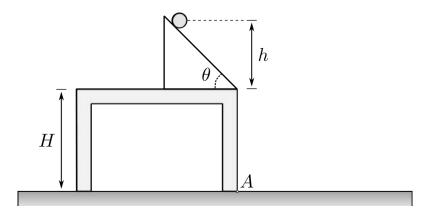


OLIMPÍADA BRASILEIRA DE FÍSICA

SELETIVA 1 / 2019 14 DE SETEMBRO DE 2019

INSTRUÇÕES

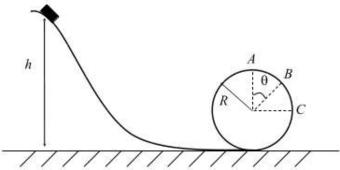
- 1. A prova é composta por dez questões. Confira seu caderno. Ele deve conter um **total de 11 páginas**, identificadas de 1 a 11. Em caso contrário, peça sua substituição.
- 2. Todas as respostas devem ser justificadas, ou seja, o desenvolvimento das resoluções, composto pela principais etapas que levam às respostas, devem ser apresentados.
- 3. Após um enunciado há uma **área de desenvolvimento** delimitada por um retângulo onde deve ser apresentado o desenvolvimento da respectiva resolução.
- 4. Na extremidade inferior direita da **área de desenvolvimento** há um **campo de resposta**, onde deve(m) ser escrita(s) a(s) resposta(s) do respectivo enunciado.
- 5. Use os versos das folhas como rascunho. Transcreva para a área de desenvolvimento apenas as etapas relevantes. Se esta área lhe parecer demasiadamente pequena, seja mais seletivo nas etapas da resolução que apresenta. **Desenvolvimentos e respostas fora das áreas especificadas não serão considerados.**
- 6. É permitido apenas o uso de caneta cor **azul ou preta, régua e calculadora não programável**. O uso do lápis e da borracha é permitido apenas no rascunho e no auxílio para a construção de gráficos.
- 7. A duração da prova é de **quatro horas**, devendo o aluno permanecer na sala por **no mínimo sessenta minutos**.
- 8. Se necessário e salvo indicação em contrário, use símbolos, e seus respectivos valores em problemas numéricos, para as grandezas: constante de Coulomb $k=9,00\times 10^9~{\rm N\cdot C^2/m^2};$ permeabilidade magnética no vácuo $\mu_0=4\pi\times 10^{-7}~{\rm N/A^2};$ densidade da água líquida $\rho_a=1,00~{\rm g/cm^3};$ calor específico da água líquida $c_a=1,00~{\rm cal/(g\cdot ^{\circ}C)};$ calor latente de fusão do gelo $L_g=80,0~{\rm cal/g};$ índice de refração do ar n=1,00; aceleração da gravidade $g=9,80~{\rm m/s^2}.$
- 9. Se necessário e salvo indicação em contrário, use os os seguintes fatores de conversão: 1 cal = 4,18 J; 1 atm = $1,00\times10^5$ Pa.


IDENTIFICAÇÃO

Nome:		Série:
${ m N^0}$ de identificação:	Tipo de docume	ento apresentado:
Nome da Escola:		
Cidade:		UF:
E-mail:		
Assinatura:		

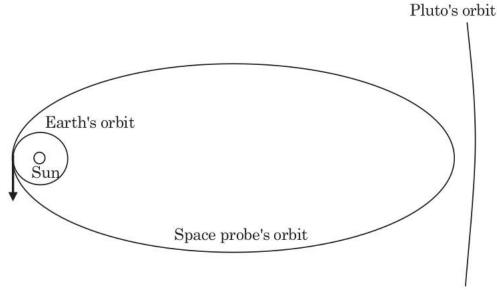
1. Uma esfera maciça de massa m e raio r é lançada ao chão por um plano inclinado de um ângulo θ = 45°, que foi fixado sobre uma mesa de altura H = 1,00 m, conforme a figura abaixo. Considere que o atrito cinético entre a esfera e o plano inclinado é suficientemente grande para que não haja escorregamento e a esfera é abandonada do repouso a uma altura h = 50,0 cm em relação ao tampo da mesa. Seja d a distância do ponto de impacto da esfera com o chão ao ponto A (extremidade do pé da mesa), calcule o erro percentual que se comete ao estimar essa grandeza quando o efeito da rotação é desprezado.

Use os símbolos:


- distância d quando se considera a rotação da esfera d_R ;
- distância d quando **não** se considera a rotação da esfera d_T ;
- aceleração do centro de massa da esfera a_{cm} ;
- momento de inércia da esfera em relação ao seu centro de massa I_{cm} ;
- força de atrito F_{at} .

Г	Deep .
	Resp.:

2. Em um parque de diversões, um carrinho, abandonado a partir do repouso, desce sem a ação de forças dissipativas de uma altura h para dar a volta em uma trajetória circular circular de raio R ("loop"), conforme a figura abaixo.

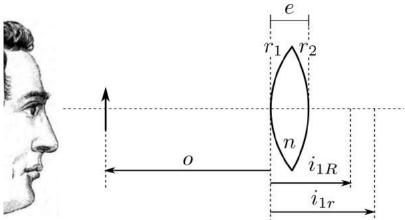


(a)	Qual o menor valor de h (chame de h_1) necessário para completa?	que o carrinho faça a volta
		Resp.:
		<u> </u>
(b)	Se $0 < h < h_1$, o carrinho cai do trilho no ponto B , qua ângulo θ para chegar até em A . Calcule θ em termos do	
		Resp.:
(c)	Sabendo que o carrinho foi solto da altura $h=2R$ e que	e ele passou no ponto C com
	velocidade escalar v_C , quanta energia mecânica é dissipa ponto C ?	ida pela força de atrito ate o
		Resp.:

3. Considere uma sonda espacial que é lançada para convergir com a órbita de Plutão, e que, assim como os planetas, gira ao redor do Sol segundo as leis de Kepler. Veja figura abaixo.

(a)	Aproxime a órbita da Terra por um círculo de raio $R=1$ UA, onde UA é a unidade astronômica de distância. Considerando que o eixo maior da órbita de Plutão é de aproximadamente 80 UA, qual seu período orbital em anos?

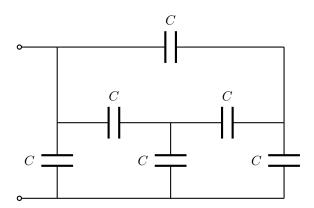
(b) Considere que a sonda é lançada com uma velocidade maior que a da Terra, em direção tangente à órbita da Terra, como mostra a figura. Depois de seu lançamento, ela segue uma órbita elíptica tal que seu ponto mais próximo do Sol é também um ponto na órbita da Terra. Considere ainda que o eixo maior da órbita da sonda é de 40 UA e seu ponto mais afastado do Sol está quase a órbita de Plutão. Nesse caso, quantos anos leva a sonda para ir da Terra até o ponto mais próximo da órbita de Plutão?


Resp.:

l	
	D
	Resp.:

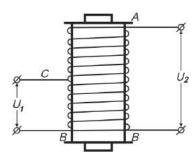
4. A figura mostra um objeto em forma de seta colocado à distância o a frente de uma lente biconvexa de índice de refração n, espessura e e raios de curvatura r_1 e r_2 . Determine as posições i_{1R} e i_{1r} das duas imagens refletidas da seta mais evidentes para o observador, e seu sentido.

$ holdsymbol{ ext{Resp.:}}$
Resp.:

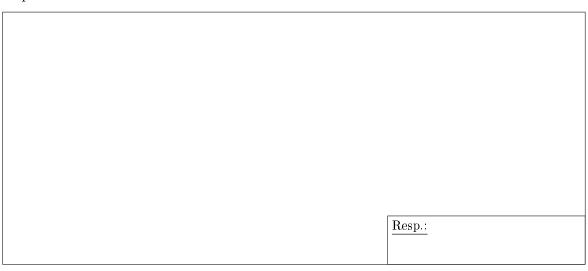


suas velocidades		a mútua, qı	ıando a dist	ância entre	eles for $r/2$ o	quais se
	•					
			Dogn			
			$\frac{\text{Resp.:}}{}$			
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_V$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_{V}$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_V$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_V$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_V$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_V$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_{V}$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_{V}$ do vo
um voltímetro d metro, mais pre	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_{V}$ do vo
Uma maneira sir um voltímetro d metro, mais pred medida?	iretamente entre	e seus termi	nais. Quan	do maior a r	esistência R	$_{V}$ do vo

7. Determinar a capacitância equivalente C_o da bateria de capacitores definida pelo circuito dado na figura abaixo, sabendo que todos seus capacitores possuem a mesma capacitância C.

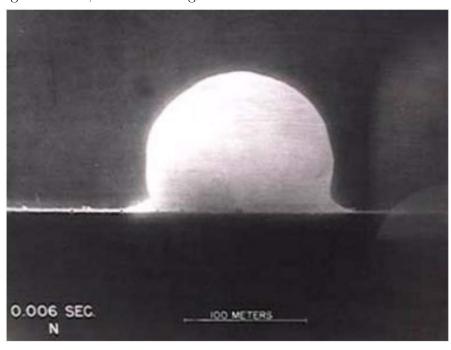


	Resp.:	



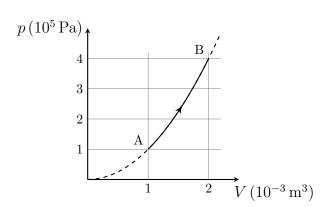
8. Foi feita uma bobina com núcleo de ferro, onde o enrolamento é um condutor de cobre comprido com grande número de espiras, tendo uma derivação C (ver figura).

(a) Entre os pontos B e C aplica-se uma tensão constante U_1 . Determine a tensão entre os pontos A e B.


(b) Entre os pontos B e C foi aplicada uma tensão alternada (por exemplo, da rede elétrica urbana) com amplitude U_2 . Determine a amplitude da tensão alternada entre os pontos A e B.

Resp.:

9. Em 1945, no Novo México (EUA), foi feito o primeiro teste de explosão de uma bomba nuclear. Era a primeira vez que uma bomba nuclear era detonada, e todos os dados foram mantidos em completo sigilo, inclusive a energia da detonação. Alguns anos depois, algumas fotos da detonação foram publicadas. Elas davam uma escala de distância na região da detonação e o instante de tempo, contado a partir do momento de detonação, em que a foto foi tirada. Com base nessas fotos, físicos ao redor do mundo descobriram a energia liberada na explosão daquela bomba. Sabendo que a densidade do ar é $\rho = 1,20 \text{ kg/m}^3$, e usando a imagem abaixo, estime a energia liberada.



	Resp.:

10. Uma certa massa de gás ideal monoatômico sofre a expansão $A \to B$ indicada na figura. Sendo a curva representativa da transformação indicada dada por $p = V^2$ na qual o volume deve ser dado em m³ e a pressão em Pa, qual a quantidade de calor, em joules, a ser fornecida para o gás nessa transformação?

Resp.:
1005 p. 1