MAGNETOCALORIC AND BAROCALORIC EFFECTS IN METALS

PRELIMINARIES

THEORY AND CALCULATIONS

APPLICATIONS

PRELIMINARIES

MAGNETOCALORIC EFFECT

HISTORICAL FACTS

MAGNETIC REFRIGERATION

BAROCALORIC EFFECT

MAGNETOCALORIC EFFECT

Heating

HISTORICAL FACTS

Thomson's work 1878 (Comments)

Thomson W. "Thermoelastic, thermomagnetic and pyroelectric properties of matter" Phil. Mag. Ser 5 5(1878)4.

Weis and Piccard 's work 1917:Experimental discovery

Weiss, P., Piccard A., "Le phénomène magnétocalorique" J. Phys. 7(1917)103

Browns's work - 1978: Room temperature magnetic refrigerator

Brown, G. V., "Heat pump near room temperature" J. Appl. Phys. 47(1976)3673.

Gschneidner 's work - 1997: Giant magnetocaloric effect: Gd₅Si₂Ge₂

V. K. Pecharsky, K. A. Gschneidner Jr, "Giant magnetocaloric effec in Gd₅Si₂Ge₂" Phys. Rev. Let. 78 (1997) 4494

MAGNETOCALORIC EFFECT

MAGNETOCALORIC QUANTITIES

Temperature

INVERSE MAGNETOCALORIC EFFECT

Temperature

Temperature

How to measure?

EXPERIMENTAL TECHNIQUES

Adiabatic temperature change (ΔT_{ad})

Direct measurements: Thermopar

Indirect measurements: Specific heat

Indirect measurements: Specific heat and magnetization

Isothermal entropy change (ΔS_{iso})

Indirect measurements: Specific heat

Indirect measurements: magnetization

EQUIPMENTS

Calorimeter: ΔS_{iso} and ΔT_{ad}

Calorimeter and VSM/Squid: ΔS_{iso} and ΔT_{ad}

Squid/VSM : ΔS_{iso}

How to calculate?

MAGNETOCALORIC EFFECT

$$\Delta S_{iso}(T, \Delta B, P) = S(T, B_2, P) - S(T, B_1, P)$$

$$\Delta T_{ad}\left(T,\Delta B,P\right) = T_2 - T_1$$

 $S(T, B_2, P) = S(T, B_1, P)$

Temperature

Temperature

THERMODYNAMICS OF THE MCE (ΔS_{iso})

ENTROPY CHANGE

$$dS(T, B, P) = \left[\frac{\partial S(T, B, P)}{\partial T} + \frac{\delta S(T_C, B, P)}{\delta T}\right]_{B, P} dT + \left[\frac{\partial S(T, B, P)}{\partial B} + \frac{\delta S(T, B_C, P)}{\delta B}\right]_{T, P} dB + \left[\frac{\partial S(T, B, P)}{\partial P} + \frac{\delta S(T, B, P_C)}{\delta P}\right]_{T, B} dP$$

ISOTHERMAL / ISOBARIC PROCESS

$$\Delta S_{iso}(T, \Delta B, P) = \int_{B_1}^{B_2} \left[\frac{\partial S(T, B, P)}{\partial B} + \frac{\delta S(T, B_C, P)}{\delta B} \right]_{T, P} dB$$

SECOND ORDER TRANSITION

$$\Delta S_{iso}(T, \Delta B, P) = \int_{B_1}^{B_2} \left[\frac{\partial S(T, B, P)}{\partial B} \right]_{T, P} dB$$

THERMODYNAMICS OF THE MCE (ΔT_{ad})

ENTROPY CHANGE

$$dS(T, B, P) = \left[\frac{\partial S(T, B, P)}{\partial T} + \frac{\delta S(T_C, B, P)}{\delta T}\right]_{B, P} dT + \left[\frac{\partial S(T, B, P)}{\partial B} + \frac{\delta S(T, B_C, P)}{\delta B}\right]_{T, P} dB + \left[\frac{\partial S(T, B, P)}{\partial P} + \frac{\delta S(T, B, P_C)}{\delta P}\right]_{T, B} dP$$

$$\Delta T_{ad}(T, \Delta B, P) = -\int_{B_1}^{B_2} \frac{1}{C(T, B, P)} \left[\frac{\partial S(T, B, P)}{\partial B} + \frac{\delta S(T, B_C, P)}{\delta B} \right]_{T, P} dB$$

$$\Delta T_{ad}(T, \Delta B, P) = -\int_{B_1}^{B_2} \frac{1}{C(T, B, P)} \left[\frac{\partial S(T, B, P)}{\partial B} \right]_{T, P} dB$$

THERMODYNAMICS: MAXWELL RELATION

THERMODYNAMICS OF THE MCE

MAGNETIZATION CURVE

MAGNETIC REFRIGERATOR

ACADEMIC PROTOTYPE

Temperature

В

Carnot cicle

Environmental friendly

Large values of magnetic field

ACADEMIC PROTOTYPE

BAROCALORIC EFFECT

BAROCALORIC EFFECT

Isobaric expansion

CONVENTIONAL REFRIGERATOR

MAGNETIC BAROCALORIC EFFECT

MAGNETIC BAROCALORIC EFFECT

MAGNETIC BAROCALORIC EFFECT

BAROCALORIC QUANTITIES

$$\Delta S_{iso}^{bar}(T, B, \Delta P) = S(T, B, P_2) - S(T, B, P_1)$$

 $\Delta T_{ad}^{bar}\left(T,B,\Delta P\right) = T_1 - T_2$

 $S(T, B, P_2) = S(T, B, P_1)$

THERMODYNAMICS OF THE BCE (ΔS_{iso}^{bar}

ENTROPY CHANGE

$$dS(T, B, P) = \left[\frac{\partial S(T, B, P)}{\partial T} \neq \frac{\delta S(T_C, B, P)}{\delta T}\right]_{B, P} dT + \left[\frac{\partial S(T, B, P)}{\partial B} + \frac{\delta S(T, B_C, P)}{\delta B}\right]_{T, P} dB$$

$$+ \left[\frac{\partial S(T, B, P)}{\partial P} + \frac{\delta S(T, B, P_C)}{\delta P} \right]_{T, B} dP$$

ISOTHERMAL PROCESS

$$\Delta S^{bar}_{iso}(T,B,\Delta P) = \int\limits_{P_1}^{P_2} \left[\frac{\partial S(T,B,P)}{\partial P} + \frac{\delta S(T,B_C,P)}{\delta P} \right]_{T,B} dP$$

SECOND ORDER TRANSITION

$$\Delta S^{bar}_{iso}(T,B,\Delta P) = \int\limits_{P_1}^{P_2} \left[\frac{\partial S(T,B,P)}{\partial P} \right]_{T,B} dP$$

THERMODYNAMICS OF THE BCE (ΔT_{ad}^{bar})

ENTROPY CHANGE

$$\mathbf{0} = \left[\frac{\partial S(T, B, P)}{\partial T} + \frac{\delta S(T_C, B, P)}{\delta T}\right]_{B, P} dT + \left[\frac{\partial S(T, B, P)}{\partial B} + \frac{\delta S(T, B_C, P)}{\delta B}\right]_{T, P} dB$$

$$+ \left[\frac{\partial S(T, B, P)}{\partial P} + \frac{\delta S(T, B, P_C)}{\delta P} \right]_{T, B} dP$$

ADIABATIC PROCESS

ISOFIELD PROCESS

$$\Delta T^{bar}_{ad}(T,B,\Delta P) = -\int_{P_1}^{P_2} \frac{1}{C(T,B,P)} \left[\frac{\partial S(T,B,P)}{\partial P} + \frac{\delta S(T,B,P_C)}{\delta P} \right]_{T,B} dP$$

SECOND ORDER TRANSITION

$$\Delta T^{bar}_{ad}(T,B,\Delta P) = -\int_{P_1}^{P_2} \frac{1}{C(T,B,P)} \left[\frac{\partial S(T,B,P)}{\partial P} \right]_{T,B} dP$$

ANISOTROPIC MAGNETOCALORIC EFFECT

ANISOTROPIC MCE

ANISOTROPIC MCE

Niktin et al, Phys. Rev. Lett. 105 (2010)137205

von Ranke et al, J. Appl. Phys. 104 (2008)093906

ANISOTROPIC MAGNETOCALORIC EFFECT

 $\Delta S_{iso}^{ani} \left(T, B, \Delta \theta \right) = S(T, B, \theta_2) - S(T, B, \theta_1)$ $\Delta T_{ad}^{ani} \left(T, B, \Delta \theta \right) = T_2 - T_1$

$$S(T, B, \theta_2) = S(T, B, \theta_1)$$

Temperature

Temperature

THERMODYNAMICS OF THE AMCE (ΔS_{iso}^{ani}

ENTROPY CHANGE

$$dS(T,B,\theta) = \left[\frac{\partial S(T,B,\theta)}{\partial T} + \frac{\delta S(T_C,B,\theta)}{\delta T}\right]_{B,\theta} dT + \left[\frac{\partial S(T,B,\theta)}{\partial B} + \frac{\delta S(T,B_C,\theta)}{\delta B}\right]_{T,\theta} dB$$

$$+ \left[\frac{\partial S(T, B, \theta)}{\partial \theta} + \frac{\delta \theta(T, B, \theta_C)}{\delta \theta} \right]_{T, B} d\theta$$

ISOTHERMAL PROCESS

ISOFIELD PROCESS

$$\Delta S_{iso}^{ani}(T, B, \Delta \theta) = \int_{\theta_1}^{\theta_2} \left[\frac{\partial S(T, B, \theta)}{\partial \theta} + \frac{\delta S(T, B, \theta_C)}{\delta \theta} \right]_{T, B} d\theta$$

SECOND ORDER TRANSITION

$$\Delta S_{iso}^{ani}(T,B,\Delta\theta) = \int\limits_{\theta_1}^{\theta_2} \left[\frac{\partial S(T,B,\theta)}{\partial \theta} \right]_{T,B} d\theta$$

THERMODYNAMICS OF THE AMCE (ΔT_{ad}^{ani})

ENTROPY CHANGE

AD

$$\mathbf{O} = \begin{bmatrix} \frac{\partial S(T, B, \theta)}{\partial T} + \frac{\delta S(T_C, B, \theta)}{\delta T} \end{bmatrix}_{B, \theta} dT + \begin{bmatrix} \frac{\partial S(T, B, \theta)}{\partial B} + \frac{\delta S(T, B_C, \theta)}{\delta B} \end{bmatrix}_{T, \theta} dB$$
$$+ \begin{bmatrix} \frac{\partial S(T, B, \theta)}{\partial \theta} + \frac{\delta \theta(T, B, \theta_C)}{\delta \theta} \end{bmatrix}_{T, B} d\theta$$
$$\mathbf{ADIABATIC PROCESS}$$
$$\mathbf{ISOFIELD PROCESS}$$
$$\Delta T_{ad}^{ani}(T, B, \Delta \theta) = -\int_{\theta_1}^{\theta_2} \frac{1}{C(T, B, \theta)} \begin{bmatrix} \frac{\partial S(T, B, \theta)}{\partial \theta} + \frac{\delta S(T, B, \theta_C)}{\delta \theta} \end{bmatrix}_{T, B} d\theta$$

SECOND ORDER TRANSITION

$$\Delta T_{ad}^{ani}(T, B, \Delta \theta) = -\int_{\theta_1}^{\theta_2} \frac{1}{C(T, B, \theta)} \left[\frac{\partial S(T, B, \theta)}{\partial \theta} \right]_{T, B} d\theta$$

MAGNETIC MATERIALS

MAGNETIC MATERIALS

Gd

Er

Fe₂

C0

A. M. Tishin and Y. Spickin, The magnetocaloric effect and its application.

Gschneidner et al, Rep. Prog. Phys 68(2005)1479.
THEORY AND CALCULATIONS

GENERAL INTRODUCTION

THERMODYNAMIC VIEW

SYSTEMS OF LOCALIZED MAGNETIC MOMENTS

APROXIMATIONS

CALORIC QUANTITIES

MAGNETISM

Transition metals and alloys

ATOMIC MAGNETISM

$[Xe]4f^n5d^16s^2$

Transition metals

[Ar]3dⁿ6s² [Kr]4dⁿ6s²

 $[Xe]4f^{14}5d^{n}6s^{2}$

RARE EARTH METALS AND THEIR ALLOYS

RARE EARTH METALS

REGIMES

CANONICAL ENSEMBLE

 $Z = \sum_{i=1}^{n} e^{-\beta E_i}$

TRANSITION METALS AND THEIR ALLOYS

ITINERANT MAGNETISM

GRAN-CANONICAL ENSEMBLE

$$Z = \prod_{k\sigma} \left\{ 1 + \exp\left[-\beta \left(\varepsilon_{k\sigma} - \mu\right)\right] \right\}$$

RARE EARTH METALS AND ALLOYS

MICROSCOPIC DESCRIPTION

HAMILTONIAN

Lattice

$$\mathcal{H}_{lat} = \sum_{q} \hbar \omega_q a_q^+ a_q$$

Non magnetic electrons (spd)

$$\mathcal{H}_{el}^{spd} = \sum_k \varepsilon_k c_k^+ c_k$$

Magnetic electrons (4f)

$$\mathcal{H}_{mag}^{4f} = -\sum_{i,j} \mathcal{J}_{ij}(r) \vec{J}_i \cdot \vec{J}_j - \sum_i g\mu_B \vec{B} \cdot \vec{J}_i$$

$$\mathcal{H} = \mathcal{H}_{lat} + \mathcal{H}_{el}^{spd} + \mathcal{H}_{mag}^{4f}$$

MAGNETIC HAMILTONIAN

MEAN FIELD THEORY

Hamiltonian

$$\mathcal{H}_{mag}^{4f} = -\sum_{i,j} \mathcal{J}_0 \vec{J}_i \cdot \vec{J}_j - \sum_i g\mu_B \vec{B} \cdot \vec{J}_i$$

Mean field
Molecular field

$$\mathcal{H}_{mag}^{4f} = -\mathcal{J}_0 \sum_i \vec{J_i} \cdot \left[\sum_j \left\langle \vec{J_j} \right\rangle\right] - \sum_i g \mu_B \vec{B} \cdot \vec{J_i}$$

Isotropic system

$$\mathcal{H}^{4f}_{mag} = -\sum_{i} g\mu_B B^{eff} \cdot J^z_i$$

$$B^{eff} = B + \frac{\mathcal{J}_0 \left\langle J^z \right\rangle}{g\mu_B}$$

MEAN FIELD THEORY

Equation of motion

$$\mathcal{H}_{mag}^{4f} \left| \psi \right\rangle = E \left| \psi \right\rangle$$

$$\mathcal{H}_{mag}^{4f} = -\sum_{i} g\mu_B B^{eff} \cdot J_i^z$$

 $\tau / \tau z$

Mean field

$$-g\mu_B B^{eff} \cdot \left(J_i^z \left| \psi \right\rangle \right) = E \left| \psi \right\rangle \qquad \left(J_i^z \left| \psi \right\rangle = m \left| \psi \right\rangle \right)$$

Energy

$$E_m = -g\mu_B B^{eff} m \qquad -J \le m \le J \qquad B^{eff} = B + \frac{J_0 \langle J^* \rangle}{g\mu_B}$$

ENERGY LEVELS

 $E_m = -g\mu_B B^{eff} m$ $B^{eff} = B + \frac{\mathcal{J}_0 \langle J^z \rangle}{g\mu_B}$ $-J \le m \le J$

MAGNETIZATION

Partition function

$$Z_{mag}^{4f}(T,B,P) = \sum_{m=-J}^{m=J} e^{-\beta E_m}$$

Magnetic free energy

$$M(T, B, P) = -\left[\frac{\partial F_{mag}^{4f}(T, B, P)}{\partial B^{eff}}\right]_{T, P}$$

$$M(T, B, P) = \frac{\sum_{m=-J}^{m=J} \left[\partial E_m / \partial B^{eff}\right] e^{-\beta E_m}}{\sum_{m=-J}^{m=J} e^{-\beta E_m}}$$

$$B^{eff} = B + \frac{\mathcal{J}_0 \left\langle J^z \right\rangle}{g\mu_B}$$

Self-consistency

FREE ENERGY AND MAGNETIC ENTROPY

Magnetic free energy

$$F_{mag}^{4f}(T,B,P) = -k_B T \ln \left[\sum_{m=-J}^{m=J} e^{-\beta E_m}\right]$$

Magnetic entropy

$$S_{mag}^{4f}(T, B, P) = -\left[\frac{\partial F_{mag}^{4f}(T, B, P)}{\partial T}\right]_{B, P}$$

$$S_{mag}^{4f}(T, B, P) = N_m \Re \left[\ln \sum_{m=-J}^{m=J} e^{-\beta E_m} + \frac{1}{k_B T} \frac{\sum_{m=-J}^{m=J} E_m e^{-\beta E_m}}{\sum_{m=-J}^{m=J} e^{-\beta E_m}} \right]$$

ALTERNATIVE CALCULATION

PARTITION FUNCTION AND FREE ENERGY

Partition function

$$Z_{mag}^{4f}(T,B,P) = \frac{\sinh\left[J + \frac{1}{2}\right]y}{\sinh\left[\frac{y}{2}\right]} \qquad \qquad y = \frac{g\mu_B B^{eff}}{k_B T}$$

Magnetic free energy

$$F_{mag}^{4f}(T,B,P) = -k_B T \ln\left\{\frac{\sinh\left[J+\frac{1}{2}\right]y}{\sinh\left[\frac{y}{2}\right]}\right\}$$

MAGNETIZATION

Magnetic free energy

$$F_{mag}^{4f}(T,B,P) = -k_B T \ln\left\{\frac{\sinh\left[J + \frac{1}{2}\right]y}{\sinh\left[\frac{y}{2}\right]}\right\}$$

Magnetization

$$M(T,B,P) = -\left[\frac{\partial F_{mag}^{4f}(T,B,P)}{\partial B^{eff}}\right]_{T,P}$$

$$B_J(y) = \frac{1}{J} \left\{ \left(\frac{2J+1}{2}\right) \operatorname{coth}\left[\left(\frac{2J+1}{2}\right)y\right] - \frac{1}{2} \operatorname{coth}\left(\frac{y}{2}\right) \right\}$$

Self-consistency

$$M(T, B, P) = g\mu_B B_J(y)$$

$$y = \frac{g\mu_B B^{eff}}{k_B T}$$

$$B^{eff} = B + \frac{\mathcal{J}_0 \left\langle J^z \right\rangle}{g\mu_B}$$

MAGNETIC ENTROPY

Magnetic free energy

$$F_{mag}^{4f}(T,B,P) = -k_B T \ln\left\{\frac{\sinh\left[J + \frac{1}{2}\right]y}{\sinh\left[\frac{y}{2}\right]}\right\} \qquad \qquad y = \frac{g\mu_B B^{eff}}{k_B T}$$

Magnetic entropy

$$S^{4f}_{mag}(T,B,P) = -\left[\frac{\partial F^{4f}_{mag}(T,B,P)}{\partial T}\right]_{B,P}$$

$$S_{mag}^{4f}(T,B,P) = N_m \Re \left\{ \ln \left[\frac{\sinh \left(J + \frac{1}{2}\right) y}{\sinh \left(\frac{y}{2}\right)} \right] - \frac{g\mu_B B^{eff}}{k_B T} \left(J + \frac{1}{2}\right) \coth \left[\left(J + \frac{1}{2}\right) y \right] - \frac{1}{2} \coth \left[\left(\frac{y}{2}\right) \right] \right\}$$

Saturation value

$$S_{mag}^{4f}(T,B,P)|_{T\longrightarrow\infty} = N_m \Re \ln \left(2J+1\right)$$

MAGNETIC ENTROPY CURVES

 $S_{mag}^{4f}(T, B, P) \mid_{T \longrightarrow \infty} = N_m \Re \ln \left(2J + 1 \right)$

CRYSTAL LATTICE HAMILTONIAN

LATTICE HAMILTONIAN

Lattice Hamiltonian

N. A. de Oliveira and P. J. von Ranke, Phys. Rep. 489 (2010) 89.

LATTICE : CANONICAL ENSEMBLE

Partition function

 $Z = \sum_{i=1}^{n} e^{-\beta E_i}$

$$\varepsilon_q = \sum_q (n_q + \frac{1}{2})\hbar\omega_q$$

$$Z_{lat}(T, B, P) = \sum_{n_q = n_1, n_2, \dots, n_q} e^{-\beta \sum_q (n_q + \frac{1}{2})\hbar\omega_q}$$

$$\Pi$$
 Π 1

$$Z_{lat}(T, B, P) = \prod_{q} \overline{(1 - e^{-\beta\hbar\omega_q})}$$

Lattice free energy

$$F_{lat}(T, B, P) = 3N_A k_B T \sum_q \ln\left(1 - e^{-\beta\hbar\omega_q}\right)$$

Rocone

LATTICE ENTROPY

Lattice free energy

$$F_{lat}(T, B, P) = 3N_A k_B T \sum_q \ln\left(1 - e^{-\beta\hbar\omega_q}\right)$$

Density of phonons
$$F_{lat}(T, B, P) = \Re T \int \ln\left(1 - e^{-\beta\hbar\omega}\right) \rho^{ph}(\omega) d\omega$$

Lattice entropy

$$S_{lat}(T, B, P) = -\left[\frac{\partial F_{lat}(T, B, P)}{\partial T}\right]_B$$

$$S_{lat}(T,B,P) = N_i \Re \left[-\int \ln \left(1 - e^{-\beta\hbar\omega}\right) \rho^{ph}(\omega) d\omega + \frac{1}{k_B T} \int \frac{\hbar\omega}{(e^{\beta\hbar\omega} - 1)} \rho^{ph}(\omega) d\omega \right]$$

N. A. de Oliveira and P. J. von Ranke, Phys. Rep. 489 (2010) 89.

LATTICE ENTROPY (Debye approximation)

$$S_{lat}(T,B,P) = N_i \Re \left[-\int \ln\left(1 - e^{-\beta\hbar\omega}\right) \rho^{ph}(\omega) d\omega + \frac{1}{k_B T} \int \frac{\hbar\omega}{(e^{\beta\hbar\omega} - 1)} \rho^{ph}(\omega) d\omega \right]$$

Debye approximation

$$\rho^{ph}(\omega) = \left[\frac{3V}{2\pi^2 v^3}\right] \omega^2$$
$$\omega_D = \left[\frac{6\pi^2 v^3 N_A}{V}\right]^{1/3}$$

Lattice entropy

$$S_{lat}(T,B,P) = N_i \left[-3\Re \ln \left(1 - e^{-\frac{\Theta_D}{T}} \right) + 12\Re \left(\frac{T}{\Theta_D} \right)^3 \int_0^{\Theta_D/T} \frac{x^3}{e^x - 1} dx \right] \qquad \Theta_D = \frac{\hbar\omega_D}{k_B}$$

N. A. de Oliveira and P. J. von Ranke, Phys. Rep. 489 (2010) 89.

LATTICE ENTROPY

$$S_{lat}(T,B,P) = N_i \Re \left[-\int \ln\left(1 - e^{-\beta\hbar\omega}\right) \rho^{ph}(\omega) d\omega + \frac{1}{k_B T} \int \frac{\hbar\omega}{\left(e^{\beta\hbar\omega} - 1\right)} \rho^{ph}(\omega) d\omega \right]$$

$$S_{lat}(T, B, P) = N_i \left[-3\Re \ln \left(1 - e^{-\frac{\Theta_D}{T}} \right) + 12\Re \left(\frac{T}{\Theta_D} \right)^3 \int_0^{\Theta_D/T} \frac{x^3}{e^x - 1} dx \right]$$

NON MAGNETIC CONDUCTION ELECTRONS

Hamiltonian

$$\mathcal{H}_{el}^{spd} = \sum_k \varepsilon_k c_k^+ c_k$$

Partition function

$$Z_{el}^{spd}(T, B, P) = \prod_{k\sigma} \left\{ 1 + \exp\left[-\beta \left(\varepsilon_k^{spd} - \mu\right)\right] \right\}$$

Free energy

$$F_{el}^{spd}(T, B, P) = -\frac{1}{\beta} \sum_{l=1}^{5} \sum_{k\sigma} \ln\left\{1 + \exp\left[-\beta\left(\varepsilon_{k}^{spd} - \mu\right)\right]\right\}$$

Gran-canonical ensemble

FREE ENERGY

Free energy

$$F_{el}^{spd}(T, B, P) = -\frac{1}{\beta} \sum_{l=1}^{5} \sum_{k\sigma} \ln\left\{1 + \exp\left[-\beta\left(\varepsilon_{k}^{spd} - \mu\right)\right]\right\}$$

Density of phonons

$$F_{el}^{spd}(T, B, P) = -\Re T \sum_{\sigma} \int_{-\infty}^{\infty} \ln\left\{1 + \exp\left[-\beta\left(\varepsilon_{\sigma} - \mu\right)\right]\right\} \rho_{\sigma}^{spd}\left(\varepsilon\right) \, d\varepsilon$$

ELECTRONIC ENTROPY

Free energy

$$F_{el}^{spd}(T, B, P) = -\Re T \sum_{\sigma} \int_{-\infty}^{\infty} \ln\left\{1 + \exp\left[-\beta\left(\varepsilon_{\sigma} - \mu\right)\right]\right\} \rho_{\sigma}^{spd}\left(\varepsilon\right) \, d\varepsilon$$

Electronic entropy
$$S_{el}^{spd} = -\left[\frac{\partial F_{el}^{spa}(T, B, P)}{\partial T}\right]_{B}$$

$$\begin{split} S^{spd}_{el}(T,B,P) &= N_{el} \Re \left\{ \sum_{\sigma} \int_{-\infty}^{\infty} \ln \left\{ 1 + \exp[-\beta(\varepsilon - \mu)] \right\} \rho^{spd}_{\sigma}(\varepsilon) \, d\varepsilon \\ &+ \frac{1}{k_B T} \sum_{\sigma} \int_{-\infty}^{\infty} (\varepsilon - \mu) f(\varepsilon) \rho^{spd}_{\sigma}(\varepsilon) \, d\varepsilon \right\} \end{split}$$

Sommerfeld approximation

$$S_{el}^{spd}(T) = \gamma T \qquad \qquad \gamma = \frac{\pi^2 k_B^2 \rho_{\sigma}^{spd}(\varepsilon_f)}{3}$$

MCE QUANTITIES

Total entropy

$S(T, B, P) = S^{4f}_{mag}(T, B, P) + S^{spd}_{lat}(T, B, P) + S^{spd}_{el}(T, B, P)$

$$S(T, B, P) = N_m \Re \left[\ln \sum_{m=-J}^{m=J} e^{-\beta E_m} + \frac{1}{k_B T} \frac{\sum_{m=-J}^{m=J} E_m e^{-\beta E_m}}{\sum_{m=-J}^{m=J} e^{-\beta E_m}} \right]$$

+ $N_i \left[-3\Re \ln \left(1 - e^{-\frac{\Theta_D}{T}} \right) + 12\Re \left(\frac{T}{\Theta_D} \right)^3 \int_{0}^{\infty} \int_{0}^{T} \frac{x^3}{e^x - 1} dx \right] + \gamma T$

Magnetocaloric quantities

 $\Delta S_{iso} (T, \Delta B, P) = S(T, B_2, P) - S(T, B_1, P)$ $\Delta T_{ad} (T, \Delta B, P) = T_2 - T_1$

 $S(T, B_2, P) = S(T, B_1, P)$

APPLICATION: Gd COMPOUNDS

ANISOTROPY

HAMILTONIAN

Total

$$\mathcal{H} = \mathcal{H}_{lat} + \mathcal{H}_{el}^{spd} + \mathcal{H}_{mag}^{4f}$$

Lattice

$$\mathcal{H}_{lat} = \sum_{q} \hbar \omega_q a_q^+ a_q$$

Non magnetic electrons

$$\mathcal{H}_{el}^{spd} = \sum_k \varepsilon_k c_k^+ c_k$$

Magnetic electrons

$$\mathcal{H}_{mag}^{4f} = -\sum_{i,j} \mathcal{J}_{ij}(r) \vec{J}_i \cdot \vec{J}_j - \sum_i g\mu_B \vec{B} \cdot \vec{J}_i - \sum_i DJ_{iz}^2$$

MEAN FIELD APPROXIMATION

Hamiltonian

$$\mathcal{H}_{mag}^{4f} = -\sum_{i,j} \mathcal{J}_{ij}(r) \vec{J}_i \cdot \vec{J}_j - \sum_i g\mu_B \vec{B} \cdot \vec{J}_i - \sum_i DJ_{iz}^2$$

Mean field approximation

$$\mathcal{H}_{mag}^{4f} = -\mathcal{J}_0 \sum_i \vec{J}_i \cdot \left\langle \vec{J} \right\rangle - \sum_i g\mu_B \vec{B} \cdot \vec{J}_i - \sum_i DJ_{iz}^2$$

Magnetic electrons

$$\mathcal{H}_{mag}^{4f} = -\sum_{i} g\mu_B B_x^{eff} J_{ix} + g\mu_B B_y^{eff} J_{iy} + g\mu_B B_z^{eff} J_{iz}$$

$$B_x^{eff} = B\cos\theta_x + \frac{\mathcal{J}_0 \langle J_x \rangle}{g\mu_B}$$
$$B_y^{eff} = B\cos\theta_y + \frac{\mathcal{J}_0 \langle J_y \rangle}{g\mu_B}$$
$$B_z^{eff} = B\cos\theta_z + \frac{\mathcal{J}_0 \langle J_z \rangle + DJ_z}{g\mu_B}$$

ENERGY LEVELS

J=4

$$B_x^{eff} = B\cos\theta_x + \frac{\mathcal{J}_0 \langle J_x \rangle}{g\mu_B}$$
$$B_y^{eff} = B\cos\theta_y + \frac{\mathcal{J}_0 \langle J_y \rangle}{g\mu_B}$$
$$B_z^{eff} = B\cos\theta_z + \frac{\mathcal{J}_0 \langle J_z \rangle + DJ_z}{g\mu_B}$$

Energy

$$D = 0$$
 $D \neq 0$
 $2J+1=9$ 1 LEVEL
2 LEVELS
2 LEVELS
2 LEVELS
2 LEVELS
2 LEVELS

MATRIX HAMILTONIAN

Total

$$\mathcal{H}_{mag}^{4f} = -\sum_{i} g\mu_B B_x^{eff} J_{ix} + g\mu_B B_y^{eff} J_{iy} + g\mu_B B_z^{eff} J_{iz}$$

Mean field approximation

$$\mathcal{H}_{mag}^{4f} = \begin{bmatrix} \mathcal{H}_{11} & \mathcal{H}_{12} & \cdots & \mathcal{H}_{1(2J+1)} \\ \mathcal{H}_{21} & \mathcal{H}_{22} & \cdots & \mathcal{H}_{2(2J+1)} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{H}_{(2J+1)1} & \mathcal{H}_{(2J+1)2} & \cdots & \mathcal{H}_{(2J+1)(2J+1)} \end{bmatrix}$$

$$\mathcal{H}_{ij} = \left\langle \psi_i \right| \mathcal{H}_{mag}^{4f} \left| \psi_j \right\rangle$$

Energy eigenvalues and eigenvectors

 $E_m \qquad |\psi_m\rangle$

MAGNETIZATION

Magnetization

 $M(T, B, P) = \hat{i}M_x(T, B, P) + \hat{j}M_y(T, B, P) + \hat{k}M_z(T, B, P)$

Magnetization components

Average values

$$M_x(T, B, P) = g\mu_B \left\langle J_x \right\rangle$$

$$M_y(T, B, P) = g\mu_B \left\langle J_y \right\rangle$$

 $M_z(T, B, P) = g\mu_B \left\langle J_z \right\rangle$

$$J_x \rangle = \frac{\sum_{m} \langle \psi_m | J_x | \psi_m \rangle}{\sum_{m} e^{-\beta E_m}}$$

$$\left\langle J_{y}\right\rangle =\frac{\displaystyle\sum_{m}\left\langle \psi_{m}\right|J_{y}\left|\psi_{m}\right\rangle }{\displaystyle\sum_{m}e^{-\beta E_{m}}}$$

$$\left\langle J_{z}\right\rangle =\frac{\displaystyle\sum_{m}\left\langle \psi_{m}\right|J_{z}\left|\psi_{m}\right\rangle }{\displaystyle\sum_{m}e^{-\beta E_{m}}}$$

PARTITION FUNCTION AND FREE ENERGY

Partition function

$$Z_{mag}(T, B, P) = \sum_{m=-J}^{m=J} e^{-\beta E_m}$$

Magnetic free energy

$$F_{mag}^{4f} = -k_B T \ln \sum_m e^{-\beta E_m}$$

Magnetic entropy

$$S_{mag}(T, B, P) = -\left[\frac{\partial F_{mag}(T, B, P)}{\partial T}\right]_{B, P}$$

$$S_{mag}(T, B, P) = N_m \Re \left[\ln \sum_{m=-J}^{m=J} e^{-\beta E_m} + \frac{1}{k_B T} \frac{\sum_{m=-J}^{m=J} E_m e^{-\beta E_m}}{\sum_{m=-J}^{m=J} e^{-\beta E_m}} \right]$$

ANISOTROPIC SYSTEM (B=B_z)

ANISOTROPIC SYSTEM (B=B_x)

COMPARISON: ΔS_{iso}

ANISOTROPIC MCE $B_X \rightarrow B_Z$

FIRST ORDER MAGNETIC PHASE TRANSITION

MAGNETOELASTIC COUPLING

$$\mathcal{J}_{ij}(r) = \mathcal{J}_0(r_0) + \mathcal{J}_1(r_0)J_iJ_j \qquad \qquad \mathcal{J}_1 = \left\lfloor \frac{a\mathcal{J}(r)}{dr} \right\rfloor_{r=r_0}$$

$$\mathcal{H}_{mag}^{4f} = -\sum_{ij} \mathfrak{J}_0 J_i J_j - \sum_{ij} \mathfrak{J}_1 (J_i J_j)^2 - \sum_i g \mu_B B J_i$$

C. Kittel, Phys. Rev. 120 (1960) 335.

MEAN FIELD THEORY

$$\mathcal{H}_{mag}^{4f} = -\sum_{i,j} \mathcal{J}_0 J_i J_j - \sum_{i,j} \mathcal{J}_1 \left(J_i J_j \right)^2 - \sum_i g \mu_B B J_i$$

$$\mathcal{H}_{mag}^{4f} = -\sum_{i} \left[\mathcal{J}_0 \left\langle J \right\rangle + \mathcal{J}_1 \left\langle J \right\rangle^3 + g\mu_B \vec{B} \right] \cdot J_i$$

$$\mathcal{H}_{mag}^{4f} = -g\mu_B \sum_i B^{eff} J_i$$

$$B^{eff} = B + \frac{\mathcal{J}_0 \langle J \rangle + \mathcal{J}_1 \langle J \rangle^3}{g\mu_B}$$

LATTICE ENTROPY (REVISITED)

Debye approximation

$$S_{lat}(T,B,P) = N_i \left[-3\Re \ln \left(1 - e^{-\frac{\Theta_D}{T}} \right) + 12\Re \left(\frac{T}{\Theta_D} \right)^3 \int_0^{\Theta_D/T} \frac{x^3}{e^x - 1} dx \right] \qquad \Theta_D = \frac{\hbar\omega_D}{k_B}$$

Renormalized Debye frequency

$$\omega_D = \left[\frac{6\pi^2 v^3 N_A}{V}\right]^{1/3} \qquad \tilde{\omega}_D = \left[\frac{6\pi^2 v^3 N_A}{V_0 + \Delta V}\right]^{1/3} \qquad \tilde{\omega}_D = \omega_D \left[1 - \frac{1}{3}\frac{\Delta V}{V_0}\right]$$
$$\tilde{\Theta}_D = \frac{\hbar \tilde{\omega}_D}{k_B} \qquad \tilde{\Theta}_D = \frac{\hbar \omega_D}{k_B} \left[1 - \frac{1}{3}\frac{\Delta V}{V_0}\right] \qquad \tilde{\Theta}_D = \Theta_D \left[1 - \alpha M^2\right]$$

Renormalized lattice entropy

$$S_{lat}(T,B,P) = N_i \left[-3\Re \ln \left(1 - e^{-\frac{\tilde{\Theta}_D}{T}} \right) + 12\Re \left(\frac{T}{\tilde{\Theta}_D} \right)^3 \int_0^{\tilde{\Theta}_D/T} \frac{x^3}{e^x - 1} dx \right]$$

N. A. de Oliveira and P. J. von Ranke, Phys. Rep. 489 (2010) 89

MCE QUANTITIES

Total entropy

 $S(T, B, P) = S^{4f}_{mag}(T, B, P) + S^{spd}_{lat}(T, B, P) + S^{spd}_{el}(T, B, P)$

$$S(T, B, P) = N_m \Re \left[\ln \sum_m e^{-\beta E_m} + \frac{1}{k_B T} \frac{\sum_m E_m e^{-\beta E_m}}{\sum_m e^{-\beta E_m}} \right] + N_i \left[-3\Re ln \left(1 - e^{-\frac{\widetilde{\Theta}_D}{T}} \right) + 12\Re \left(\frac{T}{\widetilde{\Theta}_D} \right)^3 \int_0^{\frac{\widetilde{\Theta}_D}{T}} \frac{x^3}{e^x - 1} dx \right] + \gamma T$$

Magnetocaloric quantities

 $\Delta S_{iso} (T, \Delta B, P) = S(T, B_2, P) - S(T, B_1, P)$ $\Delta T_{ad} (T, \Delta B, P) = T_2 - T_1$

 $S(T, B_2, P) = S(T, B_1, P)$

SYSTEMATIC STUDY (J=1/2)

SYSTEMATIC STUDY (J=1/2)

Second order transition

 $\approx (mo)/)$

R. P. Santana et al J. Alloys and Comp. 509(2011)6346

APPLICATION: Gd₅Si₂Ge₂

V. K. Pecharsky, K. A. Gschneidner Jr, Phys. Rev. Let. 78 (1997) 4494

PRESSURE EFFECTS: Gd₅Si₂Ge₂

N. A. de Oliveira, Journ. Appl. Phys. 113 (2013) 033910

PRESSURE EFFECTS: Tb₅Si₂Ge₂

N. A. de Oliveira, Journ. Appl. Phys. 113 (2013) 033910

BCE QUANTITIES

Barocaloric quantities

 $\Delta S_{iso}^{bar}\left(T,B,\Delta P\right) = S(T,B,P_2) - S(T,B,P_1)$

 $\Delta T_{ad}^{bar}\left(T, B, \Delta P\right) = T_1 - T_2$

 $S(T, B, P_2) = S(T, B, P_1)$

Systematic analysis: Scenario 1

BCE - ErCo₂

INVERSE BAROCALORIC EFFECT

Wada et al, Cryogenics 39 (1999) 915

N. A. de Oliveira, Journ. Appl. Phys. 70 (2007) 052501

Systematic analysis: Scenario 2

NORMAL BAROCALORIC EFFECT

BCE - Tb₅Si₂Ge₂

NORMAL BAROCALORIC EFFECT

NORMAL MAGNETOCALORIC EFFECT

N. A. de Oliveira, Journ. Appl. Phys. 113 (2013) 033910

Systematic analysis: Scenario 3

APPLICATION: Gd₅Si₂Ge₂

Systematic analysis: Scenario 4

PROSPECTS (Experimental)

PROSPECTS (THEORY)

Localized systems

Electron-phonon coupling

Monte Carlo simulations

Disordered effects

First order transition

Anisotropy

Itinerant systems

Electron-phonon coupling

Multi-band calculations

Antiferomagnetic systems

Beyond mean field

Field theory

ACKNOWLEDGEMENTS

Conselho Nacional de Desenvolvimento Científico e Tecnológico

FIRST ORDER MAGNETIC PHASE TRANSITION

AITERNATIVE CALCULATION

ALTERNATIVE CALCULATION

ALTERNATIVE CALCULATION

Energy

$$G = F_{mag} + \frac{\lambda_0 M^2}{2} + \frac{3\lambda_1 M^4}{4} + F_0$$
Derivative
$$\lambda_0 + 3\lambda_1 M^2 \qquad B^{eff} = B_0 + \lambda_0 M + \lambda_1 M^3$$

$$\left(\frac{\partial G}{\partial M}\right)_T = \left(\frac{\partial F_{mag}}{\partial B^{eff}}\right)_T \left(\frac{\partial B^{eff}}{\partial M}\right)_T + \lambda_0 M + 3\lambda_1 M^3$$

Algebra

$$\begin{pmatrix} 0 & 0 \\ \frac{\partial G}{\partial M} \end{pmatrix}_T = \left(\frac{\partial B^{eff}}{\partial M} \right)_T \left[\left(\frac{\partial F_{mag}}{\partial B^{eff}} \right)_T + M \right]$$

$$M = -\left(\frac{\partial F_{mag}}{\partial B^{eff}}\right)_T$$
ALTERNATIVE CALCULATION

 $\frac{\partial G}{\partial M} = 0$

$$M = -\left(\frac{\partial F_{mag}}{\partial B^{eff}}\right)_T$$

Free energy

$$G = F_{mag} + \frac{\lambda_0 M^2}{2} + \frac{3\lambda_1 M^4}{4} + F_0$$

SECOND ORDER TRANSITION

FIRST ORDER TRANSITION

