹⁰ mBar

Asymmetric deposition of Cobalt

Cobalt e-beam source Variable size Co clusters Au(110)

Preparation experiment at DF-UFMG:

STM and LEED of Au(110) and 4 ml Co/Au(110)

UF

XMCD of Cobalt nanoparticles grown on Au (110)

UF /

G

First measurement of systems of low dimensionality Room temperature Applied magnetic field 1.6 Tesla

Beamline PGM -LNLS, Cobalt $L_2 e L_3$ Edges PGM (200-1000ev);

X-ray absorption spectroscopy of Cobalt nanoparticles grown on Au (110)

UF

G

XMCD of Cobalt nanoparticles grown on Au (110)

UF

G

Determination of orbital moments is possible if magnetization is not saturated

Determination of orbital and spin moments is not possible if magnetization is not saturated

Low temperature (5Kelvin)

Room temperature (300Kelvin)

Large orbital momentum of Cobalt nanoparticles

 $m_{\rm L}$ (bulk Co) $\rightarrow 0.2$

UF M G

High coordination Number $m_L \rightarrow 0$

Large orbital momentum of Cobalt nanoparticles

 $m_{\rm L}$ (bulk Co) $\rightarrow 0.2$

5

N

2C. Magnetic domain reconfiguration in MnAs/GaAs(001) films

2C. Magnetic domain reconfiguration in MnAs/GaAs(001) films: Terrace structure

- q_x: terraces period;
- q_z: terraces height;
- Elastic scattering:
- Rocking scans.

Appl. Phys. Lett. (2005)

2C. Magnetic domain reconfiguration in MnAs/GaAs(001) films X-Ray Magnetic Resonant Scattering: Polarization and Energy

Near the ressonance, charge scattering increases considerably. Magnetic effects are noticeable, as large as 7% at the Mn L_{III} edge (639eV).

Depending on the polarization, different magnetization directions are probed.

2C. MnAs/GaAs(001) films: terrace structure and Magnetic Hysteresis measured by resonant magnetic X-ray scattering

Hysteresis and rocking curves were done as function of temperature.

2C. MnAs/GaAs(001) films: Magnetic Hysteresis measured by resonant magnetic X-ray scattering

Shrinking of ferromagnetic terrace \rightarrow Reconfiguration of magnetic domains

2C. Magnetic force micorsopy of MnAs/GaAs(001) film

2C. MnAs/GaAs(001) films: Magnetic Hysteresis measured by resonant magnetic X-ray scattering

Thermodynamic model of magnetic reconfiguration (J. Appl. Physics 2006)

2D. Fe/MnAs films: chemical sensitivity using resonant magnetic X-ray scattering

Mn L₃ edge \rightarrow 640eV, Fe L₃ edge \rightarrow 707eV

D. Fe/MnAs films: magnetic hysteresis measured by magnetic resonant Xray scattering. Each scans is performed at two different absorption edges: Fe and Mn !!!

UF

2D. Fe/MnAs films: Magnetic Hysteresis measured by resonant magnetic X-ray scattering: magnetic coupling between MnAs teraces and Fe film.

27°C 30°C Can we make a thermodynamic model of magnetic reconfiguration (current research) ?

2E. Microscopy with magnetic domain sensitivity

UFN

G

Ferromagnetic domain pattern for a thin Co layer on NiO(100), showing all four spin directions in Co. The spin directions are pinned by the underlying NiO.

4. Conclusions

- X-ray magnetic circular dichroism reveals magnetism with chemical specificity
- Orbital and spin moments can be determined separately
 - Anomalous Palladium magnetism in nanostructures
 - Giant orbital magnetic moment of Co/Au nanostructures
 - Magnetic domain reconfiguration in MnAs/GaAs films
 - Fe/MnAs magnetic coupling
 - Microscopy with magnetic domain sensitivity

Acknowledgements

- Daniel Bretas, Letícia Coelho (DF-UFMG)
- Harry Westfahl (LNLS, Campinas)
- Maurizio Sacchi (SOLEIL, France)

Thanks: ABTLuS, CNPq, FAPESP, FAPEMIG

