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| know that a certain percentage of the camels has blue eyes,
the rest has dark eyes, but | am not informed which is which.
Consequently | have some knowledge X.

At

| also know that a certain percentage (same value as before!)
has dark neck, the rest has light neck, but | am not informed
which is which.

Consequently | have some knowledge X.

Question: How much is my total knowledge?
Desired answer: 2X



DICES

ENTROPY = IGNORANCE OR LACK OF KNOWLEDGE

Whoever knows that it came a 6: knows everything, i.e., ignores nothing
- ENTROPY =0, say 0%

Whoever does not know what came out: knows nothing, i.e., ignores

everything
- ENTROPY = maximum, say 100%

Whoever only knows that came out an even number: knows something, i.e.,

ignores something
- ENTROPY S(1)=Y=?
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Whoever only knows that came out an even number in each of the 2 dices
knows something, i.e., ignores something, then

TOTAL ENTROPY S(2) = Y+Y = 2Y
If we had N dices, and knew that in each of them came out an even number,

then
TOTAL ENTROPY S(N) = NY

i.e. S(N) =N S(1) (entropic extensivity)



[s there a function of probabilities (entropic functional)
which is generically ADDITIVE for independent systems?

Yes, the Boltzmann-Gibbs-von Neumann-Shannon entropy!

W w
S,.= —kZpi Inp. with zpi =1
i=1 i=1

Proof:

WA WB
S,c(A)=—k).p'Inp! and S, (B)=-k) p’Inp’
i=1

j=1

Assuming independence, i.e., pl,‘;,”B = piApf , we verify

S, (A+B)=S, (A)+S, (B)




ENTROPY AND SURPRISE
L 1 1
S =k) pln—=k({In—
BG ; I pi < pl>

1
In— = surprise (Watanabe 1969) or unexpectedness (Barlow 1990)

b;
hence p =1 = surprise=0
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ENTROPY IN THERMODYNAMICS
G=U-TS+pV (Legendre structure)
dU=TdS — pdV =6Q—- oW
AU=Q-W
AU = variation of internal energy of the system (no mass transfer)
( = heat gained by the system (disorganized energy)

W =work done by the system on its surroundings (organized energy)

500
syst T

Surr

(=if the process is reversible)




MEPHISTOPHELES:
Denn eben wo Begriffe fehlen,

Da stellt ein Wort zur rechten Zeit sich ein.

Wolfgang von Goethe
[Faust |, Vers 1995, Schuelerszene (1808)]

For at the point where concepts fail,

At the right time a word is thrust in there.



Saint Augustine

What 1s time?
If nobody asks, I know.
If someone asks

and I want to explain,
I no longer know.




Enrico FERMI Thermodynamics (Dover, 1936)

The entropy of a system composed of several parts is very
often equal to the sum of the entropies of all the parts. This
Is true If the energy of the system is the sum of the energies
of all the parts and If the work performed by the system
during a transformation is equal to the sum of the amounts
of work performed by all the parts. Notice that these
conditions are not quite obvious and that in some cases
they may not be fulfilled. Thus, for example, in the case of a
system composed of two homogeneous substances, it will
be possible to express the energy as the sum of the
energies of the two substances only if we can neglect the
surface energy of the two substances where they are in
contact. The surface energy can generally be neglected
only if the two substances are not very finely subdivided,
otherwise, it can play a considerable role.



ENTROPIC FUNCTIONALS
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BG entropy inW _/{Z p,In p,
(g =1) -
W
r|—¢ 1 o q
Entropy Sq : 6% l-q [ . ; P;
(q real |- g 1-1

Possible generalization of
Boltzmann-Gibbs statistical mechanics

C.T., J. Stat. Phys. 52, 479 (1988)

additive
Concave

Extensive
Lesche-stable

Finite entropy production
per unit time

Pesin-like identity (with
largest entropy production)

Composable (unique trace
form; Enciso-Tempesta)

Topsoe-factorizable (unique)

Amari-Ohara-Matsuzoe
conformally invariant
geometry (unique)

Biro-Barnafoldi-Van
thermostat universal
independence (unique)

nonadditive (1f g # 1)



DEFINITIONS : g —logarithm :

. . X
g —exponential : e,

1_
x 1-—1

lnqx=

Hence, the entropies can be rewritten :

[1+(1—q) x]ra

l-g¢

1

(g €R)

equal probabilities | generic probabilities
il 1
BG entropy k InW k Zpl. In—
1=1 pi
(g=1)
- 1
entropy S, k In W kZpl.lnq—
i=1 Pi

(x>0; In,x=Inx)

(ef =€)




TYPICAL SIMPLE SYSTEMS:

Short-range space-time correlations

W(N)oeu® (u>1)

Markovian processes (short memory), Additive noise

Strong chaos (positive maximal Lyapunov exponent), Ergodic, Riemannian geometry

Short-range many-body interactions, weakly quantum-entangled subsystems

Linear and homogeneous Fokker-Planck equations, Gaussians
-> Boltzmann-Gibbs entropy (additive)

- Exponential dependences (Boltzmann-Gibbs weight, ...)

TYPICAL COMPLEX SYSTEMS:

Long-range space-time correlations

e.g., W(N)ox N” (p>0)

Non-Markovian processes (long memory), Additive and multiplicative noises

Weak chaos (zero maximal Lyapunov exponent), Nonergodic, Multifractal geometry

Long-range many-body interactions, strongly quantum-entangled sybsystems

Nonlinear and/or inhomogeneous Fokker-Planck equations, g-Gaussian

- Entropy Sq (nonadditive)

- g-exponential dependences (asymptotic power-laws)




ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment
(Pergamon, Oxford, 1970), page 167

An entropy 1s additive 1f, for any two probabilistically independent
systems 4 and B,
S(A+B)=8(4)+S(B)
Therefore, since S(A+B) S (4) S (B) S (A) S (B)
q __4 44 +(1-q) -~ q
k k k k k
S,y and S;"" (Vq) are additive, and S, (Vg #1) is nonadditive .

EXTENSIVITY:

Consider a system 2’ = 4 + A4, +...+ A, made of N (not necessarily independent)
identical elements or subsystems 4, and 4,, ..., 4.
An entropy 1s extensive if

0< lim S(N)
N> N

<o, ie, S(N)xc N (N — x)



EXTENSIVITY OF THE ENTROPY (N — o)

W = total number of possibilities with nonzero probability,

assumed to be equally probable
IfW(N)~p" (u>1)
= S, (N)=k,InW(N) <N OK!
If W(N)~N" (p>0)
= S (N) =k,In W(N)o<[W(N)]™ o NP
(N) <N OK!

= Sq=1—1/ p

IfFW(N)~vY (v>1;0<y<])
= S,(N)=k,[InW(N)| e N7°
= S, (N) <N OK!

IMPORTANT: | u" >>vV' >>N? if N>>1

All happy families are alike; each unhappy family is unhappy in its own way.
Leo Tolstoy (Anna Karenina, 1875-1877)



SYSTEMS| ENTROPY S,;| ENTROPY S, | ENTROPY S,
W(N) (g#1) 6 #1)
(equiprobable] (ADDITIVE) |(NONADDITIVE)| (NONADDITIVE)
eg., U
EXTENSIVE | NONEXTENSIVE | NONEXTENSIVE
(u>1)
eg., N°
NONEXTENSIVE | EXTENSIVE | NONEXTENSIVE
(p>0) _
(g=1-1/p)
eg., vV
v>1 NONEXTENSIVE | NONEXTENSIVE | EXTENSIVE
0<y<l1) (0=1/y)




A theory is the more impressive the greater the
simplicity of its premises Is, the more different
kinds of things it relates, and the more extended
IS its area of applicability. Therefore the deep
Impression that classical thermodynamics made
upon me. It is the only physical theory of
universal content concerning which | am
convinced that, within the framework of
applicability of its basic concepts, it will never be
overthrown. ~ Albert Einstein (1949)







COMPOSITION OF VELOCITIES OF INERTIAL SYSTEMS (d=1)

V., =V +V,. (Galileo)

13
V. +V
v,,=—=2—% (Einstein)
13 vV Vv
| 12 13
c C

Newton mechanics:
It satisfies Galilean additivity but violates Lorentz invariance (hence
mechanics can not be unified with Maxwell electromagnetism)

Einstein mechanics (Special relativity):
It satisfies Lorentz invariance (hence mechanics is unified with Maxwell
electromagnetism) but violates Galilean additivity

Question: which is physically more fundamental, the additive composition
of velocities or the unification of mechanics and electromagnetism?



Euclid set of axioms including his celebrated 5" postulate
yields the magnificent Euclidean geometry

Violation of the 5t postulate yields Riemannian geometries
Carl Friedrich Gauss 1813
Ferdinand Karl Schweikart 1818
Janos Bolyai 1830
Nikolai lvanovich Lobachevsky 1830
Bernhard Riemann 1854

If we stubbornly insisted that the 5" postulate was
not only proposed by Euclid but was mandated by

God, then General Relativity would not exist! ®



PHYSICAL REVIEW E 78, 021102 (2008)

Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso' and Constantino Tsallis>>
'NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

2Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 16 March 2008; revised manuscript received 16 May 2008:; published 5 August 2008)

The Boltzmann—Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L*"'. Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of ¢ # 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., SqOCLd. Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,
Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index q.



Block entropy for the d=7+71 model, with central charge c, at its quantum

phase transition at 7=0 and critical transverse “magnetic” field
I ' I ' I ' I

BG o

1.0
q A
0.8 : .o
analytically obtained
from first principles |
0.6 - .
o= NI+ =3
04 c .
02F AY | _
Ising
O ) | ) | ) | ) | )
0) 0.5 1.0 1.5 2.0 1/c
Self-dual Z(n) magnet (n =1,2,...) [FC Alcaraz, JPA 20 (1987) 2511]
Se=2""D 10,91
n+2

SU(n) magnets (n=1,2,...; m=2,3,...) [FC Alcaraz and MJ Martins, JPA 23 (1990) L1079]

nn+1)
(m+n-2)(m+n—-1)

—>c=(n—l){1— }E[O,n—l]
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On a ¢-Central Limit Theorem
Consistent with Nonextensive
Statistical Mechanics
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Generalization of symmetric a-stable Lévy distributions
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- The standard map: From

Boltzmann-Gibbs statistics to

Tsallis statistics

Received: 10 December2015 - ygyr Tirnaklit* & Ernesto P. Borges®3:*
Accepted: 09 March 2016
Published: 23 March 2016 : - o ) 8

. systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag

. the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of

- such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics

. instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-

. dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our

- results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical

. distributions. Since various important physical systems from particle confinement in magnetic traps

. to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet

- dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an

. improved interpretation of diverse experimental and observational results.

As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic



STANDARD MAP (Chirikov 1969)

p.., = p;— Ksinx, (mod 2r)
X, =X + P, (mod 271)
(i=0,1,2,...)

(1928-2008)

(area-preserving)

Particle confinement in magnetic traps,
particle dynamics in accelerators,
comet dynamics,

ionization of Rydberg atoms,

electron magneto-transport
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J.W. GIBBS

Elementary Principles in Statistical Mechanics - Developed with Especial
Reference to the Rational Foundation of Thermodynamics

C. Scribner’ s Sons, New York, 1902; Yale University Press, New Haven, (1981),
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] fo have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space [...]. It also excludes many
cases in which the energy can decrease without limit, as when the
system contains material points which attract one another inversely as
the squares of their distances. [...]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
involved in the formula (92).



CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS

A

V(r)~—r—a (r — o0) (A>0, o =0)

integrable if o/d>1 (short-ranged)
non-integrable if 0<o/d <1 (long-ranged)

EXTENSIVE
SYSTEMS

'6Q &‘° NONEXTENSIVE
& SYSTEMS

Newtonian gravitation

«— HMF
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be

i

m«————t———-‘

s d 5 (nertial XY model)



d - DIMENSIONAL XY MODEL
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Beyond Boltzmann-Gibbs statistical mechanics in
optical lattices
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EDITORS' SUGGESTION

Experimental Validation of a
Nonextensive Scaling Law in
Confined Granular Media

The velocity distribution of sheared granular media

shows unexpected similarities with turbulent fluid
flows.

Gaél Combe, Vincent Richefeu, Marta Stasiak, and
Allbens P.F. Atman
Phys. Rev. Lett. 115, 238301 (2015)

week ending

PRL 115, 238301 (2015) PHYSICAL REVIEW LETTERS 4 DECEMBER 2015

S

Experimental Validation of a Nonextensive Scaling Law in Confined Granular Media

Gaél Combe,* Vincent Richefeu, and Marta Stasiak
Université Grenoble Alpes, 3SR, F-38000 Grenoble, France and CNRS, 3SR, F-38000 Grenoble, France

Allbens P.F. Atman'
Departamento de Fisica e Matemdtica, National Institute of Science and Technology for Complex Systems,
Centro Federal de Educag¢do Tecnologica de Minas Gerais — CEFET-MG,
Avenida Amazonas 7675, 30510-000 Belo Horizonte-MG, Brazil
(Received 28 July 2015; published 1 December 2015)
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Combe, Richefeu, Stasiak and Atman
PRL 115, 238301 (2015)

FIG. 4. Verification of the Tsallis-Bukman scaling law for dif-
ferent regimes of diffusion. (top) Evolufion of the measured
diffusion exponent a as a function of 1/,/A~ the dashed line
is a direct application of the scaling law from the fit of the val-
ues shown in Fig. 3, a(1/v/Av) = 2/[3 — q(1//A7)]. (Inset)
a typical diffusion curve showing the mean square displace-
ment fluctuations, (x2), in function of the shear strain, ~; it
allows the assessment of the diffusion exponent, a, for each
strain window tested. In the case shown, it corresponds to
the smallest strain window, the rightmost point in the curve
at the main panel. Note that for a constant strain rate, v is
proportional to time. (Bottom) Measure of the deviation of
the data relative to the scaling law prediction, as a function
of 1/y/A~, showing an agreement on the order of £2%.
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LHC (Large Hadron Collider)
CMS, ALICE, ATLAS and LHCb detectors

~ 4000 smenhsts/engmeers from ~ 200 institutions of ~ 50 countries
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SIMPLE APROACH: TWO-DIMENSIONAL SINGLE RELATIVISTIC FREE PARTICLE
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A novel automatic microcalcification detection technique using Tsallis
entropy & a type Il fuzzy index

Mohanalin*, Beenamol, Prem Kumar Kalra, Nirmal Kumar
Department of Electrical Engineering, IIT Kanpur, UP-208016, India

ARTICLE INFO ABSTRACT
Article history: This article investigates a novel automatic microcalcification detection method using a
Received 18 August 2009 type Il fuzzy index. The thresholding is performed using the Tsallis entropy characterized

Received in revised form 12 August 2010

by another parameter ‘q’, which depends on the non-extensiveness of a mammogram,
Accepted 12 August 2010

In previous studies, ‘q" was calculated using the histogram distribution, which can lead
to erroneous results when pectoral muscles are included. In this study, we have used
a type Il fuzzy index to find the optimal value of ‘q". The proposed approach has been
tested on several mammograms. The results suggest that the proposed Tsallis entropy

Keywords:
Tsallis entropy
Type Il fuzzy index

Shannon entropy approach outperforms the two-dimensional non-fuzzy approach and the conventional
Mammograms Shannon entropy partition approach. Moreover, our thresholding technique is completely
Microcalcification automatic, unlike the methods of previous related works. Without Tsallis entropy

enhancement, detection of microcalcifications is meager: 80.21% Tps (true positives) with
8.1 Fps (false positives), whereas upon introduction of the Tsallis entropy, the results surge
to 96.55% Tps with 0.4 Fps.







Tout le monde savait que ¢’ etait impossible.
Il y avait un qui ne le savait pas.

Alors il est allé et il I’a fait.

Mark Twain, Jean Cocteau, Winston Churchill, Marcel Pagnol ...



Si I'action n’a quelque splendeur de liberte,
elle n’a point de grace ni d’honneur.

Montaigne
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