
1994 
XV Brazilian National 

Meeting on 
Particles and Fields 



Proceedings of the 

XV Brazilian National Meeting 

on Particles and Fields 

(XV Encontro Nacional de Física de Partículas e Campos) 

October 4-8, 1994 

Angra dos Reis, Brazil 

Editors 

M. S. Alves (UFRJ) 
M. E. Araújo (UnB) 
C. A. Bonato (UFPb) 
C. D. Chineiatto (Unicamp) 
S. A. Dias (CBPF) 

A. Foerster (UFRGS) 
G. C:  Marques (IFUSP) 
S. F. Novaes (IFT/UNESP) 
M. T. Thomaz (UFF) 

Sociedade Brasileira de Física 



XV Brazilian National Meeting on Particles and Fields 

The Brazilian National Meeting on Particles and Fields (Encontro National 
de Física de Partículas e  Campos) is a scientific meeting held every year that 
assembles the Brazilian Physics community working in Field Theory, Cosmol-
ogy and Gravitation, Particle Physics Phenomenology, and Experimental High 
Energy Physics. The most important aim of this meeting is to enable the inter-
change of information among the entire community through the presentation 
of short communications of the submitted papers and the panel session. An 
overview of the research in the area is achieved through invited review talks of 
wide interest. 

The XV Brazilian National Meeting on Particles and Fields was held at 
Angra dos Reis, Rio de Janeiro, from 4-8 October, 1994. It was organized 
under the auspices of Sociedade Brasileira de Física (SBF) with the support of 
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Centro 
Latino—Americano de Física (CLAF), Conselho Nacional de Desenvolvimento 
Científico e  Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado 
de São Paulo (FAPESP), do Rio de Janeiro (FAPERJ), do Rio Grande do Sul 
(FAPERGS), and Financiadora de Estudos e  Projetos (FINEP). 

The meeting had 270 participants and consisted of seven plenary and eight 
parallel talks given by invited speakers. nine of them from abroad. We also had 
105 short communications and 93 panels, where Brazilian researchers in the 
area had an opportunity to present the final results of their research projects 

and to discuss their works in progress. 
During this meeting, Prof. José Leite Lopes and Prof. Carlos Aragão de 

Carvalho Filho delivered talks to honor Prof. C. M. G. Lattes and Prof. J. J. 
Giambiagi, respectively. On the night of October 6, a round table was organized 
to discuss the financial support in Science and Technology with the participation 
of members of the Ministério da Ciência e  Tecnologia, Financiadora de Estudos 
e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo 
(FAPESP), and Centro Latino Americano de Física (CLAF). 

We would like to thank the SBF staff for all their efforts, in particular Neusa 
M. L. Martin for organizing these Proceedings. 

May 1995 	 The Organizing Committee 
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High Energy Neutrino Astronomy 
and its Telescopes 

F. iIa.lzen 
Department of P hysics. Utiir;I.r-say of Wisconsin. Madison, WI 53706 

Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely 
challenging. Efforts are underway to develop instruments that may push astronomy to 
wavelengths smaller than 10` 14  cm by napping the sky using high energy neutrinos instead. 
Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the 
particle processes controlling the fate of a nearby supernova, will reach outside the galaxy 
and make measurements relevant, to cosmology. The field is immersed in technology in the 
domains of particle physics to which many of its research goals are intellectually connected. 
To mind come the search for neutrino mass. cold dark matter (supersymmetric particles?) 
and the monopoles of the Standard Model. While a variety of collaborations are pioneering 
complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we 
show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several 
thousand optical modules and a price tag unlikely to exceed 100 million dollars. the scope of 
a kilometer-scale instrument is similar to that. of experiments presently being commissioned 
such as the SNO neutrino observatory in Canada and the Superkarniokande experiment in 
Japan. 

Overview 

In the past year we have witnessed the first activity in the commissioning of a novel type of telescope which 

detects elusive high energy neutrinos to probe mysteries in a variety of fields including astronomy and astrophysics, 

cosmic ray and particle physics. Most of all. however. one hopes to be surprised as historically, new ways of looking 

at the sky have led to unexpected discoveries. Large vol umes of deep ocean and lake water as well as the Antarctic 

ice cap are being instrumented to trap cosmic neutrinos. With the present flurry of activity, scientists are hopefully 

taking the first steps in the future construction of kilometer-scale neutrino detectors consisting of a million billion 

liters (a teraliter) of instrumented natural water or ice. These instruments should be able to study the Universe 

beyond our galaxy and watch cosmic cataclysms without having to wait for a once-in-a-century miracle like a nearby 

supernova. 

The penetrating power of the neutrino has been successfully exploited by particle physicists, who realized some 

time ago that by illuminating matter with an intense neutrino beam one can glean information on structure deep 

inside protons. In a very poor choice of words for a physicist. one could say that neutrinos are a diagnostic 

tool to `X-ray" protons or nuclei. The technique contributed in important, ways to the discovery of quarks and 

is conceptually simple, though technologically very challenging. A very intense beam of accelerated protons is 

shot into a - beam-dump" which typically consists of a kilometer-long mound of earth or a 100-meter-long block 

of stainless steel. Particle physics does the rest. Protons interact with nuclei in the dump and produce a large 

multiplicity of pions in each collision. Neutral pions decay into two photons. while charged pions decay into a muon 

and a neutrino. The material in the dump will eventually absorb the photons and moons so that only neutrinos 

exit at the opposite end, forming an intense and controlled beam ready to perform neutrino microscopy of matter. 

Can we use neutrinos to X-ray the Universe'? Are there cosmic beam-dumps producing neutrinos in space? 

Recall that all that is needed is a proton beam, energetic enough to produce pions. and target material to act as the 
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dump. The answer is definitively positive: cosmic ray experiments have revealed the existence of cosmic protons 

with energies up to 10 2°  eV. When these particles interact. with the Earth's atmosphere. the collision energy exceeds 

by more than a hundred times those achievable with CERN's LHC. The cosmic ray beam will produce neutrinos in 

any target material. The target may be as ordinary as the Earth's atmosphere and as exotic as the cosmic photons 

which fill outer space. 

Incredibly, we have no clue where these cosmic rays come from and how they can be accelerated to such energies. 

The highest energy cosmic rays are, almost certainly, of extra-galactic origin. Beyond our galaxy, powerful quasars 

and active galaxies stand out as the most likely sites from which particles can be hurled at Earth with joules of 

energy. The idea is rather compelling as bright quasars are also the dominant source of high energy photons. 

Quasars are the brightest sources in the Universe: some are so far away that they are messengers from the earliest 

of times. Their powerful engines must be extremely small as their luminosities are often observed to change by an 

order of magnitude over time periods as short as a day. Only black holes, a billion times more massive than our sun, 

will do. It is anticipated that beams accelerated near the black hole produce neutrinos on the ambient matter in the 

active galaxy, e.g. on the photons with an average density of 10 14 /cln 3 . Neutrino astronomers believe that the high 

energy neutrino sky will glow uniformly with bright active galaxies far outshining our Milky Way. But the results 

may be even more spectacular. As is the case in man-made beam dumps, photons from celestial accelerators may 

he absorbed in the dump. It is important to realize that high energy photons, unlike weakly interacting neutrinos, 

do not carry information on cosmic sites shielded from our view by more than a few hundred grams of intervening 

matter. The neutrino sky may divulge sources with no counterpart in any wavelength of light. Neutrino telescopes 

may reveal the sources of the enigmatic high energy cosmic rays, thus resolving one of the most lingering puzzles 

in astronomy. 

Some mixture of elementary particle physics and astrophysics allows us to compute that quasars will emit 

roughly one neutrino for every proton. As we know the frequency with which cosmic rays reach Earth, we can 

estimate the neutrino luminosity associated with quasars. Kilometer-size instruments are required to guarantee 

their detection and to do real astronomy. The most spectacular discoveries may however be within reach of the 

smaller detectors now under construction. In order to achieve large effective telescope area, it is unfortunately 

necessary to abandon the low-energy thresholds of existing supernova or solar neutrino detectors. There is no free 

lunch. One simply optimizes the instrument to efficiently catch those neutrinos that are easy to catch, i.e. those with 

very high energies, typically 1-100 GeV and above, which have a relatively large probability of being absorbed by 

protons in the detector and producing telltale electrons or muons. The accelerator physicist's method for building 

a neutrino detector will typically use lead absorber to filter out all particles but the neutrinos, wire chambers to 

detect electrons and muons produced in neutrino charge exchange interactions, and electronics with a combined 

price tag of roughly 10 4  US dollars per m 2 . Such a 1 km2  detector would cost 10 billion dollars. Realistically. 

we are compelled to develop methods which are more cost-effective by a factor of one hundred in order to be able 

to commission neutrino telescopes with effective area of order I km 2 . Obviously, the proven technique developed 

by existing underground detectors such as Kamiokande and IMB cannot be extrapolated to kilometer scale. All 

present telescopes do however exploit the well-proven Cherenkov technique used by these detectors. 

We recall that the interaction of neutrinos with matter is so weak that they will have to penetrate the full 

thickness of the Earth in order to have some chance of being captured. Detectors of astrophysical neutrinos must 

therefore be orders of magnitude larger than familiar astronomical instruments. Large volumes of water or ice are 

needed to trap a few neutrinos. When these collide with nuclei of matter. they will spawn muons which will act as 

observable tracers of the presence and direction of neutrinos: see Fig. 1. High energy muons are marvelous particles. 

They can, unlike electrons, travel through kilometers of water and ice, thus allowing one to extend the reach of the 
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Fig. 1 

detector well beyond the actual instrumented volume. Also, high energy muons are nicely aligned with the direction 

of their parent neutrino. The muons point back to the neutrino sources to better than I degree, a deviation which 

decreases with increasing neutrino energy. 

In a Cherenkov detector the direction of the neutrino is inferred from the muon track. It is measured by mapping 

the cone of Cherenkov light radiated by the muon as it travels through the detector. A high energy muon, travelling 

faster than the speed of light in water or ice, will radiate photons in the form of a "Cherenkov cone" of light. 

The arrival times of the Cherenkov photons, recorded by a grid of optical detectors, are used to map the shape of 

the cone and thus reconstruct the direction of the radiating muon. The photons can be detected with commercial 

photomultiplier tubes which represent a robust and cheap technology. All this sounds relatively straightforward 

until one faces the fact that the detector is constantly bombarded with muons produced by cosmic rays in the 

Earth's atmosphere. These are the decay products of cosmic ray pions and totally unrelated to neutrinos. Near 

the Earth's surface these muons are over ten billion times more numerous than those signaling the arrival of cosmic 

neutrinos. In a detector shielded by a kilometer-thick layer of water or ice, the number is reduced and hopefully 

manageable. Manageable means that the direction of every down-going muon is flawlessly measured so that it can 

he'unambiguously categorized as signal or background. The trick is to use the Earth as a filter: muons travelling 

upwards through-the detector must be spawned by neutrinos because the Earth (about 12500 km of it) will shield out 

atmospheric cosmic ray muons. Neutrino telescopes point into the ground, with the South Pole telescope studying 

the northern skies. 

In this paper we will first review the theorized sources of high energy cosmic neutrinos. We start with those 

sources whose detection can be guaranteed with sufficiently large telescopes. Although we subsequently-list the many 

science goals of the high energy neutrino telescopes. we will concentrate on two particularly exciting challenges: 

the observation of neutrino emission by active galaxies and the search for WIMPS, the particles making up the 

cold dark matter. We finally describe the techniques for detecting neutrinos as well as the four major experiments 

which are proceeding with construction, each of which has different strengths and faces different challenges. For the 

construction of a kilometer-scale detector one can imagine any of the above detectors as the basic building block for 

the ultimate telescope. A world-wide effort is underway to agree on a technology to realize the dream of building the 
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ultimate instrument. The present efforts described in this article will hopefully be more than engineering projects. 

The most exciting and unexpected discoveries may he those made by the small, prototype detectors. Although 

nothing can be guaranteed, history is on our side. The photon sky has been probed with a variety of instruments 

sensitive to wavelengths of light as large as 10 4  cm for radio-waves to 10 -14  ctrl for the GeV-photons detected 

with space-based instruments. Astronomical instruments have now collected data spanning 60 octaves in photon 

frequency, an amazing expansion of the power of our eyes which scan the sky over less than a single octave just 

above 10'' cm. The lensmakers in Flanders developed the telescope to make an early inventory of the goods on 

ships crossing the English Channel. Little did they know that Galileo would use the same instrument to discover 

the moons of Jupiter. The first X-ray telescope was built to study the sun and moon; its successors discovered all 

kind of wonderful objects like neutron stars and accreting binaries. The gamma ray instruments developed by the 

US to search for thermonuclear explosions in the Soviet Union discovered the still enigmatic gamma ray bursts. 

Each wavelength of light has a story like this to tell. Maybe the most dramatic is the accidental discovery of the 

cosmic photon background with apparatus studying sky-interference with telephone communications. Hopefully, in 

a not-too-distant future, short wavelength neutrinos will contribute their own bizarre tale. 

1. Guaranteed Cosmic Neutrino Beams 

In heaven, as on Earth, high energy neutrinos are produced in beam dumps which consist of a high energy 

proton (or heavy nucleus) accelerator and a target in which gamma rays and neutrinos are generated in roughly 

equal numbers in the decays of pions produced in nuclear cascades in the beam dump. For every a° producing 

two gamma rays, there is a charged T+  and 7 -  decaying into p+v F,. If the kinematics is such that muons decay 

in the dump, more neutrinos will be produced. For back-of-the-envelope calculations it is useful to know that 

roughly one neutrino is produced for each interacting proton in a typical astrophysical beam dump. It should be 

stressed immediately that in efficient cosmic beam dumps with an abundant amount of target material, high energy 

photons may be absorbed before escaping the source. 'Therefore, the most spectacular neutrino sources may have 

no counterpart in high energy gamma rays. 

By their very existence, high energy cosmic rays do guarantee the existence of definite sources of high energy 

cosmic neutrinos[1]. They represent a hadron beam of known luminosity, with particles accelerated to energies 

in excess of 10 20  eV. Cosmic rays produce pions in interactions with i) the interstellar gas in our galaxy, ii) the 

cosmic photon background in our Universe. iii) the sun, and finally iv) the Earth's atmosphere. which represents 

a well-understood beam dump. These interactions are the source of fluxes of diffuse photons and neutrinos. The 

atmospheric neutrino beam can be used to study neutrino oscillations over oscillation lengths varying between 10 

and 104  km[1]. 

A rough estimate of the diffuse fluxes of gamma rays and neutrinos from the galactic disk can be obtained by 

colliding the observed cosmic ray flux with interstellar gas with a nominal density of 1 proton per cm 3 . The target 

material is concentrated in the disk of the galaxy and so will be the secondary photon flux. The gamma ray flux 

has been identified by space-borne gamma ray detectors. It is clear that a roughly equal diffuse neutrino flux is 

produced by the decay of charged pion secondaries in the same collisions that produced the photons. Conservatively, 

assuming a detector threshold of 1 '1'eV, one predicts three neutrino-induced muons per year in a 10 6  rn 2  detector 

from a solid angle of 0.07 sr around the direction of Orion. There are several concentrations of gas with similar or 

smaller density in the galaxy. The corresponding number of neutrino events from within 10 degrees of the galactic 

disc is 50 events per year for a 10 6 '11 2  detector at the South Pole which views 1.1 steradian of the outer Galaxy 

with an average density of 0.013 grams/cm 2 . 

A guaranteed source of extremely energetic diffuse neutrinos is the interaction of ultra high energy, extra-galactic, 
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cosmic rays on the microwave background. The major source of energy loss is photoproduction of the .. resonance  

by the cosmic proton beam on a target of background 2.7° photons with a density of --400 photons/cm 3  and an  

average energy of 7 x 10 -4  eV. For cosmic ray energies exceeding  

' 	2(1 - cos 0) ,. 	(l -cos 9) 	
(l)  

where O is the angle between the proton and photon directions. the photopion cross-section grows very rapidly to  

reach a maximum of 540 tib at the ]+ resonance (s = 1.52 C;eV 2 ). The 1.1+ decays to p;r° with probability of 2/3.  

and to ria+ with probability 1/3. The charged pions are the source of very high energy muon-neutrino fluxes. In  

addition. neutrons decay producing a flux of lower energy  i.^. 

The magnitude and intensity of the cosmological neutrino fluxes is determined by the maximum injection energy  

of the ultra high energy cosmic rays and by the distribution of their sources. If the sources are relatively near at  

distances of order tens of Mpc, and the maximum injection energy is not much greater than the highest observed  

cosmic ray energy (few x 10 20  eV), the generated neutrino fluxes arc small. If. however, the highest energy cosmic  

rays are generated by many sources .at large redshift., then a large fraction of their injection energy would he presently  

contained in -f-ray and neutrino fluxes. The reason is that the energy density of the microwave radiation as well  

as the photoproduction cross-section scale as (1 -1- ) 4 . The effect would be even stronger if the source luminosity -

were increasing with c, i.e. if cosmic ray sources were more active at large redshifts — 'bright phase' models. Early 

speculations on bright phase models led to the suggestion of kilometer-scale neutrino detectors over a decade ago[2). 

The other guaranteed extraterrestrial source of high energy neutrinos is the Sun. The production process is 

exactly the saute as for atmospheric neutrinos on Earth: cosmic ray interactions in the solar atmosphere. Neutrino  

production is enhanced because the atmosphere of the Sun is much more tenuous. The scaleheight of the chromo-

sphere is ^415 km. compared with 6.3 kin for our upper atmosphere. The decisive factor for the observability of 

this neutrino source is the small solid angle (6.8 x 10 - ' sr) of the Sun. A detailed calculation shows that the rate 

of neutrino-induced upward-going muons is higher than the atmospheric emission from the same solid angle by a  

factor of -5. The rate of muons of energy above 10 GeV in a 10 6  tn= detector is 50 per year. Taking into account  

he diffusion of the cosmic rays in the solar wind, which decreases the value of the flux for energies below one TeV,  

cuts this event rate by a factor of 3. Folded with a realistic angular resolution of 1 degree, observation of such an  

event rate requires. as for the previous examples. a I km 2  detector.  

2. Active Galactic Nuclei: Almost Guaranteed?  

Although observations of Pell ( l0t s  eV) and EcV (10 t " eV) gamma-rays are controversial, cosmic rays of such  

energies do exist and their origin is at present a complete mystery. The cosmic-ray spectrum can be understood. up  

to perhaps 1000TeV, in terms of shockwave acceleration in galactic supernova remnants. Although the spectrums  

suddenly steepens at 1000 Tell. a break usually reti:rred to as the -ki e e cosmic rays with much higher energies arc 

observed and cannot be accounted for by this mechanism. This failure can be understood by simple dimensional  

analysis. The EM in the supernova shock is of the form  

E=Zel3lic . ( 2 )  

where 13 and I4 are the magnetic field in the galaxy and the radius of the shock. For a proton Eq. (2) yields a  

maximum energy  

Eene<x = [105 'l'eV]L. 
	

R 	
(3) 

S x lU - ei G l  50 pc)  

and therefore E is less than 10 5  '1eV for the typical values of 13, R s town. The actual upper limit is vouch smaller  

than the value obtained by dimensional analysis because of inefficiencies in the acceleration process.  

E 	
r7iil -  rn-; 	5  x  10 2 °

V  E, 	  ^ 	 
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Cosmic rays with energy in excess of 10 20  eV have been observed. Assuming that they are a galactic phenomenon, 

the measured spectrum implies that 10 34  particles are accelerated to 1000 TeV energy every second. We do not 

know where or how. We do not know whether the particles are protons or iron or something else. If the cosmic 

accelerators indeed exploit the 3i Gauss field of our galaxy, they must be much larger than supernova remnants in 

order to reach 1021  eV energies. Equation (2) requires that their size be of order 30 kpc. Such an accelerator exceeds 

the dimensions of our galaxy. Although imaginative arguments exist to avoid this impasse, an attractive alternative 

is to look for large size accelerators outside the galaxy. Nearby active galactic nuclei (quasars. blazars...) distant 

by order 100 Mpc are the obvious candidates. With magnetic fields of tens of tiGauss over distances of kpc near 

the central black hole or in the jets, acceleration to 10 21  eV is possible; see Eq. (2). 

One can visualize the accelerator in a very economical way in the Blanford-Zralek mechanism. Imagine that the 

horizon of the central black hole arts as a rotating conductor immersed in an external magnetic field. By simple 

dimensional analysis this creates a voltage drop 

AV 	a B MBH  
(4) 

1020volts 	Man 104 0 109 M0 • 

2 

	  ( 	

,

( 

l045crgs-1  \ MBH \ 104 6)' 10' 0 	
(a) 

)  

here a is the angular momentum per unit mass taken to be the black hole mass MBH. 

All this was pretty much a theorist's pipe dream until recently the Whipple collaboration reported the ob-

servation of TeV (l0' 2 eV) photons from the giant elliptical galaxy Markarian 411[3]. With a signal in excess of 

fi standard deviations. this was the first convincing observation of TeV gamma rays from outside our Galaxy. That 

a distant source such as Markarian 421 can be observed at all implies that its luminosity exceeds that of galactic 

cosmic accelerators such as the Crab, the only source observed by the same instrument with comparable statistical 

significance. by close to 10 orders of magnitude. More distant by a factor 10 5 . the instrument's solid angle for 

Markarian 421 is reduced by 10 -1°  compared to the Crab. Nevertheless the photon count at. TeV energy is roughly 

the same for the two sources. The Whipple observation implies a Markarian 421 photon luminosity in excess of 

10 43  ergs per second. It is interesting that these sources have their highest luminosity above TeV energy. beyond 

the wavelengths of conventional astronomy. During May 1994 Markarian 421 was observed to increase its flux by a 

factor 10 in one day. strongly suggesting the catastrophic operation of a high energy hadronic accelerator. 

Why Markarian 421? Whipple obviously zoomed in on the Compton Observatory catalogue of active galaxies 

(AGNs) known to emit. GeV photons. Markarian. at a distance of barely over 100 Mpc. is the closest blazar on 

the list. As yet. TeV gamma rays have not been detected from any other AGNs. Although Markarian 421 is 

the closest of these AGNs. it is one of the weakest; the reason that it is detected whereas other. more distant, 

but more powerful. AGNs are not. must be that the TeV gamma rays suffer absorption in intergalactic space 

through the interaction with background infra-red photons. TeV gamma rays are indeed efficiently absorbed by 

infra-red starlight and this most likely provides the explanation why astronomers have a hard time observing 

much more powerful quasars such as 3C279 at a redshift of 0.54. Production of e+ 03-  pairs by TeV gamma rays 

interacting with IR. background photons is the origin of the absorption. The absorption is. however. minimal 

for Mrk 421 with c = 0.03. a distance close enough to see through the IR fog. This implies that all of the 

A(:Ns may have significant very high energy components hut. that only Markarian 421 is close enough to be 

detectable with currently available gamma-ray telescopes. The opportunities for neutrino astronomy are wonderfully 

obvious. 

This observation was not totally unanticipated. Many theorists[1) have identified blazars such as Markarian 421 

as powerful cosmic accelerators producing beams of very high energy photons and neutrinos. Acceleration of particles 

corresponding to a luminosity 
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is'by shocks in the jets (or, possibly, also by shocks in the accretion flow onto the supermassive black hole which 

powers the galaxy) which are a characteristic feature of these radio-loud active galaxies. Many arguments have 

been given for the acceleration of protons as well as electrons{ l]. Inevitably beams of gamma rays and neutrinos 

from the decay of pions appear along the jets. The pions are photoproduced by accelerated protons on the target 

of optical and UV photons in the gálaxy,.which reaches densities of 10 14  per cm3 . The latter are the product of 

synchrotron radiation by electrons accelerated along with the protons. 

Powerful AGNs at distances of order 100 Mpc and with proton luminosities of 10g 5 erg/s or higher are obvious 

candidates for the cosmic accelerators of the highest. energy cosmic rays. Their luminosity often peaks at. the highest 

energies and their proton flux, propagated to Earth, can quantitatively reproduce the cosmic ray spectrum above 

spectrum 10 15  eV[4]. Some have argued that all cosmic rays above the "knee" in the spectrum at 10 15  eV may be 

of AGN origin. The neutrino flux from such accelerators can be calculated by energy conservation: 

GF,Nceff = 47d 2
J 

 dE[EdNr,/dE] , 

where N„ is the neutrino flux at Earth, d the average distance to the sources. N the number of sources and .  cep the 

efficiency for protons to produce pions and therefore neutrinos in the AGN bealndulnp. Assuming the production 

of 1 neutrino per interacting proton. we obtain 

E dN„ _ :Vic eu  7.5 x 10 -1D 
 cm -2  s -1  sr -1 	 (+) 

dE 	4 r E (TeV) 

for CI, = 1045 erg/s and d = 100 Mpc. We here assumed an E -2  energy spectrum extending to 10 20  eV energy. 

With (err  of order 10' 1  to 10 -3  and the number of relatively nearby sources N in the range 10 to 1000, it is a 

reasonable estimate that IVicefr = 1. The total energy in excess of 1 EeV (10 1 e-10 70  eV) is 5 x 10 -9  erg/cm 2 /s. 

This number nicely matches the energy density of the extra-galactic cosmic rays in the same interval of energy, as 

it should, assuming again that 1 neutrino is produced for every proton in the AGN dump. The flux of Eq. (7) is at. 

the low end of the range of fluxes predicted by Biermann et al. and by Protheroe et al. and Stecker et al. in models 

where acceleration is in shocks in the jet[4] and accretion disc[5,6], respectively. 

The above discussion suggests a very simple estimate of the AGN neutrino flux that finesses all guesses regarding 

the properties of individual sources: 

4.r 
 J

dE{EdN„/dE] _ Cca 
1° 17 eV _ 7. 2  x 10 -9 ergcm -2 s' 1  

(8) 

which simply states that AGNs generate 1 neutrino for each proton. £ca is obtained by integrating the highest 

energy E -2-71  component of the cosmic ray flux above 10 1 ' eV. Assuming an E -2  neutrino spectrum we recover 

the result of Eq. (7). Is is now clear that our flux is a lower limit, as protons should be absorbed in ambient matter 

in the source or in the interstellar medium. 

3. Intermezzo: The Case for a Kilometer - Scale Detector 

Observing AGNs has become a pivotal goal in the development of high energy neutrino telescopes. The archi-

tecture of detectors is often optimised for the detection of AGN neutrinos. Neutrinos are observed via the milons 

they produce in the detector volume. At high energy it is possible to enhance the effective volume of detectors by 

looking for neutrino-induced muons generated in charged-current interactions of i u  in the water or ice' outside the 

instrumented detector volume. The effective detector volume is then the product of the detector area and the muon 

( 6 ) 
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range in rock R I,. 'Fey muons have a typical range of one kilometer, which leads to a significant increase in effective  

detector volume. The average muon energy loss rate is  

dE 
dX  

= -a(E) - (3(E) x E E.  (9)  

where X is the thickness of material in g/cm 2 . The first term represents ionization losses, which are approxi- 

mately independent of energy. with o 	2 MeV g- tent 2 . The second term includes the catastrophic processes  

of brentsstrahlung, pair production and nuclear interactions, for which fluctuations play an essential role. Here  

- 4 x 10 - " C l an'. The critical energy above which the radiative processes dominate is  

Ecr = c,/ii 	500 GeV. 	 (10)  

To treat muon propagation properly when E,.  > Eçr  requires a Monte Carlo calculation of the probability P, ury  

that a muon of energy E,. survives with energy > Enttn after propagating a distance X.  

The probability that a neutrino of energy E„ on a trajectory through a detector produces a muon above threshold  

at the detector is  

where  

E'")  = NA  
E. 	tiff  „ 

d E^, 
d lst, (E

u .  E„ )  

x xelr(E„, Emin) .  

(12)  

and at, is the cross section for a neutrino of energy E t.o produce a. muon of energy E,,. The flux of v,-induced  

unions at the detector is given by the convolution of the neutrino spectrum ó„ with the muon production probability  

(11)as  

ó,(Fim`n, B) = f 	rdEv P„(E„,  E^n in )  
f Emie l  

x exp[-aL ( E„) X(0) IVA ] (1)„(E,,, 0)} .  

The exponential factor here accounts for absorption of neutrinos along the chord of the Earth. X(0), before they  

interact to produce muons. Absorption becomes important for o(a) > 10-33  cm' or E„ > 10' GeV.  

The event rate in a detector is obtained by multiplying Eq. (13) by its effective area. From Eqs. (7),(13) we  

obtain order 300 upcoming muon events per year in a 10 6  m' detector. It is not a comfortably large rate. as the flux  

is indeed distributed over a number of sources. There is. however. no competing background. Hopefully one will  

be able to scrutinize a few nearby sources with good statistics. We should recall at this point that our back-of-the-

envelope estimate yields a flux at the lower end of the range of fluxes predicted by detailed modeling. Optimistic  

predictions exceed our estimate by over an order of magnitude and are, possibly, within reach of the first-generation  

telescopes now being commissioned.  

4. The Neutrino Sky: Summary  

The neutrino sky at GeV-energy and above is summarized in Fig. 2. Shown is the flux from the galactic plane as  

well as a range of estimates (from generous to conservative) for the diffuse fluxes of neutrinos from active galaxies  

and from the interaction of extra-galactic cosmic rays with cosmic photons. At PeV energies and above all, sources  

dominate the background of atmospheric neutrinos. In order to deduce the effective area of an instrument required  

• to study the fluxes in the figure, the detection efficiency must he included using Eq. (13). At the highest energies  

this efficiency approaches unity and 1 event per km 2  per year corresponds to the naive estimate of 10 - t 6  neutrinos  

f
N

= 	d.y Ptiurv( EF,. Ey  in ..l) 

(13)  
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per cm 2  second. At TeV-PeV energy the I event level per year corresponds to a flux of 10 -14 -10 -ís  per cm 2  second. 

As before, we conclude that the diffuse Ilux from AGN yields order 10 3  events in a kilometer-size detector per year 

in the TeV-energy range. 

It. should be emphasized that high energy neutrino detectors are multi-purpose instruments. Their science reach 

touches astronomy, astrophysics and particle physics. Further motivations for the construction of a km 3  deep 

underground detector include[1]: 

I. The search for the t'llooft-Polyakov monopoles predicted by the Standard Model. 

2. The study of neutrino oscillations by monitoring the atmospheric neutrino beam. One can exploit the unique 

capability of relatively shallow neutrino telescopes. i.e. detectors positioned at a depth of roughly 1 km. to 

detect, neutrinos and muons of similar energy. In a vs, oscillation experiment one can therefore tag the :r 

progenitor of the neutrino by detecting the muon produced in the same decay. This eliminates the model 

dependence of the measurement inevitably associated with the calculation of the primary cosmic ray flux. 

Surface neutrino telescopes probe the parameter space Jm 2  > 10 -3  eV 2  and sine  20 > 10 -3  using this 

technique. Recently, underground experiments have given tantalizing hints for neutrino oscillations in this 

mass range.' 

3. The search for neutrinos from the annihilation of dark matter particles in our galaxy. 

4. The capability to observe the thermal neutrino emission from supernovae[7] (even though the nominal thresh-

old of the detectors exceeds the neutrino energy by several orders of magnitude!). The detector will be able 

to monitor our galaxy over decades in a most economical fashion. 

5. Further study of the science pioneered by space-based gamma ray detectors such as the study of gamma ray 

bursts and the high energy emission from quasars. 
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It is intriguing that each of these goals individually point to the necessity of commissioning a kilometer-size  

detector. In order to illustrate this, I will discuss the search for the particles which constitute the cold dark /natter.  

5. Indirect Search for Cold Dark Matter  

It is believed that most of our Universe is made of cold dark matter particles. Big bang cosmology implies that  

these particles have interactions on the order of the weak scale. i.e. they arc WIMPs[8]. We know everything about  

these particles (except whether they really exist!). We know that their mass is of order of the weak boson mass and  

we know that they interact weakly. We also know their density and average velocity in our galaxy, as they must  

constitute the dominant component of the density of our galactic halo as measured by rotation curves. WIMPs will  

annihilate into neutrinos with rates whose estimate is straightforward. Massive WIMPS will annihilate into high  

energy neutrinos. Their detection by high energy neutrino telescopes is greatly facilitated by the fact that the sun  

conveniently represents a dense and nearby source of cold dark matter particles.  

Galactic WIMPs, scattering off protons in the sun. lose energy. They may fall below escape velocity and be  

gravitationally trapped. Trapped dark matter particles eventually come to equilibrium temperature, and therefore  

to rest at the center of the sun. While the WIMP density builds up, their annihilation rate into lighter particles  

increases until equilibrium is achieved where the annihilation rate equals half of the capture rate. The sun has thus  

become a reservoir of WIMPs which annihilate into any open fermion, gauge boson or Higgs channels. The leptonic  

decays of heavy quarks and weak bosons produced in the annihilation channels bb and W+ IV -  turn the sun into a  

source of high energy neutrinos. Their energies are in the GeV to TeV range. rather than in the familiar KeV to  

Mel/ range from thermonuclear burning. These neutrinos can be detected in deep underground experiments.  

We illustrate the power of neutrino telescopes as dark matter detectors using as an example the search for a  

500 GeV WIMP with a mass outside the reach of present accelerator and future WIC experiments. A quantitative  

estimate of the rate of high energy muons of WIMP origin triggering a detector can be made in 5 easy steps.  

Step 1: The halo WIMP flux ó x .  

It is given by their number density and average velocity. The cold dark matter density implied by the observed  

galactic rotation curves is p x. = 0.4 GeV/an'. The galactic halo is believed to be an isothermal sphere of WIMPs  

with average velocity v x  = 300 km/sec. The number density is then  

rt x  = 8 x IO-4 
[500 GeV] 

 cm-3 	 (14) 
rn x  

and therefore  

Qx = n x vx  = 2 x 104 
[500 GeV 

 cm -? s - 1  . 	 (l5)  
mx  

Step 2: Cross section 	for the capture of WIMPS by the sun.  

The probability that a WIMP is captured is proportional to the number of target hydrogen nuclei in the sun (i.e.  

the solar mass divided by the nucleon mass) and the WIMP-nucleon scattering cross section. From dimensional  

analysis cr(yN) (GFrnn,) 2 /t4 which we can envisage as the exchange of a neutral weak boson between the  

WIMP and a quark in the nucleon. The main point is that the WIMP is known to he weakly interacting. Details  

are not relevant for our rate estimate. We obtain for the solar capture cross section  

Eeun = n = 'yam°(r(^'N) m ,y  

= [1.2 x 10 57 1 [ 10 -  

Step 3: Capture rate ►Nap  of WIMPS by the sun.  

Neap  is determined by the WIMP flux (15) and the sun's capture cross section (16) obtained in the first 2 steps:  

41 cm?l 
	 (16)  

Neap = ©x -``fs^^ = 3 x 1020 -1  . 	 (17)  
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Step 4: Number of solar neutrinos of dark matter origin. 

The sun comes to a steady state where capture and annihilation of WIMPs are in equilibrium. For a 500 GeV 

WIMP the dominant annihilation rate is into weak bosons 

1t• — IV1V — pvN  . 	 ( 1 3) 

Each W produces muon-neutrinos with a branching ratio which is roughly 10%. As we get 2 W's for each capture, 

the number of neutrinos generated in the sun is 

= ' i\rclip 
 7 

and the corresponding neutrino flux at. Earth is given by 

Ó„= 	= 2x111' cm - ''s" , 
4;rd- 

where the distance d is I astronomical unit. 

Step 5: Event rate in a high energy neutrino telescope. 

For (18) the 1.V-energy is approximately m y  and the neutrino energy half that by two-body kinematics. The energy 

of the detected ninon is given by 

E„ ^_ ti rn.. ( 21 ) 

In the second step we used the fact that. in this energy range, roughly half of the neutrino energy is transferred to 

the rmuou. Simple estimates of the neutrino interaction cross section and the muon range can be obtained as follows 

Ell  a„•• r, = I0-36  cm
', 

C 
cV = 2.5 x 10 -36  cm -  (22) 

and 
Is , 

R,,— :gym 	̀ =625m, 	 • 	 (23) 
C:eV 

which is the distance covered by a muon given that it loses 2 MeV for each gram of matter traversed. We have 

now collected all the information required to compute the number of events in a detector of area 10 6  m2 . For the 

neutrino flux given by (20) we obtain 

	

# events/year = l06  x 	x ptt ,o x a„_, x Rj, 

	

1000 	 ( 24 ) 

for a 1 krn 2  water Cherenkov detector, where R,, is the muon range and ó„ x ptto x a„—p  is the analog of Eq. (13). 

Notice that this corresponds to 10 events per year for a l0 4  m2  telescope, an area typical for the instruments 

presently under construction. 

The above exercise is just meant to illustrate that high energy neutrino telescopes compete with present and 

future accelerator experiments in the search for dark matter and supersymmetry: see below. The above exercise 

can be repeated as a function of WIMP mass. The result is shown in Fig. 3. (The two branches as well as the 

structure in the curves are related to details of supersymmetry. These are, for all practical purposes. irrelevant). 

Especially for heavier WIMPs the technique is very powerful because underground high energy neutrino detectors 

have been optimized to be sensitive in the energy region where the neutrino interaction cross section and the range 

of the muon arc large. Also, for high energy neutrinos the muon and neutrino are aligned along a direction pointing 

hack to the sun with good angular resolution. A kilometer-size detector probes WIMP masses up to the TeV-range. 

beyond which they are excluded by cosmological considerations. The technique fails for low masses only for those 

(19)  

(20)  
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Fig. 3 

mass values already excluded by unsuccessful accelerator searches. Competitive direct searches for dark matter will 

have to deliver detectors reaching better than 0.05 events/kg/day sensitivity. 

Particle physics provides us with rather compelling candidates for %VIM 1 s.  The Standard Model is not a model: 

its radiative corrections are not under control. A most elegant and economical way to revamp it into a consistent 

and calculable framework is to make the model supersvu u netric. If supersymmetry is indeed Nature's extension 

of the Standard Model. it. must produce new phenomena at or below the TeV scale. A very attractive feature of 

supersymmetry is that it provides cosmology with a natural dark-matter candidate in the form of a stable lightest 

supersymmetric particle[8]. This is. excluding the axion. the only candidate because supersymmetry completes the 

Standard Model all the way to the GUT scale where its forces apparently unify. Because supersymmetry logically 

completes the Standard Model with no other new physics threshold up to the GUT-scale, it. must supply the 

dark matter. So. if supersymmetry. then dark matter and accelerator detectors are on a level playing field. The 

interpretation of the above arguments in the framework of supersymmetry is explicitly stated in Ref. [p]. 

G. DUMAND et al.: Complementary Technologies 

We have presented arguments for doing neutrino astronomy on the scale of 1 kilometer. In order to achieve 

large effective area, it is unfortunately necessary to abandon the low MeV thresholds of detectors such as 1MB 

and Kamiokande. One focuses on high energies where: i) neutrino cross sections are large and the muon range is 

increased; see Equation (13), ii) the angle between the muon and parent neutrino is less than 1 degree. and iii) 

the atmospheric neutrino background is small. The accelerator physicist's method for building a neutrino detector 

uses absorber chambers with a few x. y wires and associated electronics with a price of roughly 10 4  US dollars per 

rn 2 . Such a 1 km' detector would cost 10 billion dollars. Realistically, we are compelled to develop methods which 

are more cost-effective by a factor 100 in order to be able'to commission neutrino telescopes with area of order 

1 kin='. Obviously, the proven technique developed by IMB, Kamiokande and others cannot be extrapolated to 

kilometer scale. All present high energy telescope designs do however exploit the well-proven Cherenkov technique. 
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implemented with the use of conventional photomultiplier tubes. 

In a Cherenkov detector the direction of the neutrino is inferred from the muon track, which is measured 

by mapping the associated Cherenkov cone travelling through the detector. The arrival times and amplitudes 

of the Cherenkov photons, recorded by a grid of optical detectors, are used to reconstruct the direction of the 

radiating muon. The challenge is well-defined: record the melon direction with sufficient precision (i.e.. sufficient 

to unambiguously separate the much more numerous down-going cosmic ray muons from the up-coming muons of 

neutrino origin) with a minimum number of optical !nodules (OM). Critical parameters are detector depth, which 

determines the level of the cosmic ray muon background. and the noise rates in the optical modules, which will 

sprinkle a minion trigger with false signals. Sources of noise include radioactive decays such as potassium decay in 

water, bioluminescence and, inevitably, the dark current of the photomultiplier tube. The experimental advantages 

and challenges are different for each experiment and. in this sense, they nicely complement one another as engineering 

projects for a large detector. Each has its own "gimmick" to achieve neutrino detection with a minimum number 

of OMs: 

1. AMANDA uses sterile ice, free of radioactivity; 

2. Baikal triggers on pairs of OMs; 

3. DUMAND and NESTOR shield their arrays by over 4 km of ocean water. 

Detectors under construction will have a nominal effective area of 10 4  m2 . The OMs are deployed like beads on 

strings separated by 20-60 meters. There are typically 20 OMs per string separated by 10 meters or more. Baikal 

is presently operating 36 optical modules, 18 pointing up and 18 down, and the South Pole AMANDA experiment 

started operating 4 strings with a total of 80 optical modules in January 94. The first generation telescopes will 

consist of roughly 200 OMs. Briefly, 

I. AMANDA is operating in deep clear ice with an absorption length in excess of 60 in. similar to that of the 

clearest water used in the Kamiokande and 1MB experiments. The ice provides a convenient mechanical 

support for the detector. The immediate advantage is that all electronics can be positioned at the surface. 

Only the optical modules are deployed into the deep ice. Polar ice is a sterile medium with a concentration of 

radioactive elements reduced by more than 10 -4  compared to sea or lake water. The low background results in 

an improved sensitivity which allows for the detection of high energy muons with very simple trigger schemes 

which are implemented by off-the-shelf electronics. Being positioned under only 1-2 km of ice, it is operating 

in a cosmic ray muon background which is two orders of magnitude larger than deep-ocean detectors such as 

DUMAND: The challenge is to reject the down-going muon background relative to the up-coming neutrino-

induced muons by a factor 10 6 . The group claims to have met this challenge with an up/down rejection which 

is similar to that of the deep detectors. 

Although residual bubbles are found at depths as large as 1 km. their density decreases rapidly with depth. 

Ice at the South Pole should be bubble-free below 1100-1300 m, as it. is in other polar regions. The effect 

of bubbles on timing of photons has been measured by the laser calibration system deployed along with the 

OMs. After taking the scattering of the light on bubbles into account, reconstruction of muons has been 

demonstrated by a successful measurement of the characteristic fluxes of cosmic ray muons. 

The polar environment turned out to be surprisingly friendly but only allows for restricted access and one- 

shot deployment of photomultiplier strings. The technology has, however, been satisfactorily demonstrated 

with the deployment of the first 4 strings. It is clear that the hot water drilling technique can be used to 
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deploy OM's larger than the 8 inch photomultiplier tubes now used to any depth in the 3 km deep ice cover. 

AMANDA will deploy 6 more strings in 1995 at a depth of 1500 meters. 

2. BAIKAL shares the shallow depth of AMANDA and large background counting rate of tens of kllz from 

bioluminescence and radioactive decays with 1)UIIIAND. It suppresses its background by pairing OMs in the 

trigger. Half its optical modules are pointing up in order to achieve a uniform acceptance over upper and 

lower hemispheres. The depth of the lake is 1.4 kin, so the experiment cannot expand downwards and will 

have to grow horizontally. 

The Baikal group has been operating an array of 18(36) Quasar photomultiplier (a Russian-made 15 inch 

tube) units deployed in April 1993(94). They have reached a record up/down rejection ratio of 10 -4  and, 

according to Monte Carlo, will reach the 10 -6  goal to detect neutrinos as soon as the full complement of 200 

OMs is deployed. They expect to deploy 97 additional OMs in 1995. 

3. DUMAND will be positioned under 4.5 kin of ocean water, below most biological activity and well shielded 

from cosmic ray mnuon backgrounds. A handicap of using ocean water is the background light resulting from 

radioactive decays, mostly K 40 , plus some bioluminescence, yielding a noise rate of 60 kllz in a single OM. 

Deep ocean water is very clear with an absorption length of order 40 in in the blue. The deep ocean is a 

difficult location for access and service. Detection equipment must be built to high reliability standards and 

the data must be transmitted to the shore station for processing. It has required years to develop the necessary 

technology and learn to work in an environment foreign to high energy physics experimentation, hut hopefully 

this will he accomplished satisfactorily. 

The DUMAND group has successfully analysed data on cosmic ray muons from the deployment of a test 

string. They have already installed the 25 kin power and signal cables from detector to shore as well as the 

junction box for deploying the strings. The group will proceed with the deployment of 3 strings of 24 OMs in 

1995. 

4. NESTOR is similar to DUMAND, being placed its the deep ocean (the Mediterranean), except for two critical 

differences. half of its optical modules point up, half down like Baikal. The angular response of the detector is 

being tuned to be much more isotropic than either AMANDA or DUMAND. which will give it advantages in. 

for instance, the study of neutrino oscillations. Secondly, NESTOR will have a higher density of photocathode 

(in some substantial volume) than the-  other detectors, and will be able to make local coincidences on lower 

energy events, even perhaps down to the supernova energy range (tens of McV). OMs are deployed on titanium 

"umbrellas .' which open up when lowered in the water. 

5. Other 	detectors 	have 	been 	proposed 	for 	near 	surface 	lakes 	or 	ponds 	(e.g. 

GRANDE. LENA, NET, PAN and the Blue Lake Project), but at this time none are in construction[10]. 

These detectors all would have the great. advantage of accessibility and ability for dual use as extensive air 

shower detectors. but suffer from the 10 10-10 11  down-to-up ratio of mnuons. and face great civil engineering 

costs (for water systems and light-tight containers). Even if any of these are built it would seem that the costs 

may be too large to contemplate a full kilometer-scale detector. 

7. Sketch of a Kilometer-Size Detector 

In summary, there are four major experiments proceeding with construction, each of which has different, strengths 

and faces different challenges. For the construction of a 1 km scale detector one can imagine any of the above 
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detectors being the basic building block for the ultimate I km 3  telescope. The redesigned AMANDA detector (with 

spacings optimized to the absorption length of 60 m), for example, consists of 5 strings on a circle of 60 meter radius 

around a string at the center (referred to as a 1 +5 configuration). Each string contains 13 OMs separated by 15 m. 

Its effective volume for TeV-neutrinos is just below 10' m 3 . Imagine AMANDA "supermodules" which are obtained 

by extending the basic string length (and module count per string) by a factor close to 4. Supermodules would then 

consist of 1 + 5 strings with 51 OMs separated by 20 meters on each string, for a total length of 1 km. A 1 km scale 

detector then may consist of a I + 7 + 7 configuration of supermodules, with the 7 supermodules distributed on a 

circle of radius 250 m and 7 more on a circle of 500 m. The full detector then contains 4590 phototubes, which is 

less than the 9000 used in the SNO detector. Such a detector (see Fig. 4) can be operated in a dual mode: 

I. It obviously consists of roughly 4 x 15 the presently designed AMANDA array, leading to an "effective" volume 

of — 6 x 106  m 3. Importantly, the characteristics of the detector, including threshold in the GeV-energy range, 

are the same as those of the AMANDA array module. 

2. The 1+7+7 supermodule corifiguration, looked at as a whole, instruments a 1 km 3  cylinder with diameter and 

height of 1000 rn with optical modules. High energy muons will be superbly reconstructed as they can produce 

triggers in 2 or more of the supermodules spaced by large distance. Reaching more than one supermodule 

(range of 250 m) requires muon energies in excess of 50 GeV. We note that this is the energy for which a 

neutrino telescope has optimal sensitivity to a typical E source (background falls with threshold energy. 

and until about I TeV little signal is lost). 

Alternate methods to reach the 1 km scale have been discussed by Learned and Roberts[l1]. 	. 

What are the construction costs for such a detector? AMANDA's strings (with 20 OMs) cost $150,000 including 

deployment. By naive scaling the final cost of the postulated 1+ 7 + 7 array of supermodules is of order S50 million. 

still below that of Superkamiokande (with 11,200 x 20 inch photomultiplier tubes in a 40 m diameter by 40 m high 

stainless steel tank in a deep mine). It is clear that the naive estimate makes several approximations over- and 

underestimating the actual cost. 
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Vector supersymrnetry is typical of topological field theory. Its role in the construction of 
gauge invariant quantities is explained, as well as its role in the cancellation of the ultraviolet 
divergences. The example of the Chern-Simons theory in three dimensions is treated in 

details. 

1. Introduction 

A .  main characteristics of topological gauge theories (see [I] for a general review) is their lack of local observables. 

In particular there is no energy-momentum tensor because of their metric independence and, moreover, the gauge 

field configurations satisfying the equations of motion are pure gauges. Observables are integrated gauge invariant 

objects like Wilson loops, or currents localized on the boundary. if any. of the base manifold. Other important 

physical. gauge invariant quantities are the possible anomalies and the counterterms which correspond to the 

possible renormalization of the coupling constants. We shall deal here with the latter category of gauge invariant 

objects. which are represented by space-time integrals. 
The aim of this talk is to show how a supersymmetry generated by a space-time vector valued supercharge 

happens to hold, and to show that this supersymmetry generator may be used in a a natural way for the explicit 

construction of the gauge invariant objects considered. Its role in the complete cancellation of the ultraviolet. 

divergences in topological theories will also be explained. 
In order to keep the argument as simple and self-contained as possible, I shall concentrate on the 3-dimensional 

Cltern-Simons theory. Sect. 2 will be devoted to the description of the model, of its gauge fixing and to its BRS 

invariance. Sect. 3 will present some simple facts about the BRS cohomology which will be needed later on. Vector 

supersymmetry will he introduced in Sect. 4 and the solution of the problem in Sect.5. Some conclusions are 

proposed at the end. 

The notations are those of (2). Generally the statements are given without proof. The proofs may be found 

in [2]. unless they are well-established or an explicit reference is given. 

2. The D = 3 Chern-Simons model 

2.1 The Chern-Simons action 

The Chern-Simons term[3, 4] in three space-time dimensions is given by the gauge invariant action 

Scs 	—
.} ¡

d' t y c" °°'Cr 	— AA„AA j . 
(2.1) 

The number k plays the role of the inverse of the coupling constant' and A,, is a Lie algebra valued gauge field. as 

well as all the fields we shall introduce later on. Denoting such a generic field by Sp, we define 

4/(i) 	s./a(x)r„  , 	 (2.2) 

where the matrices r are the generators of the group and obey 

[ra, rb] = t fabcrr. . 	Tr(Ta Tb) = bat,  . 	 (2.3) 

'Supported in part by the Swiss National Science Foundation. 
t The parameter k is actually quantized[4]. but this is irrelevant in perturbation theory, which is a (formal) expansion at zero coupling, 

hence at infinite k. 
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The gauge transformations read  

5Ap(x) = 00w(x) + i{tJ(x), Ap(x)] =: D pw(x) , 	 (2.4)  

with w :_ (✓a ra. The gauge group is chosen to be simple and compact. These transformations change the integrand  

of the action (2.2) into a total derivative, leaving thus the action invariant if there are no boundary contributions  

and if the topology is trivial [4].  

Expression (2.2), although referred here to the flat Euclidean space-time. has an intrinsic geometrical meaning  

and can be defined on an arbitrary three dimensional manifold C in a natural way. Indeed one remarks that  

the Chern-Simons action (2.2) being the integral of a 3-form, does not depend on the metric gp„ which one may  

introduce on E. Explicitly, defining the gauge connection 1-form  

A := A p dxp, 	 (2.5)  

one can write the Chern-Simons action as  

Scs = — 	r 
Tr ( \.4 dA -

3t Á3) , 	 (2.6) 

the wedge symbol A for the multiplication of forms being omitted.  

The main consequence of the metric independence is the vanishing of the energy-momentum tensor associated  

to the Chern-Simons action:  

Cs  — -__ - 0 . 	 (2.7)  

Another important feature of the theory is the peculiar form of the gauge field equations:  

Fp „:=a„A„—Ü,,A,,—;[.4 p ,A„] w 0 , (2.8)  

which means that there is also no field strength. Thus there is no local gauge invariant quantity at all. in other  

words there are no local observables. But this remark does not imply that the present theory is physically empty.  

Two types of observables may be defined. The first one is provided by the Wilson loops, that is by the gauge  

invariant quantities associated to the closed loops C:  

Tr P exp i ^ :lp dxp , 	 (2.9) 
c  

where the symbol P means the "path ordered product". The second type of observables are present in case the .-

manifold possesses a 2-dimensional boundary : there exists then a set of conserved chiral current which are localized  

on the boundary and which generate an infinite dimensional algebra of conserved charges [5, 6, 7).  

2.2. Gauge Fixing  

We shall fix the gauge à la Landau. adding to the Chern-Simons action (2.2) the term  

'Sgt. := Tr Id3, (l3a0 A p  —  edp(a,,c + i[c ,  A])) . 	 (2.10)  

where the Lie algebra valued fields B, c and are a Lagrange multiplier, the ghost and the antighost, respectively.  

The gauge-fixed action  

=Scs +Sgf, 	 (2.11)  

is invariant under the nilpotent BRS transformations  

sA p  = Dp c := ap c + f[c. A] , 	sc = ice  

(2.12)  
sc=B, 	s8=0.  

The gauge fixing part of the action of course depends on the metric, chosen here as the flat Euclidean one'  óp  

2 See (8) for the generalization to a curved manifold.  
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Remark. The gauge fixing part of the action is s-exact, i.e. it is a BRS variation:  

Sgr = sTr J  d3 a: cô°.4 a, . 	 (2.13)  

2.3 The Slavnov-Taylor Identity  

The BRS variations of most of the fields being nonlinear, one has to couple them to external fields in order to  

control their possible renormalizations. We thus add to the action the piece  

Sext := 
J 

d3 x Tr (pa' U a,e + iae 2 ) , 	 (2.14)  

so that the total classical action  
.5'(:1,  c ,  c , B. p. a) .— S + Sext  

obeys the Slavnov-Taylor identity  

S(S) := J d3 x Tr ^ 

ôS bS + óS  65 + B SS ^ _ 
0  

ópa' ó fl,, 	óa ó c 	óc  

which plays the role of the Ward identity associated to the !IRS invariance.  
Remark. Isere, at the classical level, the Slavnov-Taylor identity simply expresses the BRS invariance of the action.  

At the quantum level. the classical action is replaced by the vertex functional 3  
I'(:1, c, c. B. pa) = S(A, c. E. B, pa) + 0(h) . 	 (2.17)  

i.e. by the generating functional of the 1 - particule irreducible (1PI) Green functions:  
6"r  

_ (0I7W(x1)•••ap(xN))IO)IP,  

where ç, stands for any field. Then the Slavnov-Taylor identity (2.17) has to hold with S replaced by I'.  
The Slavnov-Taylor identity thus expresses the BRS invariance in a functional form or, equivalently, in the form  

of identities between Green functions.  

The gauge fixing condition may also be expressed in a functional form:  

	

65 = OA , 	 (2.18)  
óB  

Applying the functional operator 6/613 to the Slavnov-Taylor operator defined by (2.17) yields the identity (true  
for any functional F)  

6 
6B — ". ()=SF68+ 

	 (2.19)  

where we have defined the "linearized" Slavnov-Taylor operator  

	

&:= Tr J d3x ( 
óF S + óF 6 + óFó óFó +

13
ó l 	 (2.20) 

ópo SA a, 	ó:1 a, ópa° 	áa be 	óc óa 	óc ) 

Applying the identity (2.20) for F = S and making use of the Slavnov-Taylor identity(2.17) and of the gauge  

condition (2.19) yields the "ghost equation"  

 

with ij := ^[ +" ópp
p 

   

(2.15)  

(2.16)  

S in perturbation theory considered as a formal power expansion in ii, i.e. in the number of loops of the Feynman graphs, the zeroth  

order - the classical theory - coincides with the tree graph approximation.  
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The latter implies that the antighost c and the external field p appear only in the combination 

= p" +0"e . 	 (2.22 ) 

2.4. Stability 

The linearized Slavnov-Taylor operator (2.21) niay be interpreted as the "derivative at the point F" of the 
nonlinear map S. defined by (2.17). from the space of the field functionals into the complex numbers. For F equal 
to the action S, it can be shown to be nilpotent as a consequence the Slavnov-Taylor identity:. 

Ss 2  = O , 	 (2.23 ) 

and its action on the fields reads 
Sst9 = sç . 	=. A ,  c, e, B , 

6.5 
SS PIA = 6A   , 	 (2.24) 

65 
SSQ = 	. 

5c 

One sees that it coincides with the BRS operator when applied to the dynamical fields, and yields equations of 
motion if applied to the external fields. 

The operator Ss allows one to characterize the stability of the theory defined by the Slavnov-Taylor identity 
and by the gauge condition. This means the following. Given an action S obeying the equations (2.17) and (2.19), 
let us ask for the most general solution S` in the neighbourhood of S. Writing 

S` = S +Ec] , 

with e "small", we find that the perturbation A has to obey the two conditions 

SSzl= O 

and 
éA 

8B - 0.  

Due to the ghost equation (2.22), it. must of course obey the further condition 

= O , 	 (2.28) 

which however is not independent due to the commutation rule 

LóQ' ss] - g 
A model given by an action S is "stable" if the most general perturbation A can be obtained by a redefinition of 
the parameters and of the field variables. 

It is very important to distinguish the "physical" perturbations from the "unphysical" ones. The latter pertur-
bations are those which correspond to a mere redefinition of the fields: they indeed don't affect the physical outcome 
of a theory, e.g. the scattering amplitudes in a usual gauge theory. It turns out that the unphysical Ss-invariant 
perturbations are those that take the form of a Ss-variation: 

'unphya = SS .Â • . 	 (2.30) 

Perturbations corresponding to the redefinition. of gauge parameters are unphysical, too, and have the same form. 
On the other hand, the physical perturbations correspond to the redefinition of physical parameters like the 

coupling constants and the masses. They are characterized by the property: 

SSAphye = O , but Zphye 0 Ss O for any A . 	 (2.31) 

(2.25) 

(2.26) 

(2.27) 

(2.29) 
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Solving (2.27) with a nilpotent operator Ss is thus a problem of cohomology. The next section will deal with this. 

3. Cohomology and Descent Equations 

3.1 Cohomology and Observables 

In ordinary gauge theories the observables are defined, at. the classical level, as gauge invariant local polynomial 
of the physical fields (gauge and matter fields). "Local" from now on will mean that these polynomials are made of 
products of the fields and of their derivatives at a common space-time point x. They may integrated (e.g. Wilson 

loops) or not. (e.g. currents). In the quantum theory, defined e.g. by the renormalized perturbation theory. local 
field polynomials P become local `operators', or, in the framework of the Green functions, local "insertions" which 
may be represented by the generating functional 

P•í'= P +O(l-i) 	 . (3.1) 

of the 1-particule irreducible Green functions 

(01T(P w(xt)4?(x2) ...) 106 1  

The right-hand-side of (3.2) expresses the fact that the tree graph approximation corresponds to the classical 

approximation. But now P may depend on unphysical fields such as the ghost fields and the external fields. 
The quantum version of an observable is then defined as an insertion given by a quantum extension of a local 

polynomial O of the physical and unphysical fields, which is BRS-invariant but not a BRS variation (the linearized 

Slavnov-Taylor operator (2.21) for J = E must be used): 

SsO = 0 , but O 85O for any O . 	 • ( 3 . 2 ) 

In other terms, quantum observables are defined as cohomology classes of the "coboundary operator" Ss in the 

space of the local functionals. 
We have seen that topological gauge theories such as the Chem-Simons theory do not possess e-dependent local 

observables. But they possess quantities which are gauge invariant in the sense defined above, i.e. defined by the 

cohomology of S. We have already encountered the example of the nontrivial BRS-invariant perturbations of the 

action in Subsect. . Another important example is that of the gauge anomalies 4 . 

3.2. The Descent Equations 

The structure we shall discuss here applies to the gauge invariant quantities which are expressed as space-time 
integrals. But. in order to keep simplicity; we shall consider in more details only the case of the perturbation A 

introduced in Subsect. . With 	

I cla x  Q° (x) , 	 (3.3) 

It follows from the BRS invariance condition (2.27) that the BRS variation of the integrand must be a total 
derivatives: 

	

Ss Q° = r3„Q1N . 	 (3. 4 ) 

The conditions (2.28) and (2.29) imply that. r] — as well as all the quantities which we shall derive from it - do 

not depend on the Lagrange multiplier B and•depend on the antighost a and the external field po only through the 

•combination (2.23). The relevant variables are .  therefore the fields A p , c, pP and o'. 

Applying Ss to (3.5) and using the nilpotency of Ss now imply that the variation of Q11+  is.the total derivative 

of an antisymmetric tensor: 
SsQ ly  = 	 'IPyl 

. 	 (3.5) 

Repeating the argument twice leads to 

   

S ç Q 2 I0.111 I = aP Q 3Iv Y P] S S  Q31r++1,1 = O (3.6) 

    

'Their absence in the Chern-Simons theory was actually shown in ref. (9(. 
5 The exponents give the ghost number. By convention the ghost number of c is equal to 1. 
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The process stops here because the rank of an antisymmetric tensor is bounded by the space-time dimension. 

In the notation of differential forms, these "descent equations" read 

Ssw3 = dw . 

Ssw2 = dw? 	

(3.7) 
Sc•w¡ 	r1W 3  , 

Sswá= 0 . 

with 

A _ /W3 . 	 (3.8) 

Here. d is the exterior derivative (with d 2  = 0), and the forms wg_ g  of ghost number g and degree 3 — g are defined 

by: 

w o 

L.12 

w ï 
W3 ° 

(3.9) 

Remark. The formalism of the differential forms is the natural one in the present context of a topological theory. 

Indeed. (3.9) as well as the descent equations (3.8) never involve the metric. but only the differentiable structure of 

the manifold. To the contrary the metric enters explicitly. although in a spurious way, in the notation in terms of 

the tensors Q, the latter being the Hodge duals of the forms w. 

3.3. Solution: Existence and Uniqueness 

In order to solve the descent equations. let us begin by the last and simplest of them. It is clear that, since wó 

is a 0-form of ghost number 3, its most general invariant, expression is given by 

Wó = r. -iTrc3  . 	 (3.10) 

with .r an arbitrary coefficient. In order to find the solution for the other forms, and in particular for w3 yielding 

the quantity , (3.9) of interest., one has to climb up the descent equations. Each step represents a cohomology 

problem. but for nonintegrated objects. This cohonology can be shown to consists only of invariant 0-forms made 
with the ghost field c alone, without derivative°. This result was just used above in order to solve the last descent 

equation. However. since the next steps involve forms of higher degree, the cohomology is then trivial. As it. can 

be shown, this implies that, once the 0-form wó, i.e. the coefficient .c, is given, the general solution for the 3-form 

w3 is unique up to the BRS variation of a an arbitrary 3-form and the exterior derivative of an arbitrary 2- form: 

6.73 = Ca3 + Sstò3 t +dig° , 	 (3.11) 

where c3 is a particular solution. We will show in the next section how a supersymtnetry generated by a vector 
operator indeed gives a particular solution. and what this implies. 

4. The Vector Supersymmetry 

Since the action depends on the metric only through the gauge fixing part (2.1 1 ), which is a BRS variation. the 
energy-momentum tensor will be.a BRS variation as well: 

TU =  
(5,9 gr _ SS 

 Q" • b9p „ 
(4.1) 

°This is very peculiar to the topological theories. In ordinary Yang-Mills theories the cohomology depends on the invariantsdraft 
constructed with the ghost c and on those made with the Yang-Mills strength F as well (10. 11. 12]. 



ó^c = -iE A  

hf A -  

ó^ p = -iFQ 

ÃC  - 0  . 

(4.6)  
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Although the conservation of T" does not strictly imply that of Q", it turns out [13] that Q" is indeed conserved'.  

It follows that there exists a conserved vector charge Q p  of ghost number -I.  This charge generates infinitesimal  

"vector supersymmetry" transformations, displayed here for all the fields in regard with their BRS transformations  

(see (2.25)):  
Ssc = ic2 	 Qpc = - A,,  

2;r  
SsAv = D"c 	 Q p :l" = k ep"ppP  

Ssp" = - E"P°Fp, + i{c, fi"} 	Qpp" = -5:o  
4a 

Ss o = D"p" +i[c,Q} 	 Q p o =0  

SSE= B 	 Q,e=0  

SsH=O 	 Q p B= -ape.  

The variation of the action under these supersymmetry transformations reads  

W(E)S := 	E , ó{,ó = pNit's := f'rr  ( 	-O /8c ]
all fields sp  

where we have denoted the infinitesimal supersymmetry transformation of parameter 	by  

"Q„ .  

We see that the action is actually invariant for vanishing external fields p and a. For the quantum theory, where the  

action S is replaced by the functional r, (4.4) is interpretated as a (broken)Ward identity for vector supersymmetry.  

The breaking vanishes when the external fields arc set to zero. Moreover, being linear in the quantized fields.  

it does not need to be rcnormalized - whence the superscript "class". It is therefore harmless 8 .  

The geometrical aspect of the supersymmetry transformation laws is much more apparent if one write them - 

for all the fields except E  and B - in the language of differential forms. Introducing the forms  

P = -Ep " pp"dx"dxP , Q = -t odx"dr"dz . 	 (4.5)  

(the form A being already defined by (2.6)), and denoting by if  the interior derivative, or contraction, with respect  

to the the vector l;", one can write, in an obviously metric independent way,  

Ssc = icZ  

SsA = dr. + i{c.A)  

Ssp= 4 (dA+iA2)+i{c,P)  

SsQ = dP+ i{:t,p}+i{c,ò}  

Now, with the help of the properties  

d2 =0. 	Id. le ) =C e . 	{i F ,iF.}=0.  

where Ce denotes the Lie derivative along the vector l; ,  it is easy to check that the algebra  

Ss = O. 	 S̀ S' W(El = WIEI ' 	WIF1
s

' W(
s
E') = 0 '  

s  

holds, where  
^` 	ó 

if} 	L CE`pb55  
all fields 4p  

' This actually happens in every topological model studied up to now.  

8 Tltis would not be the case for an arbitrary gauge fixing. One can check that, at least among the family of the linear covariant  

gauges, vector supersymmetry selects the Landau gauge. In particular a Feynman-type gauge would violate supersymmetry. Some  

noncovariant gauges, like the axial gauge, are also possible (14, 15, 10.  

(4.2)  

(4.3)  

(4.4)  
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is the generator of the space-time translations 9 . This shows that the BRS, supersymmetry and translation generators  

Ss, W É )  and Wte )  obey a superalgebra of the Wess-Zumino type.  

Let us end this section by noting that the supersymmetry Ward identity (4.4) imposed to the theory yields the  

constraint  

W { l A = 0 	 (4.10)  

on the perturbation (2.26), which has to be obeyed together with the previous constraints (2.27). (2.28) and (2.29).  

5. Solving the Descent Equations  

We have mentioned in Subsea. that the descent equations (3.8) admit a unique solution - modulo a total  

derivative and a BRS variation - once the bottom 0-form is given. We shall show in the present section, on the  

example of the equations (3.8), how vector supersymmetry allows to find that solution.  

This is done with the help of the operator 1)  

V := de W, , 	 (5.2)  

where we have introduced the components WS of the supersymmetry generator (4.4) -  and also W01' for the  

translations -  defined by  

WS  -: ^W; • wf é ►  _: ^°WiT • cFl  

It. is clear from the algebra (4.9) which now reads  

Ss 2 =0, {Ss, Wu}=W,', {W,,Wy}=0 	 (5.4)  

that  

Hence  

/I

¡¡  
11 WS }  =  
t:=t  

ifn>3. 	 ( 5 .5)  

V"=0 ifn>3. 	 (5.6)  

The algebra (4.9) also implies the commutation relationa l 

[V. Ss] = d . 
	 (5.7)  

The particular solution of the descent equations we are looking for reads  

wy- v =0 , p= O. • • • . 3 . 
	 (5.8)  

This is readily checked using the commutation relation (5.8). The corresponding perturbation 0 (3.9) of the action  
then reads  

el = 3t 1 L^
3wg 

 = ix/Tr (67
—A3 + mac'`+P}A,c}) 	 (5.9)  

This is only one of the BRS invariant solutions corresponding to the same zero U-form wó, as we already know.  
Another possible solution is e.g. the one which leads to the Chern-Simons action (2.2):  

,-xE¿s.  (5.10)  

(One can actually check that (5.10) and (5.11) differ by a BRS variation.) The solution (5.11) would correspond to  
rt renormalization of the parameter k. However the Chern-Simons action acs  is not supersymmetric and one has  

thus to discard this solution.  

9 In the flat space and with the constant vector fields considered here, this Lie derivative takes the simple form of an infinitesi-

mal translation CPO,. In a general curved manifold C4 generates the diffeomorphisms along the vector field C. and supersymmetry  

transformations become superdiffeomorphisms [81.  

I O A more intrinsic definition of V, suitable for the generalizations. is provided by its action on the individual fields (in the differential  

form notation):  
G c = --A, GA= 	 =--ã. Qã=D. 	 (5.11  

This is Sorella's "decomposition of the exterior derivative" [171. .  

(5.3)  
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On the other hand, the solution (5.10) being obtained by the triple application of the supersymmetry operator 
is supersymmetric due to the identity (5.6) taken for n = 4. Moreover, it. is the only supersymmetric one, as we 
shall check below. But before, let us mention that, like (5.11), it also corresponds to a renormalization of k, however 
combined with a renormalization of the field amplitudes. 

Let us write the general solution, which differs from (5.10) by an arbitrary BRS variation (restricted by having 
the same quantum numbers and dimension as the action): 

Agencral = 0 + a5s ¡Tr ( pd c + ïPA ) 

= A + J  'Tr (y(ferc 2   + pdc + ip{A, c }) + ( 47r (dAA  + iA 3 ) — pdc) ) . 

But the variational part in the right-hand side is not supersymmetric for any ratio of the parameters y and 	this 
shows that indeed (5.10) is the unique perturbation of the action which is both BRS invariant and supersymmetric. 

G. Ultraviolet Finiteness 

6.1. Classical Perturbation 

Gauge theories quantized in the Landau gauge are characterized by a remarkable property, which may be stated 
in words as the nonrenormalization of the insertions depending on the ghost field c  not. differentiated. This property 
is expressed by the "antighost equation" [18] which, in the present case reads 

rS 

 

:= fd 3 z ( —r óc  + [E, 	]) S = Aga., := fdz  Up", A,] — [a,c]) , 	 (6.1) 

where the breaking Aga., like the one of the supersymmetry Ward identity, is linear in the quantum fields, hence 
not subject t.o renormalization. For the perturbation 	defined in Subsea. , this leads to the further constraint 

f d3.r 
bc  

= O  . 	 (6.2) 

Now, it is visible that (5.10) violates this latter constraint, and thus must be discarded. As a final result, taking 
into account all the constraints dictated by the initial theory on the perturbation d leads to the solution 

— 0 . 	 (6.3) 

6.2. Counterterms Induced by the Radiative Corrections 

Up to now, we have spoken only of the classical theory, and more specifically of its stability. The outcome is 
that the classical theory is not only stable: its parameters themselves are completely fixed. 

Going to the quantum theory, in the perturbative framework, requires the investigation of two points. 

1) Absence of anomalies 

One has to check the validity to all orders of the Slavnov-Taylor identity (2.17), of the supersymmetry Ward 
identities (4.4), and as well of the constraints given by the gauge condition, the ghost equation and the antighost 
equation. In other words one has to check that all these identities do not suffer from anomalies. !t has actually 
been verified (9, 13. 2) that algebraic consistency forbids the appearance of such anomalies. 

2) Absence of counterterms 

One has to check the stability of the theory upon the radiative corrections: these corrections must be interpretable 
at each order as a renormalization of the parameters of the theory. For this one has to study all possible counterterms 
to the action. The counterterms are of course constrained by the symmetries and identities imposed to the Green 
functions. It. is a very general feature of renormalization theory [2] that these constraints on the counterterms 
are identical to the constraints on the perturbation of the classical action we have already spoken about. We 
can therefore retain our previous result (6.4). This simply means the absence of any free counterterm — hence of 
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any free parameter once those of the classical theory have been fixed. The usual interpretation in the framework 
of a renormalization via a cut-off procedure is the ultraviolet finiteness of the theory. One can however offer a 
more physical interpretation [13], namely that the quantum theory keeps intact the scale invariance of the original 

classical theory. 

7. Conclusion 

The role of vector supersymmetry, as we have seen. is twofold. 
Its first role is to realize explicitly Sorella's decomposition of the external derivative (5.8), thus providing the 

operator V for the construction of solutions to the descent equations. 
The second aspect of this supersymmetry is its role in the cancellation mechanism of the ultraviolet divergences. 

In fact, as we have seen in the Chern-Simons example, supersymmetry alone is not sufficient. The special coupling 
of the ghost c as expressed by the "antighost equation" (6.2) is also needed. One actually observes a "conspiration" 
between both conditions: supersymmetry selects the unique element (5.10) among the whole family of BRS invariant 
counterterms, and it is just this element which is killed by the the condition (6.3) following from the antighost 
equation. 

Many of the results shown here for the three-dimensional Chern-Simons theory have been generalized to a whole 
class of topological theories. including the BF models [19. 20, 21. 22], the bosonic string [23, 24], four-dimensional 
topological Yang-Mills theory [25, 26], etc. 
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Theory of Brain Function, Quantum 
Mechanics and Superstrings 

D. V. Nanopoulos' 
Center for Theoretical Physics. Department of Physics 

Texas AFillf University, College Station, TX 77843-4242, USA: 

and 
Astroparticic Physics Group, Houston advanced Research Center (HA RC), 

The Mitchell Campus, The. Woodlands, TX 77381. USA: 

and 
CERN Theory Division, 1211 Geneva 23, Switzerland 

Recent developments/efforts to understand aspects of' the brain function at. the sub-neural 
level are discussed. MicroTubules (NTs). protein polymers constructing the cytoskeleton, 
participate in a wide variety of dynamical processes in the cell. Of special interest to us is 
the MTs participation in bioinformation processes such as learning and memory, by possess-
ing a well-known binary error-correcting code [K 1 (13,26 .5)] with 64 words. In fact, MTs 
and DNA/R.NA are unique cell structures that possess a code system. It seems that the 
h1Ts' code system is strongly related to a kind of "Mental Code" in the following sense. 
The MI's' periodic paracrystalline structure make them able to support a superposition of 
coherent quantum states, as it has been recently conjectured by Ilameroff and Penrose, 
representing an external or mental order, for sufficient time needed for efficient quantum 
computing. Then the quantum superposition collapses spontaneously/dynamically through 
a new, string-derived mechanism for collapse proposed recently by Ellis, Mavromatos, and 
myself. At the moment of collapse, organized quantum exocytosis occurs, i.e., the simultane-
ous emission of neurotransmitter molecules by the synaptic vesicles, embedded in the "firing 
zone" of the presynaptic vesicular grids. Since in the superposition of the quantum states 
only those participate that are related to the "initial signal", when collapse occurs, it. only 
enhances the probability for "firing" of the relevant neurotransmitter molecules. That is how 
a "mental order" may be translated into a "physiological action. Our equation for quan-
tum collapse, tailored to the MT system, predicts that it takes 10.000 neurons 0(1 sec) to 
dynamically collapse, in other words to process and imprint information. Different observa-
tions/experiments and various schools of thought are in agreement with the above numbers 
concerning "conscious events". If indeed MTs. with their fine structure, vulnerable to our 
quantum collapse mechanism may he considered as the microsites of consciousness, then 
several, unexplained (at least to my knowledge) by traditional neuroscience, properties of 
consciousness/awareness, get easily explained, including "backward masking". "referal back-
wards in time", etc. Furthermore, it is amusing to notice that the famous puzzle of why the 
left (right) part of the brain coordinates the-right (left) part of the body, i.e., the signals 
travel maximal distance, is easily explained in our picture. In order to have timely quantum 
collapse we need to excite as much relevant material as possible, thus signals have to travel 
the maximal possible distance. The non-locality in the cerebral cortex of neurons related 
to particular missions, and the related unitary sense of self as well as non-deterministic 
free will are consequences of the basic principles of quantum mechanics, in sharp contrast 
to the "sticks and bills" classical approach of conventional neural networks. The proposed 
approach clearly belongs . to the reductionisl school since quantum physics is an integrated 
part of our physical world. It is highly amazing that string black-hole dynamics that have 
led us to contemplate some modifications of standard quantum mechanics. such that the 
quantum collapse becomes a detailed dynamical mechanism instead of being an "external -
ad-hoc process, may find some application to some quantum aspects of brain function. It 
looks like a big universality principle is at work here, because both in the black hole and the 
brain we are struggling with the way information is'processed. imprinted, and retrieved. 
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"...the Astonishing Hypothesis - that each of us is the behavior of a vast, interacting set of neurons." 

Francis Crick in 
The Astonishing Hypothesis 

what will they think? - What I tell them to think." 

Orson Welles in 
Citizen Kane 

Prooimion 

Theory of brain function, quantum mechanics, and superstrings are three fascinating topics, which at. first look bear 
little, if any at all, relation to each other. Trying to put them together in a cohesive way, as described in this task, 
becomes a most demanding challenge and unique experience. The main thrust of the present work is to put forward 
a, maybe, foolhardy attempt at developing a new, general, but hopefully scientifically sound framework of Brain 
Dynamics, based upon some recent developments, both in (sub)neural science and in (non)critical string theory. I 
do understand that Microtubules [1, 2] are not considered by all neuroscientists. to put it politely, as the microsites 
of consciousnes, as has been recently conjectured by llameroff and Penrose [3, 4]. Also, I do know that, the one 
interpretation of non-critical string theory, put forward by Ellis, Mavromatos, and myself [5, 6], which has led to 
not just an incremental change, but a total rethinking of the Quantum Mechanics doctrines) from the ground up, 
is not universally, to put it mildly, accepted. Leaving that aside, and time will tell, the emerging big picture "when 
microtubules meet density matrix mechanics", as the reader hopefully will be able to judge for her(him)self, is rather 
astonishing. It looks like the modified quantum dynamics [5, 61 of microtubules [1, 2] may indeed lead [3, 41 tu a 
rather concise, experimentally verifiable (presently and in the immediate future) theory of brain function [7]. Since 
this is a rather vast, multidisciplinary, and multidimensional subject, I kept in mind that potential readers may 
include (high-energy) physicists, biologists, biochemists, neuroscientists, medical doctors, including psychiatrists, 
psychologists, and psychotherapists, etc. Thus, I have tried my best to obey the "technical minimality" principle, 
and at the same time, to make it as self-contained and informative, as possible, by not assuming that psychoanalysts 
know about "quantum coherence', or formal string theorists know about the Freudian "unconscious proper'. even 
if. in the latter case. they believe that they know everything, and so why bother?! 

A concrete, technically elaborated proposal materializing some of the general ideas that I have tried to put 
forward here, has been worked out by Mavromatos and myself [7], work that I strongly encourage the interested 
reader to consult. I am fully aware of the rather speculative nature of the ideas presented here and of the some-
times circumstantial looking experimental evidence used to support them. Nevertheless, the way that different 
structures/mechanisms, from completely disconnected fields of knowledge, fit and bind together to produce such a 
coherent, dynamical scheme of the Brain function, makes it very hard to ignore the whole thing, by just believing 
that it is all coincidental, and nothing more than a grand illusion! It. goes without saying that the responsibility for 
all views expressed here is completely mine. 

1 Introduction 

The brain is our most valuable asset. The workings of the brain enable us to think, a fundamental function that, 

among other things, make us aware of our own existence or self-aware: cogito, ergo sum. Our perceptions of the 

universe, concerning its physical structure, form and function according to the universal physical laws, emerge from 

processed-in-the-brain representations of, hopefully, objective physical reality. Understanding the way that the 

brain functions is the primordial prerequisite for a complete physical understanding of the dynamic universe that 

'E-mail: dimitrilOphye.tamu.edu  or nanopoudaccrnvm.ccm.di 
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we are part of. Undoubtedly, the brain is a very complicated system and thus to understand its function we need 

a coordinated effort involving several, if not all, branches of natural sciences: biology, neuroscience, biochemistry, 

physics, information theory/computer science, medicine, pharmacology, etc. We may eventually need some welt-

organized excursions to the realms of the science of mental life or psychology, for some extra help. Alas. the 

compartmentalization of science in our epoch, the highly technical jargon used in every field today, and the endemic 

narrow mindness, expressed best by the dictum scientific conformity means intellectual stultification, make the 

study of brain function a titanic struggle. Nevertheless, we ought to try to figure out, as explicitly as possible, 

as detailed as possible, and as predictive as possible, what are the most fundamental brain constituents and how 

they interact, so that they eventually produce this miracle that is called brain function, or put it differently, what 

makes the brain tick! This kind of reductionist approach has turned out to be very successful in the past, both 

in biology and in physics. The discovery of the double-helical structure of DNA, its identification with the gene, 

and the subsequent breaking of the genetic code, three bases for one aminoacid, in biology, as well as the discover!: 

of electroweak unification and its subsequent spontaneous breaking that led to the Standard Model of the strong 

and electroweak interactions, in particle physics, are glowing examples of applied reductionism. In the case of the 

brain function, things are a bit more complicated and delicate extra care is needed, because the mind pops into the 

picture and thus the workings of the associated Mental World have to be addressed one way or another! 

There are two extremes in handling the mental world problem: 

• Strong Artificial Intelligence (SAI). purporting that the brain is just a computer and the only thing we have 

to figure out is the algorithm. 

• Cartesian or dualistic view, assuming that brain and mind are two distinct entities, in interaction with each 

other. 

— 
Brain 	 Mind  

n 	 n 

	

(Attainable physical world) 	(Mental world) 
III 	 III 

l .Vr 	 W. 

where the mental world contains perceptions, ideas, memories, feelings, acts of volition, etc. I believe that both the 

above extremes are needlessly exaggerated. Instead I would like to propose here a new unified approach in which 

there is an "effective" mental world emerging from the physical world, but with distinct qualities 

1V 	D 1Vi O 	1 V2 	- 	 1.111  
III 	 ! 	i 	 ( 2) 

physical world 	 causes "collapse" 

Hard-core materialists are very welcome to be W 2 -world 'blind" and just concentrate on the transition 1V --- W1. 
in a kind of "just the facts ma'am" attitude! The present approach combines two new ideas/mechanisms developed 

recently, one in biology/neuroscience and one in superstring theory: 

i. It has been suggested by Hameroff (for some time now) [t] that Micro Tubules (MT), cytosceletal protein polymer 

paracrystallirre structures within the neurons [1, 2), may be the fundamental units or microsites where most 

of the brain function originates. Furthermore, Hameroff and Penrose argued very recently (3, 4) that quantum 

effects may play a central role in the MT functioning and they were desperately looking for an explicit `collapse 

of the wavefunction" mechanism, that would validate their claims. 

(I) 
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ii. It has been suggested by Ellis, Mavromatos and myself that, in one interpretation of non-critical string theory, 

one gets naturally modifications of Quantum Mechanics, leading among other things to a new explicit "collapse 

of the wavefunction" mechanism and a microscopic arrow of time [5, 6]. 

The present proposal is to combine (i) and (ii). 

It is remarkable that the string-derived collapse of the wavefunction mechanism fits "hand-in-glove" to the MT 

hypothesis. Thus, by complementing (i) with (ii), a rather detailed and spelled out scenario of brain function 

emerges. Namely, because the stringy collapse of the wavefunction is due to the truncation of the unattainable 

global degrees of freedom, the scheme depicted as Eq. (2) naturally emerges. W2 should be identified with the 

physical "global state space" isomorphic to the "effective" mental world in the following sense: the collapse of the 

wavefunction is what causes the system to "decide" its course of action, thus being completely identifiable with the 

Jamesianr view of consciousness, as a selecting agency. The W2 global states are the agents of collapse! 

In this approach, the "collapse of the wavefunction" will result in well-coordinated, organized erocytosis, i.e., the 

simultaneous emission of neurotransmitter molecules by the synaptic vesicles, embedded in the "firing zone' of the 

presynaptic vesicular grids [9]. From then on, standard neurophysiology applies. e.g., setting the motor in action. 

etc. Clearly, the strong correlation between the "effective" mental world and the "collapse of the wavefunction" 

(through the "global state space") makes it clear how a mental intention (e.g., I wish to bend my index finger) 

is physically and causally related to the motor action (e.g., bending my index finger). Eventually, we may even 

be able to develop a "mental code", i.e., a dictionary that would translate feelings, intentions, etc directly into 

specific neurochemical states charting out detailed neurotransmitter molecule topologies. Actually, even if this 

statement sounds extremely far-fetched speculation and off-the-wall, the universality of the "effective" mental world 

for all humans, with of course all its diversity, cries out for an objective mapping between mental and specific 

neurochemical processes. A good analogy here is the "genetic code", a well-tabulated dictionary between "base" 

sequencing in DNA and arninoacid, thus protein, production on the ribosomes [10]. Proteins, of course, are our 

basic building blocks that are responsible for the way we look, move, etc. 

In section 2, I will discuss Brain Mechanics, i.e., some very general arguments of what the brain is supposed 

to do and how it. does it, while in section 3, l will present some elements of Quantum Mechanics, useful in our . 

subsequent discussions. Section 4 provides a view of some Brain morphology and modeling, based upon classical 

notions and some criticism and problems they are facing. Section 5 provides some elements of string-derived density 

matriz mechanics, an extension of orthodox Quantum Mechanics, while sections 6 and 7 discuss the biochemical 

and physical profile of Microtubules (MT) respectively, and their potentially important role in •brain function. 

Section 8 shows how microtubute dynamics, in a stringy-derived density matrix mechanics framework, may yield a 

unified model of Brain and Mind, a quantum theory of brain function, while the final Section 9 covers the emerging 

quantum psychophysics. 

2 Brain Mechanics 

The brain is a rather .  complicated physical system in constant interaction with the external world or environment. 

Very generically and in grosso modo the brain functions as follows: 

1  %'i1Gam James (1842-1910), the father of American (physiological) psychology,. observed that consciousness is not a thing or a 

substance, but rather a process (8]. 
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(i) Imagine that the brain is in some state ]A), when some external stimulus is applied, for some given period of 

time, then 

(ii) after the removal of the external stimulus, the brain is in some state ]B), which in principle should have in 

some way coded (or recorded) the "message" that was carried by the external stimulus, in such a way that 

(iii) "later" it is possible to retrieve (or recall) the message directly from the state IB), keeping in mind that 

(iv) it is possible that the brain has not necessarily gone directly from 1.4) to IB), but many intermediate steps 

may have occurred: ]A) —+ IA t ) -- ]A 2 ) -- • • • —» 1B), i.e., the information (or message) has been processed in 

the brain before it was recorded. 

There are some fundamental properties that characterize successful brain function, namely: long-term stability 

and non-locality, as strongly suggested by the plethora of experimental data. While the need for long-term stability 

is rather obvious, non-locality; i.e., coherent neuronic activity at spatially remote cortical locations, makes the 

classical treatment of the brain function rather questionable. At the same time, non-locality is strongly suggestive 

of quantum treatment (I I, 12, 13]. Since we are concerned here clearly with macroscopic states. and at the same time 

we need to invoke quantum treatment, we have to look at the so-called Macroscopic Quantum States (MQS). which 

are abundant in the quantum world. Superconductivity, superfluidity, magnetization, etc are typical examples of 

MQS with very specific characteristics: 

(i) For special "structures" and "conditions", 

(ii) a critical degree of coherence may be achieved that leads to an 

(iii) ordered state, that is highly stable. 

Consider for example Magnetization: the special "structures" are the Weiss regions, small regions in a ferromagnet 

within which all electron spins arc polarized in a specific direction. Though, because there are many small regions 

and polarizations, on the average there is no magnetization visible in the ferromagnet. If we now apply a sufficiently 

strong magnetic field t3 or we decrease sufficiently the temperature (below the P. Curie point). i.e., the special 

"conditions", the ferromagnet exhibits magnetization because now all electron spins in the whole macroscopic 

crystal, are polarized in the same direction, strongly correlated with each other, thus leading to a highly stable 

macroscopic coherent (or quantum) state, the ordered state. 

In a more physical language, the transition from an unordered state (e.g.. many Weiss-regions) to an ordered 

state (e.g.. magnetization) is called a phase transition. 'The value(s) of the crucial parameter(s) (e.g.. the magnetic 

field R or temperature T) at the transition point characterize the phase transition and define the critical point 

(e.g., Curie temperature). It should be apparent that an ordered state contains some information (e.g., all electron 

spins polarized in the same direction) than the unordered state (electron spins randomly polarized). On the other 

hand, the unordered state is more symmetric (randomly distributed electron spins are rotationally invariant, i.e.. 

there is no preferred direction), while the ordered state exhibits less symmetry (polarized electron spins have chosen 

spontaneously a specific direction, thus breaking the rotational symmetry). Thus, ordered states arc the net result 

of spontaneous symmetry breaking that triggers the phase transition. There are certain characteristics of phase 

transitions very useful for our subsequent discussions 
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(i) Universality: many, qualitatively and quantitatively different, systems can be described by the same phase 

transition. 

(ii) Attractor by varying suitably the system parameters, they can be brought close to their critica! values, so as 

to cause a phase transition. It is not necessary to be infinitesimally close to the critical point. The critical 

point acts as an attractor for anything in its environment. In other words, we don't really need a fine-tuning 

of our system parameters to reach an ordered state. 

(iii) Evolution equations: All the basic properties of phase transitions (including (i) and (ii) above) can be encoded 

in a set of evolution equations called renormalization group equations (RGEs). They describe deviations (and 

approach) from (to) criticality, as well as other characteristics of phase transitions [14]. 

Macroscopic coherent (or quantum) states, or ordered states have some highly exclusive characteristics: 

(i) Long-range/term stability: highly stable, long-range correlations between the fundamental elements are main-

tained by wave-like, self-propagating excitation loops (e.g.: phonons, spin-waves, magnons, etc.) that Regu-

late the behavior of the "other" fundamental elements and Feedback to the original fundamental element that 

caused the "disturbance". I will call this the R-I-F property of MQS. 

(ii) Non-locality: clearly MQS, as its very nature indicates may go beyond microscopic locality. 

(iii) Emergence: MQS have new properties that arc not present at the fundamental elements level. The new 

properties characterize states at a hierarchical level above the level where the fundamental interactions among 

the fundamental constituents apply. For example, superconductivity is a new property/phenomenon. i.e.. 

emerging from a collective treatment of electrons under special circumstances, while of course each electron 

follows at the fundamental level the laws of quantum electrodynamics. 

Let us use now the physical language of MQS and phase transitions to describe by analogy, for the time being, 

the basic functions of the Brain: 

(I) Uncoded Brain: random signals, unattended perception are some of the characteristics of this case. It corre-

sponds to the random polarizations in the many, small Weiss regions of the ferromagnet. 

(II) Learning: An erternal stimulus is applied, say for a few seconds, that "straightens out" or "puts an order" 

to the random neuronic signals so that they are able to represent some coherent piece of information. It 

corresponds, in the case of the ferromagnet, to applying for some time an external magnetic field B or lowering 

the temperature below the Curie point. They cause the breaking of the multi-domain small structures with 

their random polarizations,and thus they lead to the ordered state, where all electron spins, throughout the 

whole ferromagnet. are strongly correlated to all point in the same direction. We are talking about a phase 

transition or, in the spirit of the previous discussion, a spontaneous breaking of some symmetry. Clearly, it 

depends on the nature of the external stimulus with which specific fundamental elements will interact and set 

them "straight", so that a corresponding MQS, or ordered state, is created. Realistically, in order to be able 

to encode all qualitatively different signals and create a coherent unitary sense of self, a tremendous number 

of qualitatively different ordered states is needed, i.e., practically an infinite number of qualitatively different 

spontaneously broken symmetries. Furthermore, these symmetries should be accompanied by a set of selection 

rules, thus providing a physical filter against undesirable, irrelevant "stray" signals. A very tall order indeed, 
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if one recalls the fact that, until now, the only "known" (observable) spontaneously broken symmetry. at the 

fundamental level, is the one describing the electroweak interactions. Just one, which is kind of short with 

respect to the desirable infinity of spontaneously broken symmetries! We will see later how string theory takes 

care of this problem. 

(III) Coded Brain or Memory: the resulting, highly stable. coherent "firing" of a bunch of involved neurons, not. 

necessarily localized, corresponding. in the case of the ferromagnet, to the stability and macroscopic nature 

(including non-locality) of the emerging magnetization (ordered) state. Such a kind of naturally organized. co-

herent, neuron firing, not necessarily localized. may provide the solution to the so-called "binding problem - . 

More later. 

(IV 
) 

Recall Process: In this picture, a replication tveaksignal, sufficiently resembling the learning signal. ma} excite 

momentarily the ordered state, but, thanks to its R.-t- property. it will relax hack to its previous forth. it 

is this, ordered-state—excitation—ordered-state process that make us aware of recalling something. i.e.. lye 

"feel' it.! It corresponds in the case of the ferromagnet, to apply a weak magnetic field l3'. not necessarily 

exactly parallel to the original B. which will force the electron spins to oscillate. momentarily, before they relax 

hack to their equilibrium, i.e., we recover the ordered state, thanks of course to the R.+F property of MQS. It 

should be stressed that it. is not necessary for the replication signa! to be exactly identical to the learning signal 

in order to recall full information, thanks to the attrar.tor property of the phase transitions, discussed above. 

In phase-transition language. the recall memory process corresponds to the act of an irrelevant operator. It 

should not escape our attention that the endemic, in the framework of phase transitions, R-1-F and altructor 

properties fascilitate tremendously the retrieving of information, without the need of complete identity of the 

replication and learning signal. Otherwise, it. would take extraneous fine-tuning, which here translates to very 

long time periods, in order to retrieve information. Imagine what would happen if we need to see all the 

details of a fast approaching. hungry lion, including say the length and shape of its claws. before we run up a 

tree! Not very practical indeed. 

The above presented generic picture for the brain function may sound plausible and promising. But. is there 

any - experimental' evidence for its support? The answer is yes. The main observational tool is the IlectroEn-

cephaloGram (EEC). It. is usually assumed that the EEC: waveforms emerge from the summation of local neuron 

firings. but things are a bit more complicated. One would expect that asynchronous firing of randomly distributed 

neurons would produce a zero net effect on the scalp electrodes. By studying electric potentials evoked during 

sensory stimulation and during learning trials, E. R. John has been able to show that these evoked potentials arise 

from the firing of large and disperse neural groups and that they are radically different from those obtained by 

the spontaneous random cortical activity (15]. Temporal rearrangement within the neural groups characterizes the 

externally evoked potentials. Furthermore, Sayers et. aí.[16], presented independent evidence strengthening the 

temporal rearrangement case, by studying EEC phase coherence. Frequency components of the EEC spectrum 

obtained during spontaneous cortical activity show a random configuration of phase relations, which shifts to a dis-

tinct pattern of phase coherence immediately following sensory stimulation. Amazingly enough, imposing the phase 

characteristics of the evoked potential on the spontaneous waveform. we can reproduce the characteristic shape 

of the observed evoked waveform (16]. These findings support E. R. John's [15] case for temporal rearrangement. 

while at the same time it falsifies the kind of classical expectation that the EEC arises from the summation of 
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neural firings, which would imply that just the amplitude characteristics is the only difference between spontaneous  

and evoked waveforms. Clearly, it seems that the external stimulus does not just add energy to the brain, but it  

organizes it in a coherent way, in a similar fashion that an external field B acts on a ferromagnet! It seems that  

the analogy between brain function and critical phenomena dynamics may he quite useful and fruitful.  

In the unified approach suggested here (see Eq. (2)) the "effective" mental world (W2) is actively interacting  

with the emerging MQS, and thus through the R+F property of the MQS and the subsequent triggering by W:  

of the collapse of the MQS, it provides the solution to the age-old problem of how intentional/emotional acts are  

strongly correlated to body acts, as explained in the Introduction. It should be stressed that emergence here has  

a multi-valued meaning: it encompasses the natural (Darwinian [17]) evolution and selection, the development of  

brain in specific subjects and eventually the "conscious" moment under consideration.  

3 Quantum Mechanics  

The physical principles that govern the microworld. as provided by Quantum Mechanics (QM), are profoundly  

different from the ones that the microcosmos obeys. The "microworld" here denotes anything at and below  

the molecular level: molecules, atoms, electrons, nuclei, protons, neutrons, quarks. As Linus Pauling taught us.  

chemistry is nothing else but applied quantum mechanics at the atomic and molecular level. Interestingly enough,  

Molecular Biology holds a very intriguing position between the macro and micro worlds in the following sense: ab  

initio, Molecular Biology is concerned with the structure and function of the cell [10], which is mainly composed  

of macro.  molecular structures (DNA, RNA, proteins, ...) and as such, most of the time and for many purposes. are  

sufficiently and accurately described by classical physics. Nevertheless, we should not be carried away and discard  

QM from the picture by interpreting most of the times as implying at all times! After all, as Watson and Crick  

[18) taught us, the double helical structure of DNA, which is the source of DNA's fundamental genetic properties  

is due to the quantum mechanical II-bonds between purines (A,G) and pyrimidines (T,C): always a double II-

bond for A=T and a triple Il-bond for G ; C. It is in the stability and universality of these H-bonds. as verified  

experimentally by Chargaff [19]. that the secret of the genetic code lies! Since my central thesis here, as emphasized  

earlier, is that quantum mechanics plays also a very fundamental role in the emergence of the mental world from  

the physical world, i.e., in the brain-mind relation, I will discuss very briefly some elements of QM, that I will need  

later.  

The central dogma of Quantum Mechanics is the particle-wave duality: it depends on the particular circumstances  

if a quantum state is going to express itself as a particle or as a wave [20]. Consider for example a particle travelling  

in spacetime. Its quantum state is described by a wavefunction W(i,t) obeying a Schrõdinger-type equation of the  

form  

at = /I 1.1/ 	 (3)  

where h (E I in natural units) is the Planck constant, and H is a system-dependent operator, called the Hamiltonian  

of the system. It provides the unitary, time-evolution of the system, and with eigenvalues identifiable with the  

different energy levels of the. system. A fundamental, and immensely crucial for us here, property of the quantum  

equation (3) is its linearity. Imagine that * 1 , 412, ... , 11/„ are different ,solutions of (3), then clearly the linear  

superposition  

 ^= 	Ci(t)*i . (4) 
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with c; arbitrary complex numbers, is also a solution of (3). This is the mathematical statement of Quantum Super-

position. Let us discuss next its physical meaning. Suppose that we would like to describe quantum mechanically 

the following "history" of a particle, say an electron: it. starts at some initial point around (Eu,  to), it goes through a 

wall that contains n slits, say 1, 2, ... , n, without us knowing which specific one, and it ends up at. some final point 

around (E¡, ). Let 4131, 4132, ... , W„ denote the wavefunctions of the electron, referring to the case that the electron 

went through the slit 1.2...., ii, respectively. Since we don't know the specific slit that the electron went through. 

we are obliged to take as the wavefunction of the electron. a linear superposition of 4$1, 111 2 ,   413,,, i.e.. (4). The 

physical meaning then of the ci's becomes clear: led' is the probability that the electron went through the slit i. 

and thus ci is referred to as the the probability amplitude. Notice that conservation of probability entails that at 

any time t 

E Ic;(t)I2 = 1 	 (5) 
;.t 

The probability density to find the electron at some specific point (t a , t a ), after it has passed through the slits and 

before it ends. up at (if, t¡) is given by 
n 

IT(xa,ta)1 '  = IE 	• 
i-1 

Clearly, this is a standard wave-like behavior and (4) may be interpreted as describing a quantum state evolving 

in a coherent way, or obeying the fundamental quantum mechanical principle of quantum coherence. the physical 

meaning of linear superposition. Imagine now, that. we would like to find out through which specific slit the electron 

went. through. Then, we have to make a "measurement" or "observation", i.e., to concentrate on those aspects of 

the quantum system that can be simultaneously magnified to the classical level. and from which the system must 

theft choose. In other words, we have to disturb the system (electron in our example) with the magnifying device. 

which results in de-coherence, thus (6) is replaced by 

"measurement" 
 

I*(xa,ta)I ? 	!— 	Li_L Ici1 2 1 ■11i1 	 ( 7 ) 
"collapse" 

In other words, we get classical probabilities, highly reminiscent. of a standard particle-like behavior. The "measure-

rnent."/"ohservatiott" process has caused decoherence of the wavefunction and thus led to its collapse to a specific 

state. Here are then, in a nutshell, our basic quantum mechanical rules, that constitute quantum reality: 

(i) A quantum system can, in principle, be in many states simultaneously ( 413]. l' 	 413„) and its quantum state 

4Ir = 	E  c0131, a pure state, evolves coherently and according to the quantum equation (3). as long as we 

don't disturb it. This is quantum linear superposition or quantum parallelism. leading to wave-like behavior. 

(ii) A "measurement"/"observation" forces the quantum state 4Ii  to decide what it wants to be. with probability 

that the tb quantum state will turn out to be the i-th state (described by 4l);), after the "measure-

ment"/"observation''. This is the "collapse of the wavefunction', leading to classical particle-like behavior. 

Incidentally, the famous Heisenberg uncertainty principle [21) is nothing else but a quantitative expression of our in-

tuitive statement above that a "measurement"/'observation" disturbs the system in an uncontrollable way, entailing 

always uncertainties in the outcome, e.g., 

(6) 

LAx•Ap> h. (8) 
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Clearly. (8) indicates the fact that it is impossible to "measure' simultaneously, at a desirable level. both the 

position and the momentum of a particle. Notice that this is a fundamental principle, and has nothing to do with 

the potentially difficult and practical problems that face experimentalists. Whatever she does, she cannot beat the 

uncertainty principle. 

The endemic. in the Quantum World, wave-particle duality is responsible for the necessity of the two-step 

approach to quantum dynamics discussed above. This kind of approach is very different from the deterministic 

approach of classical dynamics and, in a way, it. creates a schism in our understanding of the Universe. There is 

the classical world and there is the quantum world, each following its own laws which. frankly, do not. seem to have 

much common ground. It may even, sometimes, lead to sonic embarrassments 112), like e.g., the Schrõdingcr's cal 

paradox. a peculiar situation where a quantum event may oblige us to treat a cat. as 50% alive and 50% dead! 

Furthermore, in the passage from the quantum to the classical world it is not clear at all who is there to decide 

that we crossed the quantum-classical border! 

This dualistic view of the world (classical versus, quantum) is reminiscent of the ancient needs for heavenly-

terrestial dynamics, abolished by Galileo and Newton for universal dynamics. or for space and time dynamics. 

abolished by Einstein for spacetime dynamics. or for electromagnetic and weak interactions, abolished recently 

for electroweak interactions. It. looks to me that this classical versus quantum dualistic view of the world cries 

out, once more. for a unified approach which for many practical purposes would effectively look like two separate 

worlds (classical and quantum). Any resemblance with the unified approach I discussed in the Introduction for 

the brain versus mind problem is not accidental! A unified approach for classical and quantum dynamics will be 

attempted in section 5, but. let me prepare the ground here by generalizing a bit the notion of quantum state and 

the likes. What we are really after is sonic kind of formalism that enables us to express. at least in principle, the 

two-step process of quantum dynamics in a more uniform language. Let us represent a given quantum state o 

by a state vector la), while (al denotes the complex conjugate state vector n', and let us assume that this state 

vector has "length" one: (a la) = I. Consider now a complete set of orthonortnal state vectors Ii): (Ai) = t;1, 

implying that any pure stale can he written as 11.10 ) = Ei  c; Ii). with ci complex nurnbers obeying the conservation 

of probability condition Ei  icd2 = I (see (4),(5)). Then the scalar product (4 1 5 140 ) = Ei c;bc° expresses the 

probability amplitude that starting with the state vector IV) we end up in the state IWb). Actually, we can consider 

all the tensor products I') WI with the understanding that (W 1 10) = Tr(IWk) ("I) = E1 c¡'( . It is very 

convenient to introduce the notion of the density matrix p -'W) ON with matrix elements p;1 = tic. li) (jA and 

such that Trp = Tr(IW) (WI) = (WSW) _ Ei c; c; = 1. i.e., the conservation of probability condition. Notice that, in 

the case of a pure state, the description of a quantutii system by the state vector IW) or by the density matrix p 

 For example. the measurable quantities MAR) correspond to Tr(p.4). with .4 denoting the quantum 

operator representing the "measurable quantity etc. The quantum equation (3) becomes in the density matrix 

approach 

E 
i)p 	i 

n E 	= ri 
[p.11) . 	 ( 9 ) 

which is nothing else but the quantum analogue of the classical statistical mechanics Lionville equation, describing 

the tu n e evolution of the phase-space density function. The great advantage of the density matrix approach is its 

ability to describe not only pure states, but. also mired slates. imagine that for practical reasons it. is impossible 

to know the exact pure state of our quantum system. i.e.. we only know that we have a combination of different 

pure states Jo) = E1 e? 1i), a = 1.2..... each with classical probability pi. Clearly, in this case we cannot use the 
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quantum equations (3) or (9) because it is only applied for single pure states, but we can still use the density matrix  

approach. Write the density matrix of the system as a mired state  

P =EN  la) (al •  

then the probability that. a "measurement,"/"observation -  will find our system in sorite pure state II) = Ei  d;  li) is  

given by  

P^ = TOP 0) ("I)= 	Pal Nr Irr)1-' , 	 ( 11 )  
a  

which is a sum of products of classical and quantum probabilities! Notice that in the case of a single pure state. say  

lb), all pab = O  and pb = 1 in (10). and a "measurement"/"observation" causes the "collapse of the wavefuttction"  

Ib). that implies turning a pure state p =10 (61 into a mixed state p = E- IcBI= I) (ii. which is nothing else but (7)!  

Of course, in the case of a "measurement"/"observation" we open the system under consideration. and clearly (9)  

needs modification. i.e., addition of extra terms that represent. the "disturbances''. On the other hand. since the 

"collapse of the wavefunction" implies loss of quantum coherence, there is no way to use a wave equation like (3). 

or possible modifications, to represent the "disturbances". The notion of description of a quantum state by state  

vectors or wavefunctions really gives in to the density matrix approach. thus the correct approach for a unification  

of classical and quantum dynamics. Usually, when we deal with realistic quantum systems, composed of different  

independent or loosely interacting parts, it helps to express the quantum state of the system as the product of  

different, independent components. Imagine, for example. a particle called r° decaying into two photons It  and  

Since r° has no spin. the most general description of the system of two photons is given by 

I4') = Cl  170 *  l7:)_ +C2 1 ¡t)_ I12) +  ,  (12)  

where the subscripts indicate the polarizations of the two photons. always opposite, such that the whole system  

hats angular momentum zero, corresponding to the spinless r°. imagine that a "ttteasurement"/"observation" is  

done on the system by measuring say the polarization of y, and found to correspond to the — one. After the 

-measurement"/"observation -  we know that ct = 1 and c2  = O. thus without "measuring" the polarization of ¡ t .  

we know it is the + one. Einstein found it. very disturbing. that. some "measurement." on one part. of the system has  

an "instantaneous" effect. on some other distant part,. Sometimes this is referred to as the Einstein - I'odolsky - Rosen 

 (EPR.) puzzle [22. 12]. and it is a very clear proof of the non - local nature of the quantum world! Experiments done  

in the mid-80's have confirmed [23], beyond any shadow of doubt. the non - local nature of quantum mechanics. and  

the failure of classical spacetime notions to describe quantum reality.  

The Macroscopic Quantum States (MQS), mentioned in section 2. correspond here to something like  

Iw) = 	 c: I 1 ). IZ), ...IA ' ) ;  . 	 (13)  

where Ik) 1  refers to the quantum state of the k-th fundamental constituent in the i-th macroscopic quantum state.  

Of course, for a MQS N is O(NAVOgadro  6 x 1023 ). a rather larger number and in several occasions the index i  

can also run into large numbers. For example, in the case of a ferromagnet. the ordered state would he described  

by (13). and if Ik) ;  indicates the spin polarization of the k-tlt electron, then only one e; # O. While in the case  

of quasicrystals. describable also by (13). not only is N large (O(!`'Avogadro)).  but also the linear combinations  

may involve a huge number of alternatives. i.c., the i-index can be also large. Quasicrystals are rather intriguing  

(10)  
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physical structures that may need quantum mechanics in an essential way for their understanding. According to 

Penrose [12], the quasicrystal assembly cannot be reasonably achieved by the local adding of atoms one at a time. in 

accordance with the classical picture of crystal growth, but instead there must be a non-local essentially quantum 

mechanical ingredient to their assembly. Instead of having atoms coining individually and attaching themselves 

at a continually moving growth line (standard classical crystal growth), one must consider using something like 

(13), an evolving quantum linear superposition of many different alternative arrangements of attaching atoms. 

There is not one single thing that happens. many alternative atomic arrangements must coexist! Some of these 

linearly superposed alternatives will grow to very large conglomerates, and at certain point the 'collapse of the 

wavefunction" will occur and thus more specific arrangements will be singled out, and so on, until a good-sized 

quasicrystal is formed. But why is Nature employing such an intriguing mechanism? Penrose claims [12] that maybe 

"energetics" is the answer. Usually, crystalline configurations are configurations of lowest energy, and the correct 

arrangement of atoms can be discovered simply by adding one atom at a time, and solving its own minimizing 

problem. etc. In quasicrystal growth, finding the lowest energy state is a very complicated and difficult problem. 

because it, involves a large number of atoms at once. and thus, we have a global, non-local problem to solve. Clearly. 

a quantum mechanical description, a la (13), seems appropriate where many different combined arrangements of 

atoms are being "tried" simultaneously, and eventually collapsing. through physical environment tangling, to the 

"energetically" and "enviromentally" appropriate arrangements. the observable quasicrystal. 

It should be stressed that the QM rules have been in place and in successful use for about 70 years now, and 

have led to a most deep understanding of the microworld. Nevertheless, the fundamental mechanism triggering the 

"collapse of the wavefunction" has escaped us, until I believe recently, when string theory enabled us to put, a definite 

proposal on the table, to be discussed in section 5. Intriguingly enough, Molecular Biology and Neurobiology in 

particular. lies just in the classical-quantum interface and thus very interesting phenomena may occur. So. let us 

turn our attention now to the detailed structure of the brain. 

4 Brain Morphology and Modeling 

The human brain is the most complicated object, as far as we know. in the Universe. At. a first look, it is amazing 

that this seemingly amorphous mass is capable of executing all these miraculous operations that control our actions 

and make us aware of the world around. A closer look though points to a rather recursively hierarchical structure 

and a very elaborate organization [24, 12]. An average brain weighs about 1.3 kg. and it. is made of: — 77% water. 

10% protein, — 10% fat, 1% carbohydrates, 0.01% DANA/RNA, and the rest other stuff. The largest part 

of the human brain, the cerebrum, is found on the top and is divided down the middle into left and right cerebral 

hemispheres. and front and back into frontal, parietal, temporal, and occipital lobes. Further down, and at the back 

lies a rather smaller, spherical portion of the brain. the cerebellum, and deep inside lie a number of complicated 

structures like the thalamus, hypothalamus, hippocampus, etc. It seems that what make humans more advanced 

than other animals is not only the largeness of the cerebrum, but also its proportion of brain as a whole, the largest 

in the animal kingdom! 

Both the cerebrum and the cerebellum have comparatively thin outer surface layers of grey matter and larger 

inner regions of white matter. The grey regions constitute what is known as the cerebral corter and the cerebellar 

cortex. It is in the grey matter where various kinds of computational tasks seem to be performed, while the white 

matter consists of long nerve fibers (axons) carrying signals from one part of the brain to another. It is the cerebral 
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cortex that is central to the higher brain functions, speech. thought, complex movement patterns, etc. On the other 

hand, the cerebellum seems to be more of an "automaton". It has to do more with precise coordination and control 

of the body. and with skills that have become "second nature". Cerebellum actions seem almost to take place by 

themselves, without. thinking about. them. They are very similar to the unconscious reflex actions. c.g.. reaction to 

pinching, which may not be mediated by the brain, but. by the upper part of the spinal column. Thus, it seems 

highly likely that the phenomena of consciousness, that we are mainly concerned here, have much more to do with 

the cerebrum than with the cerebellum or the spinal cord. So. from now on, we will concentrate on the cerebral 

cortex. 

Various parts of the cerebral cortex are associated with very specific functions. We distinguish several regions. 

The visual cortex, a region in the occipital lobe at the back of the brain. is responsible for the reception and 

interpretation of vision. The auditory cortex, in the temporal lobe, deals mainly with analysis of sound. while the 

olfactory cortex, in the frontal lobe, deals with smell. The somatosensory cortex. just behind the division between 

frontal and parietal lobes, has to do with the sensations of touch. 'There is a very specific mapping between the 

various parts of the surface of the body and the regions of the somatosensory cortex. In addition. just in front of 

the division between the frontal and parietal lobes, in the frontal lobe, there is the motor cortex. The motor comer 

activates the movement of different parts of the body and. again here, there is a very specific mapping between the 

various muscles of the body and the regions of the motor cortex. All the above mentioned regions of t he cerebral 

cortex are referred to as primary, since they are the one most direct It concerned with the input and output of the 

brain. Near to these primary regions are the secondary sensory regions of the cerebral cortex, where information is 

processed. while in the s econdary motor regions, conceived plans of motion get translated into specific directions for 

actual muscle movement by the primary motor cortex. But the most. abstract and sophisticated activity of the brain 

is carried out. in the remaining regions of the cerebral cortex. the association cortex. It is right here that. information 

from various different sensory regions is analyzed in a rather complex way. memories are laid down. pictures of the 

outside world are constructed, general plans are conceived, etc. This is the anatomic. morphological structure of 

the brain, on which my observations of section 2 were based on! There is a rather well-known and extremely curious 

phenomenon that. I call _V-ism. k. is the right (left) cerebral hemisphere which is concerned ezefusit•cf+¡ with the left 

( right) hand side of the body, so that virtually all nerves must cross otter from one side to the other as they enter 

or leave the cerebrum! Furthermore, as I mentioned above. the vision cortex is right. at the back, while the eyes are 

at the front, the feet-related region of the somatosensory cortex is at. the top. whereas the feet are at the bottom, 

and the left (right) auditory cortex is related to the right (left) ear! It seems that the cerebral neterosignals prefer 

to follow the longest possible path. and since this X-ism is not observed in the cerebellum, whose anion appears to 

be completely unconscious, it is not inconceivable that the emergence of consciousness is facilitated by the cerebral 

X-ism. In our unified scheme, such a strange correlation between consciousness and X-ism seems to he horn out of 

the dynamics. 

Let us now continue our fascinating trip inside the brain, and let us concentrate on its basic building blocks. 

the nerve cells or neurons. Among the about. 200 types of different. basic types of human cells. the neuron is one 

of the most specialized. exotic and remarkably versatile cell. The neuron is highly unusual in three respects: its 

variation in shape. its electrochemical function, and its con nectiutty. i.e., its ability to link up with other neurons in 

networks. Let us start. with a few elements of neuron microanatomy [24. 12]. There is a central starlike bulb. called 

the soma, which contains the nucleus of the cell. A long nerve fibre. known as the axon. stretches out. from one end 
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of the soma. Its length, in humans, can reach up to few cm, surprisingly long for a single cell! The raison d'etre 

of the axon is to transmitt the neuron's output signal, i.e., it acts like a wire. The axon has the ability of multiple 

bifurcation, branching out into many smaller nerve fibers, and the very end of which there is always a synoptic 

knob. AL the other end of the sorna and often springing off in all directions from it, are the tree-like dendrites, along 

which input data are carried into the soma. The whole nerve cell, as basic unit, has a cell tnembrane surrounding 

soma, axon. synoptic knobs, dendrites. Signals pass from one neuron to another at junctions known as synapses. 

where a synaptic knob of one neuron is attached to another neuron's sorna or dendrites. 'There is very narrow gap. 

of a few nm, between the synaptic knob and the soma/dendrite to where the synaptic cleft is attached. The signal 

from one neuron to another has to propagate across this gap. The workings of the nerve signals are another wonder 

of Nature! 

A nerve fiber is a cylindrical tube containing a mixed solution of NaCl and KCI, mainly the second, so there 

arc Na+, K+. and CI' ions within the tube. Outside the tube the same type of ions are present but with more 

Na+ than K+. In the resting slate there is an excess of CI -  over Na+ and K+ inside the tube. giving it a negative 

charge, while it has positive charge outside. A nerve signal is nothing else but a region of charge reversal travelling 

along the fiber. At its head, sodium gates open to allow the sodium to flow inwards and at its tail potassium gafes 

open to allow potassium to flow outwards. Then. metabolic pumps act to restore order and establish the resting 

state, preparing the nerve fiber for another signal. Amazingly enough, there is no major material (ion) transport 

that produces the signal, just in and out local movements of ions, across the cell membranes. i.e., a small and local 

depolarization of the cell! Eventually, the nerve signal reaches the attached synaptic knob, at the very end of the 

nerve fiber, and triggers it to emit chemical substances, known as neurotransmitters. It is these substances that 

travel across the synaptic cleft to another neuron's soma or dendrite. It. should be stressed that the signal here is 

not electrical, but a chemical one. What really is happening is that when the nerve signal reaches the synaptic 

knob, the local depolarization cause little bags immersed in the vesicular grid, the resides containing molecules of 

the neurotransmitter chemical (e.g., acetylcholine) to release their contents from the neuron into the synaptic cleft. 

the phenomenon of ezocytosis. 'These molecules then diffuse across the cleft to interact with receptor proteins on 

receiving neurons. On receiving a neurotransmitter molecule, the receptor protein opens a gate that causes a local 

depolarization of the receiver neuron. The nerve signal has been transmitted! 

It. depends on the nature of the synaptic knob and of the specific synaptic junction, if the next neuron would 

be encouraged to fire. i.c.. to start a new signal along its own axon, or it would be discouraged to do so. In the 

former case we are talking about excitory synapses, while in the latter case about Inhibitory synapses. At any given 

moment, one has to add up the effect of all excitory synapses and subtract the effect of all the inhibitory ones. 

íf the net effect corresponds to a positive electrical potential difference between the inside and the outside of the 

neuron under consideration, and if it. is bigger than a critical value, then the neuron fires. otherwise it stays mute. 

For our concerns here, the fundamental dynamical process of neural communication can be summarized in the 

following three steps: 

1. The neural axon is an all or none state. In the all state a signal, called a spike or action potential (AP). 

propagates indicating that the summation performed in the sorna produced an amplitude of the order of tens 

of mV. In the none state there is no signal travelling in the axon, only the resting potential —70mV). It 

is essential to notice that the presence of a travelling signal in the axon, blocks the possibility of transmission 

of a second signal. 
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2. The nerve signal, upon arriving at the ending of the axon, triggers the emission of neurotransmitters in the 

synaptic cleft, which in turn cause the receptors to open up and allow the penetration of ionic current into 

the post synaptic neuron. The efficacy of the synapse is a parameter specified by the amount, of penetrating 

current per presynaptic spike. 

3. The post synaptic potential (PSP) diffuses toward the soma, where all inputs in a short period, from all the 

presynaptic neurons connected to the postsynaptic are summed up. The amplitue of individual PSP's is about 

I mV, thus quite a number of inputs is required to reach the "firing' threshold, of tens of mV. Otherwise the 

postsynaptic neuron remains in the resting or none state. 

The cycle-time of a neuron, i.e., the time from the emission of a spike in the presynaptic neuron to the emission 

of a spike in the postsynaptic neuron is of the order of 1-2 msecs. There is also some recovery time for the neuron. 

after it "fired', of about. 1-2 msecs, independently of how large the amplitude of the depolarizing potential would 

he. This period is called the absolute refractory period of the neuron. Clearly, it sets an upper bound on the spike 

frequency of 500-1000/sec. In the types of neurons that we will he interested in, the spike frequency is considerably 

lower than the above tipper bound, typically in the range of 100/sec, or even smaller in some areas, at about 

50/sec. It should he noticed that this rather exotic neural communication mechanism works very efficiently and it 

is employed universally, both by vertebrates and invertebrates. 'I'lie vertebrates have gone even further in perfection. 

by protecting their nerve fibers by an insulating coating of rnyclin, a white fatty substance, which incidentally gives 

the while matter of the brain, discussed above, its color. Because of this insulation, the nerve signals may travel 

undisturbed at about 120 meters/second, a rather high speed! 

A very important and significant anatomical fact for our discussion, is that each neuron receives some 10 4 

 synaptic inputs from the axons of other neurons. usually one input per presynaptic neuron, and that each branching 

neural axon forms about the same number (— 10 4 ) of synaptic contacts on other, postsynaptic neurons. A closer 

look at our cortex then would expose a mosaic-type structure of assemblies of a few thousand densely connected 

neurons. These assemblies are taken to be the basic cortical processing modules, and their size is about 1(nim) 2 . 

The neural connectivity gets much sparcer as we move to larger scales and with [Hoch less feedback. allowing thus 

for autonomous local collective, parallel processing and more serial and integrative processing of local collective 

outcomes. Taking into account. that there are about t0 [ i nerve cells in the brain (about 7 x 10 10  in the cerebrum 

and 3 x 10 10  in the cerebellum), we are talking about 10 15  synapses! Counting one synapse per second, you will 

find yourself counting past 30 million years after you started! Undoubtedly. the brain is very special, and it should 

not he unreasonable to expect it to give rise to mental properties [25). 

While the dynamical process of neural communication suggests that the brain action looks a lot like a computer 

action, there are some fundamental differences having to do with a basic brain property called brain plasticity. 

The interconnections between neurons are not fixed, as is the case in a computer-like model. but are changing 

all the time. Here I am referring to the synaptic junctions where the communication between different neurons 

actually takes place. The synaptic junctions occur at places where there are dendritic spines of suitable form such 

that contact with the synaptic knobs can be made. Under certain conditions these dendritic spines can shrink 

away and break contact, or they can grow and make new contact. thus determining the efficacy of the synaptic 

junction. Actually, it seems that it is through these dendritic spine changes. in synaptic connections, that long-term 

memories are laid down, by providing the means of storing the necessary information. A supporting indication of 

such a conjecture is the fact that such dendritic spine changes occur within secou ds. which is also how long it takes 
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for permanent memories to be laid down [12]. 

Furthermore, a very useful set of phenomenological rules has been put forward by Ilebb [26], the lfebb rules, 

concerning the underlying mechanism of brain plasticity. According to Hebb, a synapse between neuron 1 and 

neuron 2 would be strengthened whenever the firing of neuron 1 is followed by the firing of neuron 2. and weakened 

whenever it is not. A rather suggestive mechanism that sets the ground for the emergence of some form of learning! 

It seems that brain plasticity is not just an incidental complication, it is a fundamental property of the activity of 

the brain. Brain plasticity and its time duration (few seconds) play a critical role, as we will see later, in the present 

unified approach to the brain and the mind. 

Many mathematical models have been proposed to try to simulate "learning", based upon the close resemblance 

of the dynamics of neural communication to computers and implementing, one way or another, the essence of the 

llebb rules. These models are known as Neural Networks (NN) [27]. 

Let us try to construct a neural network model for a set of N interconnected neurons. The activity of the 

neurons is usually parametrized by N functions o;(1), i = 1.2 ti, and the synaptic strength, representing the 

synaptic efficacy, by N x N functions j;,k(t). The total stimulus of the network on a given neuron (1) is assumed 

to be given simply by the sum of the stimuli coming from each neuron 

Si(t) = Eje.k(l)ak(t) 	 (!4) 
k=1 

where we have identified the individual stimuli with the product of the synaptic strength (j;,k) with the activity 

(a'k) of the neuron producing the individual stimulus. The dynamic equations for the neuron are supposed to be. 

in the simplest case 
do.; 	• 

r[r. = r keri 	. ) 

with F a non-linear function of its arguments. The dynamic equations controlling the time evolution of the synaptic 

strengths j;,k(t) are much more involved and only partially understood. and usually it is assumed that the j-dynamics 

is such that it. produces the synaptic couplings that we need or postulate! The simplest version of a neural network 

model is the Hopfield model [28]. In this model the neuron activities are conveniently and conventionally taken to 

he "switch"-like, namely +I, and the time t is also an integer-valued quantity. Of course. this all(+1) or none(-1) 

neural activity o•i is based on the neurophysiology discussed above. If you are disturbed by the ±1 choice instead 

of the usual "binary" one (b1 = I or 0), replace o•; by 2b; - I. The choice ±I is more natural from a physicist's 

point of view corresponding to a two-state system, like the fundamental elements of the ferromagnet, discussed in 

section 2, i.e., the electrons with their spins up (+) or (-). 

The increase of time t by one unit corresponds to one step for the dynamics of the neuron activities obtainable 

by applying (for all i) the rule 

cri(t + +1 )=sign(Si(t+i/N)) 	 (161 

which provides a rather explicit form for (15). lf, as suggested by the Hebb rules. the j matrix is symmetric 

(ji,k = jk,i), the Hopfield dynamics [28] corresponds to a sequential algorithm for looking for the minimum of 'the 

llamiltonian 

11 = — ES.(t)ff , (t) = - 	 ( 17) 
i,k-t 

Amazingly enough the Hopfield model, at this stage, is very similar to the dynamics of a statistical mechanics 

!sing-type [14], or more generally a spin-glass, model [29]! This mapping of the llopfield model to a spin-glass 

(15) 
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model is highly advantageous because we have now a justification for using the statistical mechanics language of 

phase transitions, like critical points or attractors, etc, to describe neural dynamics and thus brain dynamics. as 

was envisaged in section 2. It is remarkable that this simplified Ilopfield model has many attractors, corresponding 

to many different equilibrium or ordered states, endemic in spin-glass models, and an unavoidable prerequisite 

for successful storage, in the brain, of many different patterns of activities. In the neural network framework, it 

is believed that an internal representation (i.e., a pattern of neural activities) is associated with each object or 

category that we are capable of recognizing and remembering. According to ncurophysiology, discussed above. it is 

also believed that. an object is memorized by suitably changing the synaptic strengths. Associative memory then is 

produced in this scheme as follows (see corresponding (I)-(IV) steps in section 2): An external stimulus, suitably 

involved, produces synaptic strengths such that a specific learned pattern MO) = A is "printed" in such a way that 

the neuron activities a;(t) — P1 (II learning), meaning that the a; will remain for all times close to Pi. corresponding 

to a stable attractor point (III coded brain). Furthermore, if a replication signal is applied, pushing the neurons to 

a; values partially different from P;, the neurons should evolve toward the P;. In other words, the memory is able 

to retrieve the information on the whole object, from the knowledge of a part of it. or even in the presence of wrong 

information (1V recall process). Of course, if the external stimulus is very different from any preexisting a; = P, 

pattern, it may either create a new pattern, i.e., create a new attractor point., or it may reach a chaotic, random 

behavior (I uncoded brain). 

Despite the remarkable progress that has been made during the last few years in understanding brain function 

using the neural network paradigm, it. is fair to say that neural networks are rather artificial and a very long way 

from providing a realistic model of brain function. It seems likely that the mechanisms controlling the changes 

in synaptic connections are much more complicated and involved than the ones considered in NN. as utilizing 

cytosceletal restructuring of the sub-synaptic regions. Brain plasticity seems to play an essential, central role in 

the workings of the brain! Furthermore, the "binding problem". alluded to in section 2. i.e., how to bind together 

all the neurons firing to different features of the same object or category. especially when more than one object is 

perceived during a single conscious perceptual moment. seems to remain unanswered. 

We have come a long way since the times of the "grandmother neuron", where a single brain location was invoked 

for self observation and control. indentified with the pineal glands by Descartes [30)! Eventually, this localized 

concept was promoted to homunculus, a little fellow inside the brain which observes. controls and represents us! 

The days of this "Cartesian comedia darter within the brain are gone forever! 

it has been long suggested that different groups of neurons. responding to a common object/category, fire 

synchronously, implying temporal correlations [31]. If true, such correlated firing of neurons may help us in resolving 

the binding problem [32]. Actually, brain waves recorded from the scalp. i.c.. the EEGs. suggest. the existence of 

some sort of rhythms, e.g., the "a-rhythms" of a frequency of lq Hz. More recently, oscillations were clearly 

observed in the visual cortex. Rapid oscillations, above EEG frequencies in the range of 35 to 75 llz, called the ' -

oscillations' or the "40 Hz oscillations", have been detected in the cat's visual cortex [33. 34]. Furthermore. it lias 

been shown that these oscillatory responses can become synchronised in a stimulus-dependent manner! Amazingly 

enough, studies of auditory-evoked responses inn humans have shown inhibition of the 40 Hz coherence with loss of 

consciousness due to the induction of general anesthesia [35]! These remarkable and striking results have prompted 

Crick and Koch to suggest that this synchronized firing on. or near, the beat of a "7-oscillation" (in the 35-75 

Hz range) might be the neural correlate of visual awareness [36, 32]. Such a behavior would be. of course. a very 
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special case of a much more general framework where coherent firing of widely-distributed (i.e., non-local) groups of 

neurons, in the "beats" of r.-oscillation (of specific frequency ranges), bind them together in a mental representation. 

expressing the oneness of consciousness or unitary sense of self. While this is a remarkable and bold suggestion 

[36, 32], it is should be stressed that in a physicist's language it. corresponds to a phenomenological explanation. not 

providing the underlying physical mechanism, based on neuron dynamics, that triggers the synchronized neuron 

firing. On the other hand, the Crick-Koch proposal [36, 32] is very suggestive and in compliance with the general 

framework I developed in the earlier sections, where macroscopic coherent quantum states play an essential role in 

awareness„and especially with respect to the "binding problem". We have, by now enough motivation from our 

somehow detailed study of brain morphology and modeling, to go back to quantum mechanics and develop a bit 

further, using string theory, so that to be applicable to brain dynamics. 

5 Stringy Quantum Mechanics: Density Matrix Mechanics 

Quantum Field Theory (QFT) is the fundamental dynamical framework for a successful description of the ,  mi. 

croworld, from molecules to quarks and leptons and their interactions. The Standard Model of elementary particle 

physics, encompassing the strong and electroweak interactions of quarks and leptons. the most fundamental point-

like constituents of matter presently known, is fully and wholy based on QFT [37]. Nevertheless, when gravitational 

interactions are included at the quantum level, the whole construction collapses! Uncontrollable infinities appear 

all over the place, thus rendering the theory inconsistent. This a well-known and grave problem; being with us for 

a long, long time now. The resistance of gravitational interactions to conventionally unify with the other (strong 

and electroweak) interactions strongly suggests that we are in for changes both at the QFT front and at the grav-

itational front, so that these two frameworks could become eventually compatible with each other. As usual in 

science, puzzles, paradoxes and impasses, that may lead to major crises, bring with them the seeds of dramatic and 

radical changes, if the crisis is looked upon as an opportunity. In our case at hand, since the Standard Model, based 

upon standard QFT; works extremely well, we had not been forced to scrutinize further the basic principles of the 

orthodox, Copenhagen-like QFT. Indeed, the mysterious `collapse" of the wavefunction, as discussed in section 3. 

remained always lacking a dynamical mechanists responsible for its triggering. had gravity been incorporated in 

this conventional unification scheme, and since it is the last known interaction, any motivation for changing the 

ground rules of QFT, so that a dynamical mechanism triggering the "collapse” of the wavefunction would be pro-

vided, would be looked upon rather suspiciously and unwarranted. Usually, to extremely good approximation. one 

can neglect gravitational interaction effects, so that the standard QFT applies. Once more, usually should not be 

interpreted as always. Indeed, for most applications of QFT in particle physics, one assumes that we live in a fired. 

static, smooth spacetime manifold. e.g., a Lorentz spacetime manifold characterized by a Minkowski metric (g„,, 

denotes the metric tensor): 

ds 2  E gN „dr.'dx = c2 dt 2  — dT '- 	 (18) 

satisfying Einstein's special relativity principle. In such a case, standard QFT rules apply and we get the mirac-

ulously successful Standard Model of particle physics. Unfortunately, this is not the whole story. We don't live 

exactly in a fixed, static, smooth spacetime manifold. Rather, the universe is expanding, thus it is not static, and 

furthermore unavoidable quantum fluctuations of the metric tensor g,,,(x) defy the fixed and smooth description of 

the spacetime manifold, at least at very short distances. Very short distances here do not refer to the nucleus, or 

even the proton radius, of 10 -13cm, but to distances comparable to the Planck length, fps " 10 -33ctn, which in 
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turn is related to the smallness of GN, Newton's gravitational constant! In particle physics we find it convenient to  

work in a system of units where c = h = kB = 1, where c is the speed of light, ti is the Planck constant, and kB is  

the Boltzman constant. Using such a system of units one can write  

_ 1 	s 
C'y — ,11¡;t = Pn1  

with Alp: 	LO19  GeV and tpt 	10-33cm.  

It should be clear that as we reach very short distances of O(fpt), fluctuations of the metric ág,,,,(x)/g,,,,(r) --  

(tp1/0 2  0(1). and thus the spacetime manifold is not. well defined anymore, and it may even be that the very  

notion of a spacetime description evaporates at such Planckian distances! So, it becomes apparent that if we would  

like to include quantum gravity as an item in our unification program checklist, we should prepare ourselves for  

major revamping of our conventional ideas about quantum dynamics and the structure of spacetimc.  

A particularly interesting, well-motivated, and well-studied example of a singular spacetime background is that  

of a black hole (BH) (38]. These.objects are the source of a singularly strong gravitational field, so that if any other  

poor objects (including light) cross their "horizon", they are trapped and would never come out of it again. Once in,  

there is no way out! Consider, for example, a quantum system consisting of two particles a and b in lose interaction  

with each other, so that we can describe its quantum pure state by (it) = In) Ib). Imagine now, that at sortie stage  

of its evolution the quantum system gets close to a black hole, and that for some unfortunate reason particle b  

decides to enter the BH horizon. From then on, we have no means of knowing or determining the exact quantum  

state of the b particle, thus we have to describe our system not. anymore as a pure state ]it), but as a mired state  

P = according to our discussion in section 3 (see (10,1 1)). But such an evolution of a pare state into  

a mired state is not possible within the conventional framework of quantum mechanics as represented by (3) or (9).  

In conventional QM purity is eternal. So, something drastic should occur in order to be able to accomodate such  

circumstances related to singularly strong gravitational fields. Actually, there is much more than meets the eye.  

If we consider that our pure state of the two particles lit) _ la) lb) is a quantum fluctuation of the vacuum. then  

we are in more trouble. The vacuum always creates particle-antiparticle pairs that almost momentarily, and in the  

absence of strong gravitational fields, annihilate back to the vacuum, a rather standard well-understood quantum  

process. In the presence of a black hole, there is a very strong gravitational force that may lure away one of the  

two particles and "trap" it inside the BH horizon, leaving the other particle hanging around and looking for its  

partner. Eventually it wanders away from the Bit and it may even be detected by an experimentalist at a safe  

distance from the BII. Because she does not know or care about. details of the vacuum, she takes it that the BII  

is decaying by emitting all these particles' that she detects. In other words, while classical BH is supposed to he  

stable, in the presence of quantum matter, BII do decay, or more correctly radiate. and this is the famous Hawking  

radiation (38, 39]. The unfortunate thing is that the hawking radiation is thermal, and this means that we have  

lost vast amounts of information dragged into the BII. A 1311 of mass M B11  is characterized by a temperature TIM.  

an  entropy SB1,  and a horizon radius RBH  {38, 39, 40)  

TBH ^- 	; SBH •• 11l^ N ; RBH •• Man  
1,1 811  

(20)  

satisfying, of course, the first thermodynamic law, (Wa,, = T s,1dBg11• The origin of the huge entropy (^ :118 1!  )  

should be clarified. Statistical physics teaches us that the entropy of a system is a measure of the information  

unavailable to us about the detailed structure of the system. The entropy is given by the number of different  

(19)  
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possible configurations of the fundamental constituents of the system, resulting always in the same values for the 

macroscopic quantities characterizing the system, e.g., temperature, .pressure, magnetization, etc. Clearly. the 

fewer the macroscopic quantities characterizing the system, the larger the entropy and thus the larger the lack 

of information about the system. In our BFI paradigm, the macroscopic quantities that characterize the BH, 

according to (20), is only it mass MBrr.  In more complicated Blis, they may posses some extra "observables" like 

electric charge or angular momentum, but still, it, is a rather small set of "observables" I This fact is expr essed 

as the "No-Hair Theorem" [38], i.c., there are not many different long range interactions around, like gravity or 

electromagnetism, and thus we cannot "treasure" safely and from a distance other "observables". beyond the mass 

(AÍ ), angular momentum (E), and electric charge (Q). In such a case, it becomes apparent that we may have a huge 

number of different configurations that arc all characterized by the same M, Q. L, and this the huge entropy (20). 
t 

Hawking realized immediately that his Bil dynamics and quantum mechanics were not looking eye to eye. and lie 

proposed in 1982 that we should generalize quantum mechanics to include the pure state to mired state transition, 

which is equivalent to abandoning the quantum superposition principle (as expressed in (3) or (9)), for some more 

advanced quantum dynamics [41]. In such a case we should virtually abandon the description of quantum states by 

wavefunctions or state vectors It) and use the more accomodating density matrix (p) description, as discussed in 

section 3, but with a modified form for (9). Indeed, in 1983 Ellis. Ilagelin, Srednicki, and myself proposed (EIIN'S 

in the following) [42] the following modified form of the conventional Eq. (9) 

Op 	
H]fô(Jlp 	 (21) vt 

which accomodates the pure state—mixed state transition through the extra term (6 )p. The existence of such 

an extra term is characteristic of "open" quantum systems, and it has been used in the past for practical reasons. 

What EIINS suggested was more radical. We suggested that the existence of the extra term (4)p is not due 

to practical reasons but to some fundamental, dynamical reasons having to do with quantum gravity. Universal 

quantum fluctuations of the gravitational field (g,,,,) at Planckian distances ((pi 10 -33cm) create a very dissipative 

and fluctuating quantum vacuum, termed spacetime foam, which includes virtual Planckian-size black holes. Thus, 

quantum systems never evolve undisturbed, even in the quantum vacuum, but they are continously interacting with 

the spacetime foam, that plays the role of the environment, and which "opens" spontaneously and dynamically 

any quantum system. Clearly. the extra term (b ii)p leads to a spontaneous dynamical decoherence that enables the 

system to make a transition from a pure to a mixed state accomodating Hawking's proposal [41]. Naive approximate 

calculations indicate that WI) E 2 /Afpr, where E is the energy of the system, suggesting straight away that our 

"low-energy" world (E/MPs C l0 -íá ) of quarks, leptons, photons, etc is. for most cases; extremely accurately 

described by the conventional Eq. (9). Of course, in such cases is not offensive to talk about wavefunctions, 

quantum parallelism, and the likes. On the other hand, as observed in 1989 by Ellis. Mohanty, and myself [43], if 

we try to put together more and more particles, we eventually comae to a point where the decoherence term (ôlr)p 

is substantial and decoherence is almost instantaneous, leading in other words to an instantaneous collapse of the 

wavefunction for large bodies, thus making the transition from quantum to classical dynamical and not by decree! 

In a way, the Hawking proposal [41], while leading to a major conflict between the standard QM and gravity, 

motivated us [42, 43] to rethink about the "collapse" of the wavefunction, and it seemed to contain the seeds of 

a dynamical mechanism for the "collapse" of the wavefunction. Of course, the reason that many people gave a 

"cold shoulder" to the Hawking proposal was the fact that his treatment of quantum gravity was semiclassical. and 

• thus it could be that all the Hawking excitement was nothing else but an artifact of the bad/crude/unjustifiable 
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approximations. Thus. before we proceed further we need to treat better Quantum Gravity (QG). String Theory 

(ST) does just that. It. provided the first, and presently only known framework for a consistently quantized theory 

of gravity [44]. 

As its name indicates, in string theory one replaces point like particles by one-dimensional, extended, closed. 

string like objects, of characteristic length O(fpr) 10 -33cm. In ST one gets an automatic, natural unification 

of all interactions including quantum gravity, which has been the holy grail for particle physics/physicists for the 

last 70 years! It is thus only natural to address the hot issues of black hole dynamics in the ST framework [44]. 

Indeed, in 1991, together with Ellis and ,Mavrotnatos (EMN in the following) we started a rather elaborate program 

of B1I studies. and eventually, we succeeded in developing a new dynamical theory of string black holes [45]. 

One first observes that in ST there is an infinity of particles of different masses, including the Standard Model 

ones, corresponding to the different excitation modes of the string. Most of these particles are unobservable at low 

energies since they are very massive M z O(Mpr 10 19  GeV) and thus they cannot be produced in present or future 

accelerators, which may reach by the year '2005 about 10 4  GeV. Among the infinity of different types of particles 

available, there is an infinity of massive "gauge-boson"-like particles, generalizations of the W-boson mediating 

the weak interactions, thus indicating the existence of an infinity of spontaneously broken gauge symmetries, each 

one characterized by a specific charge, generically called Q;. It should be stressed that, even if these stringy 

type. spontaneously broken gauge symmetries Flo not lead to long-range forces, thus classically their Qi charges 

are unobservable at long distances, they do become observable at. long distances at the quantum level. Utilizing 

the quantum Bohm-Aharonov effect [46], where one "measures" phase shifts proportional to Q. we are able to 

"measure" the Qi charges from adesirahle distance! This kind of Qi charge. if available on a black hole, is called 

sometimes and for obvious reasons, quantum hair [47]. From the infinity of stringy symmetries, a relevant for us here. 

specific, closed subset has been identified, known by the name of W 1+a, symmetry, with many interesting properties 

[48]. Namely, these W1.00  symmetries cause the mixing [49], in the presence of singular spacetime backgrounds like 

a Bli. between the massless string modes, containing the attainable localizable low energy world (quarks. leptons. 

photons, etc), let me call if the W 1 -world, and the massive (> O(Mpr)) string modes of a very characteristic type, 

the so-called global states. They are called global slates because they have the peculiar and unusual characteristic 

t.o have fixed energy E and momentum p, and thus, by employing the uncertainty type relations, a la (8), they are 

extended over all space and time! Clearly, while the global stales arc as physical and as real as any other states, 

still they are unattainable for direct observation to a local observer. They make themselves noticeable through their 

indirect effects, while interacting with, or agitating, the W 1  world. Let me call the global state space, the W2-world. 

The .second step in the EMN approach (45] was to concentrate on spherically symmetric 4-I) stringy black holes, 

that. can be effectively reduced to 2-D (I space -t- I time) string black holes of the form discussed by Witten [50]. 

This effective dimensional reduction turned out to be very helpful because it enabled us to concentrate on the 

real issues of B11 dynamics and bypass the technical' complications endemic in higher dimensions. We showed that 

[45], as we suspected all the time, stringy BH are endorsed with W-hair, i.e.. they carry an infinity of charges I11, 

correponding to the W1.1.  symmetries, characteristic of string theories. Then we showed that [45] this W-hair was 

sufficient to establish quantum coherence and avoid loss of information. Indeed, we showed explicitly that [45] in 

stringy black holes there is no hawking radiation, i.e., TUH = 0, and no entropy, i.e., SBH = 0! In a way. as it 

should be expected from a respectable quantum theory of gravity, WI dynamics is not in conflict with quantum 

mechanics. There are several intuitive arguments that shed light on the above, rather drastic results. To start 
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with. the infinity of W-charges make it possible for the BH to encode any possible piece of information "thrown" 

at it by making a transition to an altered suitable configuration, consistent with very powerful selection rules. It 

should be clear that if it. is needed an infinite number of observable charges to determine a configuration of the 

B11, then the "measure" of the unavailable to us information about this specific configuration should be virtually 

zero, i.e., SBH = O! The completeness of the W-charges. and for that matter of our argument. for establishing 

that S8N = O. has been shown in two complementary ways. Firstly, we have shown that [45] if we sum over the 

W-charges, like being unobservables, we reproduce the whole of Hawking dynamics! Secondly, we have shown t.ltat. 

the 141.1+cu  symmetry acts as a phase-space volume (area in 2-D) preserving symmetry, thus entailing the absence 

of the extra Wt+w  symmetry violating (ti$)p term in (21), thus reestablishing (9). i.e., safe-guarding quantum 

coherence. Actually, we have further shown that [45) stringy BHs correspond to "extreme BHs", i.e., B11 with a 

harmless horizon, implying that the infinity of W-charges neutralize the extremely strong gravitional attraction. ltt 

such a case, there is no ..danger of seducing a member of a quantum system, hovering around the B11 horizon, into 

the BH, thus eliminating the raison d'etre for Hawking radiation! Before though icing the champagne. one may 

need to address a rather fundamental problem. The low-energy, attainable physical world W1, is made of electrons, 

quarks, photons, and the likes, all very well-known particles with well-known properties, i.e., mass. electric charge. 

etc. Nobody, though. has ever added to the identity card of these particles, lines representing their 4V-charges. In 

other words, the W1 -world seems to be Idr-charge blind. How is it. possible then for an electron falling into a stringy 

B11, to excite the B11 through Wt +w -type interactions, to an altered configuration where it has been taken into 

account all the information carried by the electron? %Veil, here is one of the miraculous mechanisms. endemic in 

string theories. As discussed above, it has beeen shown [49) the in the presence of singular spacetime backgrounds. 

like the black hole one, a mixing, of purely stringy nature, is induced between states belonging to different -mass" 

levels. e.g.. between a Local (L) state ([a) L ) of the W1 world, with the Global states (G) ([a;) G ) of the lV: world 

la) = ]a)L + Lg lag)G 	- 
or ' 	 (22) 

Ia)ty = Ia)w, 1  [a)tv 7  

Notice that any resemblance between the symbols in (22) and (2) is not accidental and will be clarified later. 

Thus, we see that when a low energy particle approaches/enters a stringy B11, its global state or W2 components 

while dormant in flat spacetime backgrounds, get activated and this causes a quantum mechanical coherent BH 

transition. always satisfying a powerful set of selection rules. In this new ENIN scenario [45) of BH dynamics. if 

we start with a pure state 1W1) _ [a) tw  Ib) u; we end up with a pure state [W') = ]a')tv 

system encountered a Bli in its evolution, because we can monitor the lb) part through the Bohm-Aharonov-like 

4V1  charges! So everything looks dandy. 

Alas, things get a hit more complicated, before they get simpler. We face here a new purely stringy phenomenon. 

that has to do with the global states, that lead to some dramatic consequences. Because of their delocali:ed nature 

in spacetime, the global or 14r2-states can neither (a) appear as well-defined asymptotic states, nor (h) can they 

he integrated out in a local path-integral formalism, thus defying their detection in local scattering experiments!!!, 

Once store, we have to abandon the language of the scattering matrix S, for the superscattering matrix  

or equivalently abandon the description of the quantum states by the wavefunction or state vector 1W), for the 

density matrix p [51]. Only this time it is for real. While string theory provides us with consistent and complete 

quantum dynamics, including gravitational interactions, it does it in such a way that effectively "opens" our low 

energy attainable W 1  world. This is not anymore a possible artifact of our treatment of quantum gravity. this is 

even if our quantum 
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the effective quantum mechanics [51, 5, 6] that emerges from a consistent quantum theory of gravity. An intuitive  

way to see how it works is to insert la) w  as given in (22) into (9), where pw _ lu)w (al w , collect all the la) w,  

dependent parts. treat them as noise, and regard (9) as describing effectively some quantum Brownian motion. i.e.,  

regard it as a stochastic differential equation, or Langevin equation for pw, = E1p; la i ) µ. (a; 6, (see (10)). where  

the pi's depend on la)w,  and thus on the W2 world in a stochastic way [52]. In the EMN approach [51. 52, 5, 6]  

the emerging equation, that reproduces the ERNS equation (21) with an explicit form for the (b ¡1)p term. reads  

(dropping the W1  subscripts)  
t3p — , 

ãc — 

i[p. íí] + iGi1 [o„ p]p'  

where Gil denotes some positive definite "metric' in the string field space, while /91  is a. characteristic function related  

to the field a1 and representing collectively the agitation of the W2 world on the o1 dynamics and thus, through  

(22), one expects ,L3 1  °((E/Mp1)"), with E a typical energy scale in the W 1 -world system, and n = 2.3.....  

Before I get into the physical interpretation and major consequences of (23). let us collect its most fundamental.  

system-independent properties, following directly from its specific structure/form [51. 5. 6]  

I) Conservation of probability P (see (5) and discussion above (9))  

OP 
v  _ 

- 

('l'rp) = 0  

II) Conservation of energy, on the average  

—

a 

 ((E)) = t̂
{Tr(pE)] =  f} 

Ill) Monotonic increase in entropy/microscopic arrow of time  

as 
= 

 

ât = 
 67 

 [
— Tr(p In p)] = (.8'Gt113' )5 > O  

due to the positive definiteness of the metric G;1 mentioned above, and thus automatically and naturally  

implying a microscopic arrow of time.  

Rather remarkable and useful properties indeed.  

Let. us try to discuss the physical interpretation of (23) and its consequences. In conventional Qá42, as represented  

by (9). one has a deterministic, unitary evolution of the quantum system. and it is only when one feels compelled  

to "measure"/"ohserve" the system, that the probabilistic clement of QM emerges. One, of course. tacitly assumes  

the existence of a fixed, smooth spacetime background that does not "disturb" the system, acting simply as the  

arena in which things are happening, and thus leaving the system "closed'. The characteristics of such "closed"  

systems include, of course, conservation of energy and no definite arrow of time or no flow of time., which is reflected  

in the forms of (9), (18), which are invariant under t — —t! When we decide to "open" the system we basirally  

perform a "measurement", i.e., we force the system to "decide" what it wants to be. by choosing a very specific  

state, out of many coexisting possible ones, i.e., we are talking about the "collapse" of the wavefunction. That's  

in a nutshell the Copenhagen interpretation of QM. leaving too much to he desired, and too much on the "eye" of  

the "observer"! We need to do better. In the density matrix mechanics, as represented by (23), and as emerged,  

in one interpretation from string theory, one has a stochastic, indeterministic evolution of the quantum system. ab  

inicio, due to the unavoidable existence of spacetime foam. The uncontrollable, universal quantum fluctuations of  

the spacetime metric at. very short distances (O(t'pr)), containing creation and annihilation of virtual Planckian-size  

(2:1)  

(25)  

(26)
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BH, agitate through the global or W2-world states, our low-energy quantum system, rendering it dynamically and 

spontaneously "open". This is an objective, universal mechanism, independent of any `observer", that is always "up 

and working", thus eroding the quantum coherence and eventually leading to a dynamical, spontaneous collapse. It 

should be clear that the natural "opening" of our quantum system is due to our inability to take into account all 

the detailed effects of the global states, because of their delocalized nature, and thus we do truncate them, arriving 

at the Procrustean Principle, a new universal principle [6] that goes beyond the standard uncertainty principle (8). 

Furthermore, since this new dynamical mechanism of the "collapse" of the wavefunction, as emerged in the EMN 

approach [51, 5, 6], is an objective spontaneous, time-ordered, and thus an orchestrated one, I propose here to call it 

synchordic .  collapse. 2  Schematically, one can represent this new mechanism of the "collapse" of the wavefunct.ion. 

by using (22), as follows 

synchordic 
1.11" 	j 	Wt 	0 11.12  — cause 	-- 	WI  
III 	 [[I 	 III 	collapse 

Physical World 	 Attainable 	 Global 
	

( 27 ) 
(including all local 	Physical World 	States 
and global states) 	(including all local, 	World 

low-energy states) 

which makes it apparent that the global or W2 -world states arc the agents of the synchrodic collapse, as being 

the raison d'etre of stochasticity in quantum dynamics. Also, notice the similarity between (2) and (24 rather 

remarkable and very suggestive! The most amazing and astonishing thing is that. despite the well-known fact 

that usually open, dissipative systems defy quantization and energy conservation, our naturally `open" system. 

as represented by (23) and as explicitly indicated in (24), (25), and (26), is different [53, 54]. It is susceptible to 

quantization, it conserves energy in the mean, and monotonically increases its entropy. leading to loss of information, 

quantitatively expressed as quantum decoherence, and thus supplementing its with a very natural, universal, objective 

microscopic arrow of lime! In the EMN approach [51, 5, 6], time is a statistical measure of the interactions (quantum 

gravitational friction) between the local, low-energy world 1V1 and the global or 14' 2 -world states, in the presence 

of singular spacetime backgrounds (spacetime foam). The strong emerging correlation between loss of information, 

quantum decoherence leading to wavefunction collapse and the dynamical appearance of flowing time. I believe is 

unprecedented in physics. 

Clearly, the role of the magic extra term proportional to 13i in (23). is multifunctional, as exemplified by making 

use of the dissipation-fluctuation theorem of statistical mechanics [14]. It can be viewed as a dissipative term that 

destroys quantum coherence, by damping the off-diagonal elements and also it can be seen as a noise term able 

to drive the system away from its equilibrium position and, after some time, bring it hack to .the same position 

or bring it to some other equilibrium position. In other words, we may interpret. (23) as a renormalization group 

equation (RGE), as discussed in section 2, describing the evolution of the system between different phases, each 

corresponding to one of the infinite spontaneously broken 14'1+t,  symmetries. Clearly, at. an equilibrium position. 

or at a critical point, all Jai do vanish, thus recovering naturally (9) from (23). or equivalently recovering standard 

QI?T as applied to particle physics for the past 79 years. In principle, in fixed, smooth spacetime backgrounds. 

hopefully corresponding to critical points in our new stringy language, there is a decoupling of the global states 

from the local, low-energy states in (22), i.e., all cg 's do vanish. and thus implying vanishing kV in (23). Before 

though, we are carried away from the highly promising stringy big quantum picture that emerges here. it should 

7 chord=string in grcek: synchordia something like symphonin. 
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pay to have a closer look at some numerical details, if not for any other reason, just as a reality check! Indeed, one 

can work out, using (23), the time that it takes for quantum decoherence, or equivalently the quantum coherence 

lifetime re , as defined by the off-diagonal elements damping factor [43]: exp[—Nt(rn"/A1 3)(Á 1')`], for a system of 

N constituents of mass rim, assuming that its center of mass gets finally pinned down within iX. and is given by 

Te 
	Nrrls(,.X)3 

( 28 ) 

where Al stands for A1 su 	(1/10)AMpr 	10 1 °GeV, the characteristic string scale [55]. What about the value 

of in? The most natural value for it would be rrl run„aeon z 1 GeV for the following reason. Our attainable 

low-energy world, as far as we know is made up of electrons, protons, and neutrons: that is what constitute us. 

i.e.. our cells, our proteins, our DNA, etc, and also that is what everything else we use, i.e., the "apparatus". is 

made of. Of course, protons and neutrons are mainly made of up (u) and down (d) constituent quarks. but for my 

arguments they are of comparable mass and thus would give the same results. Now, since the bulk of matter is due 

to nucleons, and not to electrons (rnnud 	l8:i6rn e ), the shortest coherence lifetimes that we are interested in would 

be provided by rn 	71m nuti. Furthermore, independent of the complicated structure that you may consider. e.g., a 

complicated protein polymer structure, a la Microtubules (MMTs). the virtual 1 lanckian Bits have such high energy 

that they 'see-  and interact/agitate with the most fundamental constituents of the complicated structure, i.e.. up 

and down quarks and electrons, thus as explained above, justifying the identification in x mnuci 	1 GeV in (28). 

Thus, using M 	l0 1e GeV, in — I GeV, and (ax) ti  lnm = 10 -7cm. (28) yields 

10 16  
re  = 

.l' 
sec 	 (29) 

a rather suggestive formula. In the case of a single (N = I) hydrogen atom. (29) becomes TB! 	10 tbsec. the present 

age of the universe! In other words. standard QM applies extremely accurately in microsystems, as of course. we 

want, because of the spectacular successes of QM in the immicroworld. On the other hand, if we take a piece of ice. 

containing say N 	: 'Avogadro 	10 24  nucleons, then we get T C : 10 -6  sec, a rather short-lived quantum coherence 

implying that for macroscopic objects (N NAvogndro)  QM rules fail and classical physics emerges naturally. dynam-

ically. spontaneously, and objectively! The Schrõdinger's rat paradox is automatically resolved: within O(10 -6sec) 

the cat would be dead or alive, not the fifty/fifty stuff anymore. Furthermore, the "measuretneni'/"observation" 

problem gets a similar satisfactory resolution. Indeed, performing a "measurement"/"observation" on a quantum 

system implies bringing it in "interaction” with some suitable macroscopic apparatus (Nmner ^- O(NA vog )). thus 

triggering an almost instantaneous "collapse" of the wavefunction of the quantum system, as suggested by (29) 

with N N,,acr  + Nquant.eyet O(NAvog)• The magic step, as indicated in (7), and which constitutes basically 

the one-half of quantum mechanics it does need not to be postulated, but it collies out from the stochastic dy-

namics. as provided by the agitating global or W2 -world states. lt. should not escape our notice that. there is no 

quantum-classical border. but a continous and smooth transition. Furthermore. as (28) indicates. the Avogadro 

nmber, a measure of the macroscopicity of the system, is basically dynamically determined to be the inverse of 

the dimensionless product of the gravitational strength (>) times the characteristic strong interaction scale 

(AQCD 0(0.1 GeV)) times the electromagnetic fine structure constant (o = 1/137) 

NAvogadro ^' (30) 
ICv :1 QCD ° 

I do hope that I have convinced the reader that the performed reality check has been rather successful and illumi-

nating. 
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It is highly remarkable that stringy modified QM or density matrix mechanics is offering us, see ((23),(27)). a new 

unified approach to quantum dynamics, by turning a deterministic wave-type equation into a stochastic differential 

equation able to successfully describe both evolution and "measurement" of quantum systems. At the same time. 

a unified picture of the quantum and classical world is emerging, as promised in section 3, without the need of 

raising artificial borders between the quantum and the classical, the transition between them is dynamical and 

smooth. The fundamental property of string theory that allows all these ''miraculous events" to occur is its defining 

property, i.e., the need of 2-dimensions (1 space + 1 time) to describe a I-dimensional (l-D) extended object and its 

accompanying infinity of excitation modes/particles, due exactly to its extended nature. While a pointlike particle 

"runs" on a world-line, a string sweeps a world-sheet. Eventually. all 4-D spacetime physics would be mappings of 

corresponding physics in the 2-D stringy world-sheet. The existence of the 1V1+,  symmetry was first established 

in 2-D "world sheet" physics and then mapped into 4-D spacetime physics. The infinity of spontaneously broken 

stringy gauge symmetries. and the very existence of the global states, somehow can trace back their origin to the 

J'-dimensionality of the world-sheet! In other words, the stringy nature of the modified quantum mechanics prevails. 

as should he apparent at each and every turn! 

The alert. reader may have already noticed the stunning similarity between the string dynamics in singular 

spacetime backgrounds. like black holes and spacetime foam, and the brain mechanics presented in section 2. 

Presence or lack of quantum coherence and its cause, the existence of an infinite number of possible equilibrium 

or critical points corresponding to an infinite number of spontaneously broken "gauge" (stringy) symmetries with 

appropriate selection rules. the possibility of "running" away from one equilibrium point, and eventually corning 

hark to it, or end up at another equilibrium point, in a timely manner. etc. etc. If we could only find a structure in 

the brain that it. renders the EMN string dynamics [45, 51, 52, 5, 6] applicable. we would then be able to provide 

a rather explicit answer to most of the problems raised in sections 2 and 4. Namely. the binding problem; how the 

brain represents a physical. objectively real, flowing time? free will, etc. etc. 

Well, these brain structures do exist and they are called 

6 MicroTubules (MT) I: The biochemical profile 

Living organisms are collective assemblies of cells which contain collective assemblies of organized material. including 

membranes. organdies. nuclei, and the cytoplasm, the bulk interior medium of living cells. Dynamic rearrangements 

of the cytoplasm within eucaryolic cells, the cells of all animals and almost. all plants on Earth. account for their 

changing shape, movement. etc. This extremely important. cytoplasmic structural and dynamical organization is 

due to the presence of networks of inteconnected protein polymers, which arc referred to as the cyto.,celcton due to 

their boneline structure [1. 2]. The cytosccleton consists of Mierotubulcs (MT's). action rnicroftlatnents, intermediate 

filaments and an organi:ing complex, the eenlrosome with its chief component the cenlriole. built from two bundles 

of tnicrotubules in a separated T shape. Parallel-arrayed M'l's are interconnected by cross-bridging proteins ( MT-

Associated Proteins: MA Ps) to other 11Ts, organelle filaments and membranes to form dynamic networks [1. 2]. 

,MAPS may be contractile, structural. or enzymatic. A very important role is played by contractile MAPs, like 

dynein and kinesin, through their participation in cell movements as well as in intra-neural, or axoplastnic transport. 

which moves material and thus is of fundamental importance for the maintenance and regulation of synapses. The 

structural bridges formed by MA Ps stabilize MTs and preveni. their disassembly. The ,MT-MAP "complexes -  or 

cytoseeletal networks determine the cell architecture and dynamic functions, such a mitosis, or cell division, growth. 
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differentiation, movement. and for us here the very crucial. synapse formation and function, all essential to the 

living state! It. is usually said that microtubules and ubiquitous through the entire biology! [1, 2) 

,Microtrtbules [I, 2.:i1 are hollow cylindrical tubes, of about 25 nm in diameter on the outside and 14 run on the 

inside, whose walls are polymerized arrays of protein subunits. Their lengths may range from tens of nanometers 

during early assembly. to possible centimeters (!) in nerve axons within large animals. The protein subunits assemble 

in longitudinal strings called protofilaments, thirteen (13) parallel protofilaments laterally allign to form the hollow 

"tubules" . The protein subunits are "barbell" or "peanut" shaped dimers which in turn consists of two globular 

proteins, monomers, known as alpha (o) and beta (ii) tubulin. The a and ,'J tubulin monomers arc similar molecules 

with identical orientation within protofilaments and tubule walls. In the polymerized state of the MT. one monomer 

consists of 40% a-helix. 31% 0-sheet and 29% random coil. The o-tubulin consists of four a-helixes, four 0-sheets. 

and two random coils, while the i3-tubulin has six u-helixes, one 3-sheet. and seven random coils. Each monomer 

consists of about 500 aminoacids. is about 4nmx4nnrx4nm. and weighs 5.5 x 10 4  daltons or equivalently its atomic 

number is 5.5 x 10'1 , and has a local polarity. Each dirrrer, as well as each MT. appears to have an electric polarity or 

dipole. with the negative end oriented towards the o-monomer and the positive end towards the :3-monomer. The 

dipole character of the dimer originates from the 18 Calcium ions (Ca++) bound within each 0-monomer. An equal 

number of negative charges required for the electrostatic balance are localized near the neighboring u-monomer. 

Thus. MTs can be viewed as an example of elcclret substances. i.e., oriented assemblies of dipoles, possessing 

piesoelectric properties. pretty important in their functions including their assembly and disassembly behavior. The 

dimers are held together by relatively weak Van der Waals hydrophobic forces due- to dipole coupling. Each dirtier 

has 6 neighbors which form slightly skewed heragonal lattices along the entirety of the tube, with a "leftward -  tilt. 

and several helical patterns may be "seen" in the relations among dimers. Imagine a MT slit along its length. and 

then opened out flat into a strip. One then finds that the tubulins are ordered in sloping lines which rejoin at the 

opposite edge 5 or 8 places displaced (5+8=13), depending on the line slope, it is to the right or to the left. The 

crystal-like symmetry packing of the tubulin in MTs is very suggestive for a possible use of MTs as "information 

processors" . It should be rather obvious that such a delicate. fine MT organization is there for some good reason. 

Further evidence for the very special role that MMTs are made to play is provided by the very interesting assembly 

and disassembly behavior. Dimers self-assemble in Nil's, apparently in an entropy-driven process which can quickly 

change by MT disassembly and reassembly into another orientation. It seems that Guanosine TriPhosphate ((:'I'P) 

hydrolysis to Guanosine DiPhosplrate (GDP) provide the energy that binds the polymerizing tubtnlin dinners, while 

biochemical energy can also be pumped into M'I's by phosphorylation/dephosphorylation of MAPs. In fact. each 

tubulin dinner. as a whole. can exist in two different geometrical configurations or conformations. induced. e.g.. by 

the GTP-GDP hydrolysis. In one of these they bend 29° to the direction of the microtubule. It. seems than these 

two conformations correspond to two different states of the dinner's electric polarization, where these come about 

because an electron. centrally placed at the o-tubulin/0-tubulin junction. may shift from one position to another. 

the textbook, gold-platted case of a quantum-mechanical two-state system [20)! Several "on-off' functions linked to 

Ca++ binding could do the job. The Ca++ concentration changes could alter the conformational states of certain 

tubulin subunits, which may be pre-programmed to undergo conformational changes in the presence of Ca++ 

through GTP, glycosylation, etc. Furthermore. a calcium-calmodulin complex could) facilitate charge acrd/or energy 

transfer. similar to the way acceptor impurities act in semiconductors! The Ca++ may delocalize an electron from 

its orbital spin mate, both electrons belonging to an aromatic aininoacid ring within a hydrophobic pocket, resulting 
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in an unstable electron "hole". and thus enhancing the probability for either a charge transfer from an adjacent 

subunit, and/or transfer of energy to an adjacent subunit. Tubulins in MTs may also be modified by binding various 

ligands, MAPs, etc. Then, given the fact that the genes for a and (3 tubulins are rather complex, providing a varying 

primary tubulin structure, e.g.. at least 17 different 0-tubulins can exist in mammalian brain MTs, one easily sees 

that the number of different possible combinations of tubulin states and thus the information capacity within MTs 

may be very large indeed! It should be stressed that proteins undergo conformational motions over a wide range 

of time and energy scales. However, significant conformational changes related to protein function generally occur 

within the (10 -4  — 10 - ' 2 ) sec time scale. The conformational changes arc related to cooperative movements of 

protein sub-regions and charge redistributions, thus strongly linked to protein function (signal transmission. ion 

channel opening, enzyme action, etc) and may be triggered by factors including phosphorylation, GTP hydrolysis. 

ion fluxes, electric fields, ligand binding, and neighboring protein conformational changes. In the case of ;MI's. 

the programmable and adaptable nature of the tubulin conformational states can he easily used to represent and 

propagate information. Further evidence for some of the extraordinary tasks that may be undertaken by the MTs. 

due to their specific fine structure, is their fundamental role in mitosis, or cell division. The centriole, as We 

discussed above, consists basically of two cylinders of nine triplets of 11,1Ts each, forming a kind of separated T. 

At some point, each of the two cylinders in the centriole grows another, each apparently dragging a bundle of 

M'l's with it, by becoming a focal point around which MTs assemble. These MT fibers connect the centriole to 

the separate DNA strands in the nucleus. at the centromeres, and the DNA strands separate, thus initiating cell 

division. Another, indeed extraordinary mechanism from the many contained in Nature's magic bag of tricks! The 

interelation and parallelism between MTs and DNA goes much further. Time centriole, a rather critical part of the 

eentrosome or MT's organi:ing center, seems to be a kind of control center for the cytosceleton. Thus, it seems that 

we have two strategic centers in a single cell: the nucleus, where all the fundamental genetic material of the cell 

resides, controlling the cell's heredity and governing the production of proteins, of which the cell itself is composed! 

On the other hand. the centrosome, with the MT-composed centriole as its chief component seems to control the 

cell's movements and its organization. As DNA is the common genetic database containing hereditary information, 

rnicrolubules are real time executives of dynamic activities within living cells. One may wonder at this point, that 

while DNA's very suggestive double-helical structure enables it to possess a code, the genetic code (10], nothing of 

similar caliber occurs within microtubules. This is a false alarm! So, let us take things from the beginning. One 

nucleotide of DNA is composed of three elements: a base, ribose, and phosphate group. Four types of bases are 

present: Adenine (A), Thymine (T), Guanine (G), and Cytosine (C), belonging to two basic categories, a purine 

base (A.G) and a pyrimidine base (T,C). Nucleotides are inteconnected by hydrogen bonds organizing them' in a 

specific double-helix structure (A='I'. GEC). From the aspect of organization of structure, one such double-helix 

may be considered as an aperiodic crystal. "Aperiodic" signifies the irregular interchange of bases inside the helix. 

while the phospates and riboses are located on the outside making up a periodic crystal structure. The irregular 

repetition of bases within the helix represents properties of the living beings which make sense. from an information 

point of view, only as code system. In the genetic code, one triplet of bases, the codon, codes one aminoacid: The 

basic genetic code is coded by 20 aueinoacids and there exists a "stop" as three more codons. Thus, there exist 

61 codons which code 20 arninoacids, from the 4 3  = 64 possible combinations of four bases of triplets. Then, the 

messenger RNA (nuRNA) is synthesized front the one strand of the DNA double helix, while the other strand of the 

double helix remains in the nucleus making possible the synthesis of another chain of DNA. The complete genetic 
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information is preserved and remains inside the nucleus. From tnR.NA through carrier RNA (tRNA) to ribosomal 

RNA (rRNA) there is a continual transmission of the genetic information message, making in effect proteins. the 

other side of the genetic code. One crucial point to emphasize here is the following [56]: it is well known that 

the protein's catalytic or other functions strongly depends on its eract .9-dimensional structure, thus making it a 

Tantalian job to try to exactly reproduce genetically a protein! Nature, though. is more subtle. All a gene has 

to do is to get the sequence of the aminoacids correct in that protein. Once the correct polypeptide chain has 

been synthesized, with all its side chains in the right order, then following the laws of quantum mechanics. called 

Chemistry in this particular case. the protein would fold itself up correctly into a unique 3-D structure. A difficult 

3-dimensional (reproduction) problem has been recast as a much easier attractiblr_ 1-dimensional one! A very good 

lesson to be appreciated and remembered and maybe to be used in other similar circumstances. 

Until recently, it was widely believed that ,MTs were just base elements of the cytosceleton and that they played 

a role in the mitotic spindle and active transport. More careful study of the MT's structure, notably by Koruga [57], 

showed that SSTs possess also a. code system! One should not be surprised by such a finding. Recall that the two 

different conformational states of a tubulin dimer can switch from one to the other, due to alternative possibilities for 

their electric polarization. Clearly. the state of each dirtier would he influenced by the polarization states of each of its 

six neighbors, due to the Van der Waals forces between them, thus giving rise to certain specific rules governing the 

conformation of each dimer in terms of the conformations of its neighbors. This would allow all kind of messages to 

be propagated and processed along the length of each microtttbule. These propagating signals appear to be relevant. 

to the way that. microtubules transport various molecules alongside them, and to the various interconnections 

between neighboring microtubules through MAPS. 'l'he repetitive geometric lattice array of MT units may serve 

as a matrir of directional transfer and transduction of biochemical, conformational, or electromagnetic energy. It. 

seems highly plausible that the continuous grids of intramural MT could function as prograrnable switching matrices 

capable of information processing. Within neurons. transfer of MT conformational charge or energy state could he 

driven by travelling nerve action potentials and/or associated transmittance Ca++ flux. Such a view is supported 

by the fact that velocities of action potentials and accompanying Ca++ flux 0(10 -- 100)m/sec would result in time 

intervals for 4nm tubulin subunit transfers of about 10 -10  sec. consistent with the observed nanosecond range of 

protein conformational oscillations [58]! Taking into account the intramural MT density, the neural fraction of 

the brain, and average neural firing rates, parallel computing in MT coupled to action potentials could reach 10'á b 

transfers/sec (bits) in the human brain! 

Koruga observed [57] that the hexagonal packing [59] of the n and Li tubulin subunits in MT with 13 protoftl-

arncnts corresponds to information coding. He noticed that hexagonal packing and face-centered cubic packing 

of spheres have equal density and thus he used both to explain MT organization. It is known that. the Oh(6/4) 

symmetry group describes face-centered-cubic sphere packing and derives information coding laws [60]. In the 

case of hexagonal packing, the centers of the spheres should lie on the surface of a cylinder (with radius equal to 

the Oh(6/4) unit sphere) and the sphere values in the axial direction (lattice) of the cylinder by order of sphere 

packing is the same as in the dimension in which face-centered-cubic packing is done. There should be two kinds 

of spheres (white and black) on the cylinder surface, but linked such that they have the dimension value in which 

the face-centered-cubic packing is done, leading to an "helical symmetry". Amazingly enough, the MTs satisfy all 

these desiderata! Thus, the MTs possess one of the best known [60] binary error-correcting codes. the 6-binary 

dimer lit [13, 2s. 5], where the distance between spheres in order of packing is 5 and with 2 6  = 64 words!!! It should 
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be noticed that information theory suggests that the optimal number of spheres (white and black corresponding to. 

say, o and /.3 monomers) for information processing is 11. 12, or 13! A rather amazing result, supported further by 

the fact that 13 (=5+8) seems to be almost universal amongst mammalian MTs. Thus 13 is our lucky number! In 

addition, symmetry theory suggests that on the surface of a circular cylinder in axial direction of the MT. there 

must be a code of length of 24 monomer subunits (or 12 dimers), the code K2124, 3 4 , 13) corresponding to a 4-dimer 

ternary sequence [57]. It is under the influence of the above discussed Ca++-calrnodulin "complex" that 6-binary 

dirners of li t  code give 4-dimer ternary sequence of 1: _ code, corresponding to biophysical transfer of information 

from one point to other in MT, by transforming the hexagonal surface organization into a new cubic state. Un-

doubtedly, microtubule symmetry and structure are optimal for information processing. Thus microtubules along 

with UNA/RNA are unique cell structures that possess a code system, signifying their singularly important position. 

Like in the case of DNA/10A. the specific structure of MTs led to the conclusion that they possess code systems 

which can he utilized in the neuron dynamic information activities, and other dynamical biological activities as 

well. It is very hard to believe that the detailed, fine, paracrvstalline MT structure, which, among the many other 

useful functions, enables MTs to possess the li-codes, is just accidental and parochial. It is not very hard to 

speculate that, since the MTs are strongly involved in erocytosis. which is the most fundamental process that may 

somehow transform intentions/feelings/etc into neural action, the K-codes may be used as a dictionary translating 

psychological "orders" into physiological actions! In other words, the DNA/RNA provide the genetic code, while 

the MTs provide the mental code or li -code. As such. MTs become primary suspects for further investigations 

concerning their possible role as the microsites of consciousness. One should not worry that. at this stage of our 

investigation, the mechanism of "real time" regulation and control by MT or other cytosceletal filaments seems to 

he missing, because it will be provided soon, once we study their physics in the light of density matrir mechanics, 

presented in the previous section. Before we get to this fascinating subject, let us provide some further phenomeno-

logical/experimental evidence that indeed neural MTs have to do a lot with learning, memory, cognition, and thus. 

eventually, with consciousness ... 

Our story starts thousands of millions of years ago, when the then popular cytosceleton-less procaryotic cells 

became entangled with spirochetes possesing whiplike tail composed of cytosceletal proteins. This. fortunate for 

us, symbiosis produced the eucaryotic cells, possessing cytosceletons [61, 3]. All this is well, but it has led to the 

following puzzle. Single eucaryotic cell organisms. the protozoa, like the amoeba and the paramecium. without 

possessing a single neuron or synapse. still appear able of cognitive and adaptive activities. Amoebae have been 

seen to hunt for food and paramecia to avoid obstacles! How is this possible? The only logical explanation left 

is that the key structure is the cystosceleton, including MTs. that act as the nervous system of single cells, as 

has been observed almost half a century ago. by the famous neuroscientist. C. S. Sherrington [62]. Indeed, the 

paramecium seems to use it.s cytosceleton for coordinated action, in the form of metachronat waves. Furthermore, 

metachronal waves of ciliary beating in pararuecea are reversibly inhibited by the general anesthisogon, chloroform 

163). In addition, it, has been shown that signal transduction in sensory cilia is due to propagating conformational 

changes along ciliary microtubule subunits [64]! 

Further evidence, in modern times, that links the cytosceleton with cognitive function is provided by the following 

findings: 

I. Experiments with trained goldfish show that. the drug colchicine produces retrograde amnesia, by affecting 

memory fixation, through interference with the MTs responsible for the structural modification of certain 
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synapses [65]. 

2. Production of tubulin and MT activities correlate with peak learning, memory and experience in baby chick 

brains [66]. 

3. Experiments with baby rats show that when they first open their eyes, neurons in their visual cortex begin 

producing vast quantities of tubulin [67]. 

4. Selective dysfunction of animal brain MTs by the drug colchicine causes defects in learning and memory which 

mimic the symptons of Alzheimer's disease (AD). It has been reported that in rats, continuous MT disruption 

induced by chronic colchicine administration results in a dose-dependent learning deficit, and retention is also 

impaired. It. has also been stressed that these colchicine-induced cognitive defects resemble those of AD. i.c., 

amnesia of recent learning and loss of formerly established memories [68]. 

5. It has been hypothesized [69], and very recently supported by detailed experimental studies [70]. that im-

pairment pairment of MTs, leading to tangled and dysfunctional neural cytosceleton. may be one explanation for the 

pathogenesis of Alzheimer's disease (AI)) [71]. 

6. In specific hippocanrpal regions of the brain of schizophrenic patients, neuronal distorted architecture found 

due to a lack of 2 MAPS (MAP-2 and ,MAP-5) [72]. 

Arguably, we have plenty of evidence that, the cytosceleton. and in particular the rnicrotubules. have heen 

rather instrumental through the whole natural evolution, From the amoeba and paramecium to humans. and they 

even helped or were deeply involved in natural selection. All these facts. I believe, make it difficult to justify the 

rather popular attitude of taking the neuron as the fundamental, structureless unit and try to explain the brain 

function from there on. An analogous attitude would be to try to understand Chemistry by only accepting the 

existence of structureless a-toms. in their original Democritean form. We can make a bit of progress but we cannot. 

go that far! The Pauli exclusion principle, of pure quantum mechanical origin, seems to play a rather fundamental 

role in understanding the periodic table, ... We should corne to terms with the complexity of the neuron, and we 

should not treat it just as a switch. It will be wiser to concentrate on the nervous system of the neuron. namely 

the microtubule network [1. 3]. By avoiding taking this rather natural step, we are vulnerable to the accusations of 

being micro-behaviorists or micro-functionalists, by treating the whole neuron as a black box. Personally. I don't. 

feel comfortable with such an accusation! 

So, let us concentrate now on the detailed structure of the neural MTs. Each individual neuron, as being an 

eucaryotic cell, has its cytosceleton. Due to the unfortunate for us. fact. that neurons do not multiply after the 

brain is fully formed, there seems to be no role for a centriole in the neural cell. Indeed, centrioles seem to be 

absent in the neuron's centrosorne, which as usual, is found close to the neuron's nucleus. Neural MTs can be 

very long indeed, in comparison with their diameter, of order of Q(lOrtrn) and can reach lengths of mms or more! 

There are about 450 MTs/t1= or about. 7 x 10 5  tubulins/11 ; , along the neural axon. Furthermore, as we mentioned 

above, the potential computing brain power increases substantially if the tubulin dithers (of characteristic two-state 

conformational frequency of 10 1 °I1z) are taken to he the basic computational units. Indeed, in the case of the 

"neuron unit", we get something like 10 14  basic operations per sec (= 10 11  neurons x 103  signals/(neuron sec)). 

while in the case of the "tubulin dimer unit" we get something like 10 28  basic operations per sec (- 10 11  neurons x 
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10' tubulin/neuron x 10 10  signals/(tubulin sec))! A rather remarkable gain on brain power by replacing `neuron-

type" switches with `microlubnlar information processor?, even if we reduce it for efficiency, non-participation. 

etc. down to, say. 10 25  "bits". The neural MTs can grow or shrink, depending on the circumstances, they transport 

neurotransmitter molecules, they are running along the lengths of the axons and dendrites and they do form 

communicating networks by means of the connecting MAPs. Neural MTs seem to be responsible for maintaining 

the synaptic strengths, while they are able to effect. strength - alterations when needed. It also seems that neural MTs 

play a fundamental role in organizing the growth of new nerve endings. piloting them towards their connections 

with other neuron, thus contributing or being mainly responsible for the formation of neural networks in vivo. 

Neural M'I's extend front the centrosorne, near the nucleus, all the way up to the presynaptic endings of the axon. 

as well as in the other direction, into the dendrites and dendritic spines, the postsynaptic end of the synaptic cleft. 

These dendritic spines are subject to growth and degeneration, a rather important. process for brain plasticity, in 

which the overall interconnections in the brain are suffering continuous and subtle changes, and as we discussed 

in section 4. out of reach for the conventional neural networks (NN) approach to brain function. As a further 

indication for the involvement of neural M`I's in erocytosis, or the release of neurotransmitter chemicals from the 

presynaptic vesicular grid. Penrose has emphasized [3] the existence and role of certain substances, called clathrins. 

found in the presynaptic endings of actions. and associated with MTs. Clathrins are built from protein trimers. 

known as triskelions. which form thee-pronged structures. The clathrin triskelions fit together in an incredulous 

way, to form very beautiful configurations, basically identical in general organization to the carbon molecules known 

as "fullereness" or 'bucky balls" [73]. but much bigger, since the single carbon atoms are replaced by an entire 

clathrin triskelion involving several aminoacids. Thus, clathrins have a very fascinating geometrical structure, of a 

truncated icosahedron. that should be related to their important role in the release of neurotransmitter chemicals. 

If what is happening in the synaptic clefts, involving always microtubule networks in a rather fundamental way 

both at the presynaptic and postsynaptic stage, reminds you of the quasicrystals discussed at the end of section 3, 

you are right. Brain plasticity shares some similarities with gtrasicrystal growth [12]. Also, I do hope that I have 

presented significant evidence indicating the direct involvement of MTs in the control of brain plasticity, and thus 

coining to a point, where the physics of MTs needs to be discussed. 

7 MicroTubules (MT) II: The physical profile 

The remarkable biological/physiological properties of MTs discussed in the previous section is a typical example 

of the amazing high degree of order present in biological systems. Usually. hioscientists pay more attention to 

the functional organization rather than to the spatial/physical structure, but we should always remember that, 

if we would like to understand function we should study structure [56]. The DNA story is a good example at 

hand. emphasizing the strong structure-function correlation [18]. The basic physical framework for understanding 

biological order was put forward by Frohlich [74]. As we discussed in the previous section, proteins are vibrant. 

dynamic structures in physiological conditions. A variety of recent techniques have shown that proteins and their 

component parts undergo conformational transformations, most. significantly in the "nanosecond" 10 -9  - 10 -10  sec 

range, as predicted by Frohlich. It should be stressed that these motions are global changes in protein conformation 

rather than rapid thermal fluctuation.~ of side chains or local regions. About 25 years ago, Frohlich suggested [74] that 

such global protein changes are completely triggered by charge redistributions such as dipole oscillations or electron 

movements within specific hydrophobic regions of proteins. Hydrophobic regions within proteins are comprised of 
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non-polar side chains of aminoacids which exclude water. Incidentally, and for later use, general anesthesia gas 

molecules apparently act there to prevent protein conformational responsiveness [75]. Fróhlich's basic conjecture 

was that quantum-level events such as the movement of an electron within these hydrophobic regions act. as a 

trigger/switch for the conformational state of the entire protein. The movement of an electron among resonant bond 

orbitals of aminoacid and side chains such as aromatic rings of tyrosine, is a good example of Frõhlich's electrons. 

Frohlich considered an ensemble of high-frequency oscillators that can be subjected to an external electric field and 

allowed to strongly interact among themselves. He conjectured that, if biochemical energy such as ATP or GTP 

hydrolysis were supplied to the dipolar system. a new state would be formed that. is characterized by a long-range 

coherence, as manifested by a macroscopic occupation of a single mode. He provided some physical evidence. that 

coherent excitation frequencies in the range 10 9  — 10 10  Ilz were possible in such biological systems. He further 

predicted metastable states (longer-lived conformational state patterns stabilized by local factors) and travelling 

regions of dipole-coupled conformations. Such global protein conformations appear suitable for computations: finite 

states which can he influenced by dynamic neighbor interactions. '!'here is some experimental evidence for Fróhlich's 

excitations in biological systems that include observations of (11z-range phonons in proteins [76]. sharp-resonant 

non-thermal effects of Gib irradiation on living cells [77]. Gib-induced activation of nticrotubule pinocytous in 

rat brains [78]. Raman detection of Fróhlich frequency energy [73] and the demonstration of propagating signals in 

microtubules [80]. Fróhlich's basic physical ideas [7.1] scent to snake a lot of sense. but. is there any structure(s) that 

may realize them. or is it. another theoretical pipedream? Lo and behold. microtubules just fit the bill. The entire 

MT may be viewed within the context of the Frohlich framework. as a regular array of coupled dipole oscillators 

interacting through resonant long-range forces. Furthermore, as we discussed in the previous section in detail, in the 

case of MTs we have an explicit mechanism involving the calcium-calmodulin "complex" for the electron movement 

in the hydrophobic pocket. In addition. coherent vibrations within regions of an MT may take the form of kink-

like ereitatrons separating adjacent regions with opposite polarization vectors, with the dipole orientations its the 

direction of the MT axis. The extra energy needed for the creation of kink-like excitations Illay be provided by 

GTP hydrolysis, as discussed in the previous section. It is known that the energy produced during GTP hydrolysis 

is delivered to assembled WI's, although the precise manner in which this energy is utilized is still not. understood. 

Amazingly enough. the free energy released in UTf hydrolysis is about 10Kcal/thole (0..120//molecule). or about 

the energy content of a kink-like excitation! Recently rather detailed and interesting studies of the physics of 

microtubules, at the classical level, have been undertaken by several groups [81.82. 83]. as it is discussed next. 

Microtuhules are viewed as polymers of subunit proteins, the tuhulins, and as such they may be considered as 

lattices of oriented dipoles. There are three types of arrangements of dipoles in lattices: (i) random. (ii) parallel-

aligned or ferroelectric, and (iii) regions of locally frozen orientations or spin-glass [29). As discussed in section 2. 

depending on the values of the parameters characterizing the system (tentperat tire and external electric field look the 

most. relevant here) the system may exhibit different. pleases. In the ferroelectric phase. there is a long range order 

(global dipole alignment), encouraging the propagation of kink-like excitations and thus able of MT signaling and 

assembly/disassembly. On the other hand. the spin-glass phase with its locally frozen dipole orientations seems to 

be useable for efficient information processing and computations. So, it seems that the MTs organize cell activities 

by operating in two different phases, accessible by slightly changing the temperat ure and the external electric field. 

A rather remarkable operational biological system [ l . 57, 81, 82, 8:t]. 

The basic characteristics of the physical MT model, put forwad in lief. [81, 82], is that the \1'f's strong uniaxial 
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dielectric anisotropy align the dipole oscillators so that they can be effectively described by only one degree of 

freedom! In fact, experiments have shown [84] that a tubulin undergoes a conformational change induced by GTP-

GDP hydrolysis in which one monomer shifts its orientation by 29° from the dimer's vertical axis, as we discussed in 

the previous section. Thus, the relevant degree of freedom, identifiable with an "order parameter", is the projection 

on the MT cylinder's axis of the monomer's displacement from its equilibrium position. The mobile electron on each 

dieter, as discussed in the previous section, can be localized either more toward the cr-monomer or more toward the 

/3-monomer. The latter possibility is associated with changes in dimer conformation, and thus we should identify 

the `order" parameter with the amount of f3-state distortion when the latter is projected on the MT longitudinal 

axis. Using the language of Quantum Mechanics (see section 3) 1 will denote the two conformational states of 

the dimer as [a) and [fl) referring respectively to the cases of the mobile electron being on the a- or f3-court and 

with [a) — 10) the quantum transition triggered by the movement of the electron from the one court to the other. 

The archetypal of a two-state quantum system indeed! The remarkable inherent symmetry of a MT enables one 

to view it effectively as nearly perfect one-dimensional crystal. and thus including time, as a highly symmetric 

s-dimensional physical system. furthermore, one should take into account the fact that the whole MT cylinder 

represents a "giant dipole". When the cross section of a MT is viewed using electron microscopy, theMT's outer 

surfaces are surrounded by a "clear zone" of several tun which apparently represents the oriented molecules of 

cytoplasmic water called sometimes "tticinat' water. and enzymes. It seems that the MT produces an electric field. 

Therefore, it is assumed that. together with the polarized water surrounding it, a MT generates a nearly uniform 

intrinsic electric field parallel to its axis. The existence of a solvent in the environment of the MT, assumed for 

simplicity to be just water, has some further consequences. The water provides a dielectric constant (c 80) that 

reduces the long-range electrostatic energy between the dimer dipoles, and at the same time, it provides a viscous 

medium that damps out vibrations of dimer dipoles. 

All the above detailed physical structure is taken into account in a classical mean field theory approach to 

the dynamics of the MT [81, 82]. One mimics the overall effect of the surrounding dimer-dipoles on a chosen 

site n, by qualitatively describing it by a double-well gnat-tic potential, a standard method, applied in the past 

rather successfully in similar systems, e.g., in dipolar excitations of ferroelectrics [85). The potential then, for 

the 0-displacement u,(t) along the longitudinal symmetry (z) axis of the MT cylinder, in the continuous limit 

un (t) — u(x , 1) , where u(x, t) represents a 1+1 dimensional classical field, takes the form 

V(u)--2Au = (i,1) 	 (31) 

with B > 0 and A = —(+const)(T— Te ), where TT  denotes the critical temperature of the system. The equation of 

motion then reads 

AT t .u — kHo [7x?! — .Au+ fica +7 t — qE= 0 	 (32) 

where M denotes the mass of the dimer, k is a stiffness parameter, R.0  is the equilibrium spacing between adjacent 

dimers, 7 is the viscous water damping coefficient, and E is the electric field due to the "giant." MT dipole discussed 

above, with q the effective mobile charge of a single dither. Detailed studies [81, 82) of the dynamical equation (32), 

in the appropriate parameter range. have revealed very interesting results/properties. Indeed, for temperatures 

below the critical temperature Te  300°K, the coefficient A in (31) is positive, thus putting the system into the 

ferroelectric phase, characterized by long-range order, i.e., all dipoles aligned along the MT longitudinal direction. 

In. this phase, Eq. (32)• admits travelling waves in the form of displaced classical kink-like solitons with no energy 
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loss [86]. The kink-like soliton propagates along the protofilament with a fixed velocity v, which for T < TT , i.e.. in 

the ferroelectric phase is well approximated by [81, 82] 

õ ^. 2 x 10 -5(m/scc)É /(1 V/m) 	 (33) 

implying, for a characteristic average value of E z 10 5 V/m, v 	2m/sec and thus a propagating time, from one 

end to the other of an 0(1p) MT, r 	5 x 10-7  sec. As (33) suggests, the kink-like soliton travels preferentially 

in the direction of the intrinsic electric field, thus transferring the energy that created it, i.e., chemical GTP-GDP 

hydrolysis type energy, towards a specific end where it can be used to detach dimers from the MT, in accordance 

with experimental observations (87], concerning the assembly/disassembly of MTs [88]. The role of MMAPs, the 

lateral cross-bridging proteins, as MTs stabilizers becomes clearer now. From the physical point of view, these 

bridges represent lattice impurities in the M'i' structure, and it is well-known that impurities play a very important 

role in soliton propagation. Kinks may be totally reflected by an attractive impurity, for a specific range of the 

kink propagating velocities, thus MAPS may significantly reduce the MT disassembly. Furthermore, the addition 

of an external electric field introduces a new control mechanism in the MT dynamics. As (33) suggests, depending 

on the relative direction and sign of the two fields (external versus internal) the kink-like solitons may travel faster 

or stop altogether! Here we have a mechanism that turns MTs to artificial information strings [81. 82, 83]. Each 

kink-like soliton can be viewed as a hit of information whose propagation can be controlled by an external electric 

field! Nevertheless, while the ferroelectric phase can be useful for signaling and the assembly/disassembly of Nil's, it 

is to "straight" for information processing and computation! For such operations one has to move to the spin-glass 

phase [29]. Detailed studies show [82] that as we increase the temperature above the critical one Te , while keeping 

the electric field at appropriate small values, the coefficient :1 in (31) becomes negative, signaling the formation 

of a metastable phase, the spin-glass phase, before eventually reaching the naively expected random phase. where 

all dipoles arle distributed randomly. To understand the existence and properties of the spin-glass phase better, 

it helps to notice that an MT, as a regular array of coupled local dipole states. can he mapped to an anisotropic 

two-dimensional !sing model (14] on a triangular lattice, so that the effective Hamiltonian is 

!! = - E JikRiQk (' 1 4 ) 

with the effective spin variable o•; • ±1 denoting the dipole's projection on the MTs longitudinal axis, and the 

exchange constants jii. representing the interaction energy between two neighboring lattice sites, are given by 

i 	3 cos= 0  —  1 l  
= 4 ac 	r3 	J p 	 ( 3.5) 

In (35), p is the dipole moment p = qd, where d 4nm; ri1 is the distance between sites i and j, and O  is the angle 

between the dipole axis and the directions between the two dipoles. Explicit calculations using MT X-ray diffraction 

data, have succeeded to determine all relevant parameters (j,, , 0, and ri1) relevant to the MT system and be found 

in Ref. [82]. As is well-known [29], such a system is able to exhibit frustration in its ground state, i.e., there will 

always be a conflict between satisfying all the energy requirements for the "+" bonds (two-parallel dipoles) and °-" 

bonds (parallel-antiparallel dipoles). That leads to the spin-glass phase where spin orientations are locally "frozen" 

in random directions due to the fact that the ground state has a multitude of equivalent orientations. For each 

triangle, reversing the spill on one side with respect to the remaining two leads to an equivalent configuration. In a 

MT with about 104  dipoles or dimers the degeneracy of the ground state is of the order of 610,000 ,  a very large number 
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indeed! Small potential barriers separating the various equivalent arrangements of spins play a fundamental role. 

Relaxation times arc very long for the various accessible states giving them long-term stability! All these properties 

of the spin-glass phase makes it optimal for computational applications. The spin-glass phases allow easy formation 

of local ordered states, each of which carries some information content and is relatively stable over time. thus the 

perfect candidate for information processing and computation. It is highly remarkable that tubulin subunits in 

closely arrayed neural MTs (450 MT/0 2 ) have a density of about 10 17 tubulins/cm3 . very close to the theoretical 

limit for charge separation [89]. Thus, cytosceletal arrays have mariutal density for information storage via charge. 

and the capacity for dynamically coupling that information to mechanical and chemical events via conformational 

stales of proteins. Furthermore, the switch between the different. phases (ferroelectrie, spin-glass and random) is 

achieved through various physical means. e.g., temperature or electric field changes. both within easily attainable 

physiological conditions! For example, as the intrinsic electric field is raised above. about 10 4 V/m. easily attainable 

in MTs, the MT state switches from the spin-glass to the fcrroelectric phase. While the similarities between the 

equations (34) and (1 ï) as well as between the brain function phases of section 2 and the MT phases discussed here. 

are striking and rather suggestive, some further steps are needed before shouting eureka. 

The treatment of MT dynamics [81, 82] presented above is based on classical (mean) field theory. For sonic 

physical issues this is an acceptable approximation. given the fact. that MTs may sometimes have macroscopic 

dimensions. On the other hand, our main purpose would then evaporate, since the central issue of quantum 

coherence and its loss would remain mute and its relevance or not to brain function would remain unaswered. 

Usually. after the classical treatment of a system, one goes directly to quantize the dynamics of the system in a 

standard way. Alas. things here are not so easy. We have seen that there are very important, dissipative. viscous 

fixers. due, for example. to the existence of water molecules that play a very important role in the support and 

propagation of classical kink - like solitons, but on the other hand, as is well-known, render the possible quantization 

of the dynamical system, rather impossible! Amazingly enough. very recently [7] together with N. Mavrornatos we 

have been able to map the 1+1 dimensional MT physical model discussed above to a 1+1 dimensional non-critical 

string theory [90. 91]. the precursor of the 1+1 black-hole model [50] discussed in section 5. Should we be surprised 

by such a mapping'? Probably, not that much. '1b start with, there are not that many different theories in 1+1 

dimensions, and even seemingly completely different theories may belong to the same universality class, discussed in 

section 2. implying very similar physical, "critical' properties. In fact, the possibility of casting the 1+1 dimensional 

MT dynamics in the, rather simple, double-well quartic potential form (31). stems from the well-known equivalence 

(14]between such a quartic potential and the one-dimensional !sing model, i.e., interacting one-dimensional "spin" 

chains, similar to the MTs protofilaments! Furthermore, one can "derive" [92] a I+1-dimensional non-linear cr 

model (resembling the 1+1 dimensional, non-critical string theory [90, 91]) as the infrared limit of the Heisenberg 

(anti)ferrotnagnet model (resembling the I+1-dimensional \1T electret). The consequences of such a mapping of 

the 1+1 MT dynamics on to a suitable 1+1 non-critical string theory are rather far-reaching. All the interesting 

and novel results discussed in section 5. when appropriately translated. hold also true for the MT system, including 

the construction of a completely integrable 1+1 dimensional model for the MTs. admitting consistent (mean-field) 

quantization. Furthermore, the completely integrable nature of the \ MT'system, implying the existence of an `infinity" 

of quantum numbers labelling the states of the system (like the Black-liole W t+c,, hair discussed in section 5). make 

it possible to store and eventually retrieve information in a coherent way. The practically infinite dimensional 

degeneracy of the spin-glass ground state, discussed above with its remarkable information processing/computation 
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abilities, is, of course, due to the available "infinity" of quantum numbers, characterizing the system. In any case, 

the consistent quantization of the MT-dynamics/system, make the possible appearance of large-scale coherent states, 

the MQS of section 2, not only plausible, but also feasible. But, as we discussed its detail in section 5, there is no 

"closed" system in Nature. Because of the Procrustean Principle [6], a concise, synoptic expression of the spacetirne 

foam effects. all physical systems are rendered necessarily "open", and thus eventually "collapse". The MT system 

is no exception to the rule. On the contrary, the above discussed mapping of the 1+1-dimensional MT dynamics to 

a 1+1-dimensional effective non - critical string theory. as observed by N. Mavromatos and myself [7], simplify things 

considerably in this context too! After all, the central issue of section 5 was basically how to take into account s 

More specifically, in the case of the MT system the conformational. quantum transitions of the dieters (lo) --- [I?)) 

create abrupt distortions of spacetirne, thus enhancing the possibility of creation and annihilation of virtual, Planck-

size black holes. The Planckian black holes interact with the MT system, through the global string states 3  (the 

1V2 world of (27)), which agitate the MT system in a stochastic way, as described by (23), but with a monotonic 

increase in entropy (26) supplying the MT system with a microscopic arrow of time, badly needed specifically in 

biological systems. while allowing for loss-free energy propagation (25). Furthermore, the 1V 2  global states lead 

to synchordic collapse (27) with a time period re  (29). While all these facts start painting a rather fascinating 

picture, one may justifiably wonder that the brain, being a hot, wet, noisy environment., is the complete antithesis 

of what is really needed for quantum effects to develop! In other words, even if we could be able to produce a 

macroscopic quantum state (MQS), would not be that environmental effects take over and "destroy" everything 

before any ''useful" quantum effects take place? There arc different ways/levels of answering this question in our 

framework here. The MT-dynamics, including viscous water and all, can be mapped to a non - critical string theory 

and as such AMTS may be viewed as "open" systems obeying consistent quantum dynamics as contained in (23). One 

then is entitled, if so desired, to ignore completely the mapping, and just use (23) as a successful phenomenological 

equation describing the MT system, but with all parameters entering (23) determined appropriately by the physical 

environment. One then hopes to reproduce most of the interesting results mentioned above, without reference to the 

rather specific and detailed quantum gravitational framework used above. In principle, I don't see anythig wrong 

with such an agnostic approach, beyond losing some predictive power. Nevertheless, it should be stressed that the 

amazing shielding of the whole neuronal axon through the insulating coating of myelin, as discussed in section 4, 

and the whole astonishing fine paracrystalline structure of the MT network provide just the right environment for 

the fluorishing of quantum effects. One may evert wonder if Nature, or more precisely natural selection supported 

throughout evolution, all these fine structures in a random, parasitic way or. as I believe. because they were needed 

to perform useful work. Survival of the finest! 

It is encouraging that further studies of the MT dynamics strongly indicate that the MT's filamentous structure 

may be due to spontaneous symmetry breaking effects, a la superconductivity, and provided further evidence for the 

MTs' usefulness to support and sustain quantum coherence. Indeed. considering the layer of ordered water outside 

and inside MTs, Del Giudice, ct. aí493] proposed that the formation of MT's cylindrical structure from t.ubulin 

subunits may be understood by the concept of self-focusing of electromagnetic energy by ordered water. Like the 

Meissner (symmetry breaking) effect for superconducting media, electromagnetic energy would be confined inside 

filamentous regions around which the Lnbnlin subunits gather.' Del Giudice, et. al.[93] showed that this self-focusing 

should result in filamentous beams of radius 15nrn, precisely the inner diameter of niicrotubules! Furthermore. Jibu, 

It should be remarked that the effective non-critical string picture advocated in Ref. (7], applies more generally to the case where the 
W7 - worid does not correspond necessarily to Planckian states but describes complicated, yet unknown, biological effects in the brain. 
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et. aí.[94], have proposed that the quantum dynamical system of water molecules and the quantized electromagnetic 

field confined inside the hollow MT core can manifest a specific collective dynamical effect called superradiance [95J 

by which the MT can transform any incoherent, thermal and disordered molecular, atomic or electromagnetic energy 

into coherent photons inside the MT. furthermore. they have also shown [94] that such coherent photons created 

by superradiance penetrate perfectly along the internal hollow core of the MT as if the optical medium inside it. 

were made "transparent" by the propagating photons themselves. This is the quantum phenomenon of self-induced 

transparency [96]. Super-radiance and self-induced transparency in cytosceletal MTs can lead to 'optical .' neural 

holography [l]. Neurons (and maybe other cells) may contain microscopic coherent optical supercomputers with 

enormous capacity. Thus Jibu, et. aí.[94], suggest that it1Ts can behave as optical waveguidcs which result in 

coherent photons. They estimate that this quantum coherence is capable of superposition of states among MT 

spatially distributed over hundreds of microns! These in turn are in superposition with other MTs hundreds of 

microns away in other directions and so on... 

It seems to me that we have accumulated enough evidence to safely assume that the MT structure and dynamics 

are not only, strongly supportive of the onset of long-range quantum coherence, hut. they are also very protective of 

quantum coherence, shielding it. from standard physical environmental effects, modulo. of course, the menace of the 

spacetime foam. So, finally we have in place all the physical and biological facts needed to put forward our thesis 

about a unified theory of the Brain-Mind dynamics promised in the Introduction. 

8 Microtubules and Density Matrix Mechanics (I): Quantum Theory 
of Brain Function 

Let us assume that an "external stimulus" is applied to the brain. This, of course, means that some well-defined 

physical signal. presumably representing some form of information, interacts with the brain. The physical content 

of the signal (energy content. ...) starts to "straigthen up" the relevant regions of the brain, as analyses of EEGs. 

discussed in section 2, have shown [16]. In our picture, the detailed microstructure, both physical and biological, of 

the MT network entails that this "external stimulus -  would initially trigger/cause coherent vibrations of the relevant 

part of the MT network. Eventually, it is most probable that. the "prepared", by the external stimulus, quantum 

state of the system W would be a quantum superposition of many states or many alternatives, all taking place at 

once. This is extremely likely to occur in the spin-glass phase with its huge degeneracy, thus basically allowing the 

relevant part of the MT network to perform many-many quantum (parallel) computations at once. while processing 

the data contained in the "external stimulus". After some time r c , as given by (28) or (29), and because of the global 

or W2-world slates the relevant MT wavefunction would "collapse" to one specific state. The W 2 -world states have 

forced the system to "decide" what it wants to be, by triggering it. to choose one among many alternative states. 

Notice that since the MT network is rather catensivc, from the `sensory" cortex to the association cortex to the 

motor cortex (see section 4), the whole process of input—processing—output is well-coordinated/correlated through 

the magic properties of the chosen quantum state. The dynamically emerging, due to synchordic collapse (sec (22)) 

chosen state has all the desirable properties (see section 2), like long-term stability and non-locality, as being one 

of the many possible states of the spin-glass phase, to be of primary importance in brain function and `decision 

making°! . Indeed as we have stressed numerous times by now, one of the most important functional roles of the 

MTs, is their strong involvement in brain plasticity and exocytosis (see sections 4.6). MTs control the shrinkage 

or growth of dendritic spines (brain plasticity) and by triggering the "unlocking" of the presynaptic vesicular grid, 
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thus allowing one vesicle to "fire" or emit its content of neurotransmitters towards the synaptic cleft, they control  

exocytosis. Certainly MTs are the masters of the neurophysiological game. The whole neurophysiological response  

to the "external signal" depends on the specific form of the chosen state of the relevant part of the MT network,  

which in turn, at least partially depends on the W.-world states in a stochastic way (see sections 5,7). That is  

how, finally they may lead to learning or memory recall or, through the motor cortex, to action, or nothing, as  

discussed in sections 2,4,6. It should be stressed that the biological/physical properties of the MTs, as discussed  

in sections 6 and 7. arc rather suggestive of their important role in the brain function. The very existence of the  

Ii-codes [57], related to the MT conformational states, which in turn are strongly correlated to protein function (see  

section 6) make it apparent that everything, from bioinformation transmission to memories lay down. to decision  

making. to movement, is MT-driven, and thus, as mentioned above, at least partially, global states or W2-world  

states dependent! Actually, I cannot refrain from recalling here the analogy between brain plasticity and quasierystal  

growth discussed in sections 3,4,6. lti the case of quasicrystals. the ground state, i.e.. the state with minimal energy.  

is determined by employing many-many alternatives at once. i.e.. parallel 'computations" of energy considerations  

at once, depending, of course, on the physical environment. e.g., solvent, etc, until the quasicrystal grows enough.  

so that synchordic collapse occurs, with one final macroscopic state possible, the one that the experimentalists  

look at (12)! In the case of brain plasticity, including dendritic spine growth and shrikage, a very similar situation  

occcurs. though now we are dealing with a much more involved situation where many minimization conditions have  

to be satisfied simulataneously, corresponding to the very complex nature of the brain, and thus in a way, make  

imperative the posssibility of quantum computation, as provided by the Ali' network in a stringy modified quantum  

mechanics or density matrix mechanics framework!  

While the above emerging quantum theory of brain function has several suggestive and qualitatively sound  

features, it would be nice to be able to make sonic quantitative statements as well, in other words work out some  

predictions or even postdictions! Indeed, this is possible. To start with. in order for this new dynamical theory  

to "hold water" at all, we first have to check whether the very phenomenon of crocylosis is of quantum nature.  

as we claim, or whether it can be explained on the basis of statistical or thermal fluctuations. Well, the answer  

is on our favor. Ecccles [9] and Beck and Eccles [97] have shown that exocytosis is a quantum phenomenon of  

the presynaptic vesicular grid. 'They noticed that the synaptic vesicles forming an hexagonal array. are packaged  

between the presynaptic dense projections in a triangular array, composing the presynaptic vesicular grid, having  

paracrystalline properties [98]. Any similarity with the MT hexagonal paracrystalline structure is not accidental.  

since the boutons are the end points of MTs! There are about. 10.000 vesicles per synaptic unit or bouton, of which  

only (30-80) belong to the "firing zone" of the paracrystalline presynaptic vesicular grid [98] and of which. only  

one (I) "fires" about (5.000-10,000) neurotransmitter molecules, in a probabilistic. (— 0.3 — 0.4) way. Thus, the  

probability of quantum (vesicular) emission is a holistic property of the presynaptic vesicular grid of the houton!  

Actually, they further noticed [9, 97] that this probability is not a fired number. but. can be increased or decreased  

by physiological or pharmacological treatment [99]! This is exactly what the doctor ordered. Indeed, one can  

schematically identify the prepared slate 4 1 , discussed with the one represented by (13). where the Ik) ;  refers now to  

the specific la) or 10) conformational state of the k-th tubulin dimer in the i-th relevant macroscopic (MT-network)  

quantum state, a  nd A' is the number of tubulins involved. 'Then, the system suffers synchordic. collapse  

0)  = r e; [I)1 12)i  .. . Ihf r;  — pti', = E pi ^I)i .. . [^V) ; 
 

`  

(36)  
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where pw, has been discussed in Section 5 (just above (23)), with the pi denoting probabilities depending in an 

stochastic way on the 14'2-world states. Since, the MT network extends all the way to the relevant. vesicular grids. 

it becorlles apparent that we expect a synchordic, simultaneous (L'PR-like [22, 12)), probabilistic "firing" of all the 

boutons involved, triggering thus the appropriate standard neurophysiological action! Thus, not only do we expect 

quantum exocytosis to occur, but we also do expect to be able to influence, through the stochasticity brought by 

the global or 1V,-world states, the probabilistic outcome, allowing thus for (sec below) free-will! And indeed it. is 

happening [9, 97, 98, 99). So far so good. Another immediate prediction or natural expectation, that one has in 

this new dynamical theory. concerns the time difference between say an "external order" and "action". According 

to our new picture advanced here, there is some time-lapse between the input and the output. characterized mainly 

by r,. the quantum coherence lifetime, as given by (28),(29), i.e.. the time that takes for information processing 

and quantum computation. The way that (29) has been derived should make it clear that it was meant to apply in 

the MT network system! The only thing we are missing is the value of N. It. seems to be a consensus. very rare in 

Brain Science. that the basic module of 10 4  neurons, discussed in section 4, should be able to "decide" something 

useful! In this case 

N 	
104 neurons I0  tubulins 

105 ( Gr 'Amin )( 10% efficiency) 	10 16  

implying, when inserted in (29) 

r["nrnin" 	O( I sec) ) 

a rather long time compared to the neuron cycle-time of about (1-2) msecs and to ueurosignal velocity of about 

100 m/sec. as discussed in section 4. Let me stress at this point that the rather long time of O(1 sec) should not 

be compared with cerebellum guided reflections, as discussed in section 4, of much smaller reaction time, since they 

have become of second nature and there is no "thinking" or "decision making" involved. For the skeptical reader, 

who may feel queasy with our philosophy to use the nucleon mass (»+mete z 1 GeV) as the fundamental mass 

unit ( ► n) in (28) and thus yielding (29), we offer the following hopefully soothing remarks. It has been noticed 

in [7) that it is reasonable, in the case of an assembly of tubulin dimers as in microtubules, to assume that the 

pertinent moving mass is the effective mass M' of the kink background. This effective mass M' has been estimated 

to be [81) :1f' z 3rn n„cieen ! By inserting now M' as the fundamental mass unit in (28), where N denotes. in this 

interpretation, the member of tubulin dimers NT z 10 12 . as provided by (37). we get again r:Brain"  O(1 sec)! For 

yet. another way, the third way of reproducing (38) sec (7). So. we feel kind of confident that (38) provides indeed a 

rather indicative, canonical value of the time lapse needed, in our scheme. for an "event" to be perceived consciously, 

under normal circumstances. Clearly, (28),(29) and (37) spell out explicitly the dependence on different parameters 

involved in getting 38) and thus enabling us to derive estimates for r," 8"-in" in circumstances different that the 

normal/canonical one discussed above. Individual conscious events may occur at different time scales depending on 

the number (N), effective mass (M•), etc, of the tubulin dimers involved in the prepared coherent state +1) (36). For 

example, the "7-oscillations" (or "40 Hz oscillations") [33. 34) discussed at the end of section 4. may be due to the 

successive. synchordic collapses of an extended MT-network. Indeed, it is plausible that the relevant MT-network 

involves either a bigger number of, or longer, neurons than the canonical values used in (28),(29), (37) to yield (38). 

thus enabling us to get in this case r:Bra 1 "" y O(I/50sec), without much sweat and pain. It is too early vet, to get 

down to such specifics, and would be foolhardy to claim that everything has been explained! Simply, it does not seem 

inconceivable to be able to accommodate such "7-oscillations" in our scheme, thus providing a microscopic, physical 

module 	neuron 
( 3 +) 

(38) 
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explanation to the phenomenological Crick-Koch proposal [36, 32] that synchronized firing in the "7-range" might 

be the neural correlate of visual awareness. Generalizing this notion to other "x-oscillations' we may naturally lead 

to the solutionof the binding problem or unitary sense of self. It is highly remarkable and astonishing the synergy, in 

our scheme, between Planck scale physics, atomic and subatomic physics providing the relevant parameters in (28), 

thus leading to (29), and Neurobiology (37), to eventually yield the estimate (38). seemingly in the right ballpark! 

Indeed. as discussed in sections 4 and 6, learning or memory laydown, closely related to brain plasticity, involving 

shrinkage or growth of dendritic spines arc supposed to occur (100] within O(seconds), in amazing agreement with 

our prediction (38)! 

Further evidence that our prediction (38), and more generally, that our new quantum theory of brain is making 

sense relics upon rather complicated experiments, including clinical studies. that have been discussed in detail by 

Penrose [12, 3], so I will be rather concise. These arc experiments that have been performed on human subjects. 

and have to do with the time that consciousness takes to act. and to be enacted. i.e.. they are concerned with the 

active and passive role of consciousness respectively. in the first one, performed by Kornhuber. el. 0.[101] on a 

number of human subjects volunteered to have electrical signals recorded at a point on their heads, i.e.. EEGs. and 

they were asked to flex their index finger of their right hands suddenly at various times, at free-will. Averaged over 

many trials. Kornhuber's experiments showed that die decision to flex the finger appears to be made a full second 

or even 1.5 seconds before the finger is actually flexed. Furthermore, if free-will is replaced by reponse to the flash 

of a light signal. then the reaction time for finger flexing is. at least, live times shorter than the free-willone! in the 

second experiment. by Libet, ei. aí.[102]. subjects who had to have brain surgery consented to having electrodes 

placed at points in the brain, in the somatosensory cortex. The upshot. of Libet's experiment [102] was that when a 

st.iniulus was applied to the skin of the patients. skin-touch, it took about O(sccond) before they were consciously 

aware of that stimulus. despite the fact that. the brain itself would have received the signal of the stimulus in about 

0.01 scr. and a pre-programmed "reflex" response to such a stimulus could be achieved by the brain in about 0.1 

sec! Furthermore, cortical stimuli of less than 0(see) are not. perceived at all, and a cortical stimulus over O(sec) 

is perceived from O(sec) onwards! 1t. is even possible that a cortical stimulus can even "backward mask an earlier 

skin stimulus. indicating that awareness of the skin stimulus had actually not yet taken place by the time of cortical 

stimulus. The conscious perception can be prevented ("masked") by a later event, provided that the event occurs 

within O(sec). In addition, when a cortical stimulation lasting for more than O(sec) is followed by a skin stimulation. 

within the original 0(sec), both signals were perceived, hut in reversed order! The subject would think that first. 

was die skin-touch, followed by the cortical stimulation, i.e., a referal backwards in lime for the skin stimulus of 

about O(sec). ']'hough for the cortical stimulation, assumed t.o occur this time after the skin-touch. there is no 

referal backwards in time, implying that this is not simply an overall error in the internally perceived time. These 

are rather dramatic results with far-reaching consequences for the understanding of consciousness [103. 12. 3]. In 

our new dynamical theory they admit a rather simple and straightforward explanation. Indeed. the Kornhuber type 

experiments [101], concerning aclive consciousness, imply that indeed there is a time-lapse between input--output 

of about O(sec) as suggested by (38), and not in the naively expected O(ntsec) range from simplistic "neurosignal" 

analysis. One may imagine. as discussed in detail above, that the external stimulus, flex the finger at free-will 

in this particular case, sets the relevant preconscious state "in gear', and eventually, through die involvement of 

global or W2 -world slates, the "collapse" of the wavefunctiot ►  occurs, leaving only one specific state. the ronscrous 

stair, that carry the order to physiologically flex the index finger! The strong correlation between free-will and the 
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global or 1112-world states should be apparent. Clearly, if free-will is replaced by reflective response to an external 

stimulus, then we expect much smaller reaction time, since basically there is no conscious thinking involved and 

thus the situation is very similar to cerebellum reflective actions. Concerning the . Libel type experiments [102]. 

involving passive consciousness, again we can provide simple explanations. Since it takes about O(sec) for conscious 

perception in our new dynamical theory, if the cortical stimulus is removed in time less than O(sec), we feel nothing, 

since presumably it did not succeed to "prepare" the preconscious states, thus it acts simply like random noise. 

On the other hand, if it lasts about O(sec). then it is able to "straighten" the relevant states up, and thus it 

is able to create conscious perception, that we "feel" it! On the other hand. the skin-touch. as more "real' and 

effective, would always felt after O(sec), ercept when. during the O(sec). a relevant cortical stimulus is applied 

that eliminates the skin-touch's efforts to "prepare" a preconscious state and let it. "run" or "compute", to be more 

specific. In a way, since the cortical stimulus is applied before the 'collapse" of the skin-touch related wavefunct.iott. 

quantum superposition, even if it is approximate. suggests that indeed something like ILPskin—touch +'Pcort.siim.I -' O 

 is possible, thus providing a possible quantum explanation to the "backwards masking" effect! Concerning the 

referal backwards in time puzzle, one should recall that a microscopic arrow of lime, presumably responsible for the 

consciously perceived time ordering, past, present, future, is only present in the EMN approach [5. 6. 51]. and as 

such is strongly correlated with the spontaneous collapse. The skin-touch case as more "effective", involving more 

"mass"/`'energy" movement in its process (longest way) may have a "collapse" characteristic time as given in 

(29), smaller than the cortical stimulus case (shortest way), thus because (7 ç )s — <  < (Te )c _ s , independently of the 

time of their application, we always feel that the skin-touch occurred always first! A rather interesting application 

of the E14IN approach [5, 6, 51). Incidentally, if this new approach to brain dynamics is right, one may understand 

the famous X-ism phenomenon, referred to in section 41. The neurons seen to follow the principle of the longest 

.posssiblc path, because in such a case ,they activate the most "mass"/"energy" movement possible. thus shortening 

the "decision" time rr  given by (28) or (29). thus contributing better to hierarchical and non-local actions of the 

brain. This kind of microphysical explanation is, of course. supportive of an evolutionary natural selection. where 

in this case survival of the fittest reads survival of the longest neuron ... It should not, be very surprising that the 

modern man is around only 50,000 years and that the dawn of civilizations was about 10,000 years ago! It is a lot 

of fine-complicated structure to put together, starting from the very simple amoeba or paramecium and eventually 

evolving to humans with their extremely long inicrotubule networks. 

Another very suggestive key feature, supporting further the eminent direct connection between coherent. MT 

conformational oscillations and the emergence of consciousness, is the fact that absence of conformational oscilla-

tions, as caused by general anethesia molecules, leads to loss of consciousness [75, 3). We have already discussed its 

section 6 the case of reversible inhibition of of paramecium's methachronal waves by chloroform [63]. Metachronal 

waves are paramecium's best, shot for a conscious event! What about. higher organisms? It is rather well-known 

that brains of patients under general anethesia are commonly quite active: EEC, evoked potentials and other brain 

functions persist despite lack of consciousness. In a way, general anethesia, at. the right level, implies absence of 

consciousness. It has been suggested [75, 3) that. as anesthetic gas diffuse into individual nerve cells, their electric 

dipole properties (unrelated, in principle, to their ordinary chemical properties) can interrupt the actions of' 11Ts. 

They interfere through weak Van der Waals forces, with the normal switching actions of the tubulins. '`blocking" 

the crucial tubulin electrons. as discussed in section 6. It should be stressed that although there seems to be nu 

generally accepted detailed picture of the action of anesthetics, it is widely believed that it is the Van der Waals 



70 	 XV Encontro Nacional de Partículas e Campos 

interactions of these substances with the conformational dynamics of the brain proteins that do the job. Itere. the 

relevant. brain proteins are identified with the tubulin dithers consisting the MT network. Such a detailed scenario 

for the workings of general anesthesia seem to explain easily some of its key features. For example, it. is a rather 

remarkable fact that general anethesia can be induced by a large tin tuber of completely different substances of no 

chemical affinity whatsoever, e.g., from ether to chloroform to xenon! In our case it is just the electric dipole 

properties of these substances that need to be similar and not necessarily their chemical properties. Furthermore. 

if the general anesthesogon concentrations arc not too high. complete reversibility or recovery of consciousness is 

achieved. indicating that the temporary Van der Waals "blocage" of the crucial tubulin electron has ended and 

conformational oscillations reoccur. On the other hand, general anesthetics, which are known to bind to micro-

tubules, at high enough concentrations cause their depolymnerizatioil [104], implying in our picture partial or total 

irreversible loss of consciousness. It is also known that anesthetics may disrupt hydrophobic links among M1APs 

which interconnect MTs into functional coherent networks [l05]. These, rather simple, in our framework, expla-

nations of certain puzzling features of general anesthesia provide further positive evidence and credibility to our 

central thesis here, that MTs are the rnicrosites of consciousne ss. We have argued before that quantum coherence in 

MT networks leads eventually, through synchordic collapse, to conscious events, while we see here that systematic. 

organized. prevention of quantum coherence, a la general attestliesia, leads to loss of consciousness! 

It is remarkable how well the MT's biological/physical structure fits within the density matrix mechanics frame-

work. We were able not only to derive several qualitatively interesting results, but as I showed above. we were 

able to get some highly desirable numbers too! Nevertheless. we should not be carried away and we should also 

not lose perspective of what we want to achieve, i.e., how the wholc brain works and what is consciousness. etc. 

There is a cognitive hierarchy, and what we have showed is that the MT information processing may provide the 

basement level, implying that everything else is build upon it. The neuron synapse is the next layer up leading to 

yet another layer, the neural synaptic network or module, that it is able to operate cooperatively by utilizing dense 

interconnectedness, parallelism, associative memory and learning due to synaptic plasticity, as we explained above. 

At intermediate cognitive levels the motor and sensor maps represent the body and the outside world, while the 

next to highest cognitive level appears to he comprised of anatomically and functionally recognizable brain systems 

and centers (i.e., respiratory center, ...). The highest cognitive level is global brain function, which correlates with 

awareness, thought or consciousness. Clearly, this hierarchical structure is susceptile to quantum treatment. because 

of the very special dynamics that characterize the MT network. In a way, one may consider the conformational 

(Ia) or la)) states of the tubulin dinners assembled in microtubules, as the basic units of the quantum system. 

While the more evolved hierarchical structures comprised of neurons, modules. modules of modules, and. eventually 

the whole brain, may be viewed as the "measuring apparatus" providing the hulk of the "mass"/"energy" needed 

in synchordic collapse. Recall that., in the case if quantum mechanics discussed in section 3 (around (7)). it is 

only after the "collapse" of the wavefunction has occured that we are able to discuss with certainty. "observable" 

properties of the system. Likewise, in our case here, it is only after the synrhorduc collapse has occured that we 

can "feet' consciously an event. As we discussed above. it depends on the individual conscious event, Li.. on the 

specifics of the relevant MT-network involved, of how long is going to take before we "feet' it. Thus, we get in 

our scheme a dynamically organized time-ordered appearance of conscious events. corresponding to the synchordic 

collapse of the relevant MT-network involved, representing the very nature of the event under consideration. At 

each instant, and in a cohesive way, the '`sum" of the conscious events consists of what we call consciousness! If 
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c,(1) refers to the i-th conscious event at time t, then consciousness C at time t may symbolically be represented by  

C(t) _ Ei cat). This is how consciousness emerges hierarchically its our dynamical scheme. It. looks like, at each  

moment. we "read' the outputs (c;(t)) of the different "microscopic measuring apparati•, we "decide" (C(t)) and  

we pr•ocerd accordingly, and so on, ad infinitum, meaning here our lifetime span! A very simplistic analogy would  

be the way we use the panel of our cars, with all its numerous indicators, showing us. at each moment. how we are  

doing with gas, oil, temperature. water, etc.. and thus. - forcing -  us to "decide" if we have to stop or not for gas.  

etc. As I mentioned above, while discussing the phenomenon of "backwards masking" arid "referal backwards in  

time.", conscious time, i.e.. past, present, future make sense only when it refers to conscious events. In our scheme.  

conscious events are due to synchordic collapse which, as discussed in section h, introduces a microscopic arrow of  

tune, providing thus, naturally. time-ordering! It is amazing that the mechanists that we have proposed 152) to  

explain the origin and arrow of cosmic time, applies all the way down to the MT-networks, explaining the origin  

and arrow of consciousness. Putting it. differently. in our scheme, the notions of cosmic and conscious time are  

naturally identified as one may naively expect, and as it was. since long. suspected.  

So. we expect. to see a kind of fractal phenomenon occuring in which we have quantum coherence (and synchordic  

collapse) extended over a MT. over hundreds of \I'I's comprising the neuron. over thousands of neurons comprising  

the module, over tens of modules (incidentally explaining the -III liz oscillations" discussed above and in Section 4).  

etc. Actually. there is enough space in our dynamical. hierarchical scheme to accomodate neural networks [28. 27).  

attempts to use synchroni:ed neural firing [33) in explaining the binding problem (:q;. 32]. and eventually Neural  

Darwinism [25]. Eventually the whole brain is involved. one way or another, but coherently and in a correlated  

wen. subjected to synchordic collapse. thus explaining the "binding problem" or the "unitary sense of .self' problem.  

Furthermore. the stochastic nature of the synchordic collapse. due to the existence of the global or W,-world stales.  

provides a very plausible explanation of free-will.  

In order to see how our new dynamical theory of brain function, spelled out in a rather detailed manner  

above, would work in practice, it would be interesting and perhaps arousing to present a very simple example.  

Let us consider (:16). in the admittedly very unrealistic, case of only two superimposed quantum states: 'P =  

c í (1)'' 1  + c 2 (t)tY2. where w e  stands for II) ;  I2) ;  • • • IN) i . and with c 1 (0) = c2(0) = . Then, if we denote by  

7 the synchordic collapse frequency (7  - 1/r, (28)). and assume that the finally chosen state will be. say ' i .  

then one may deduce that ['12, 13] le i  _ (1 + c'")-    I. In Fig. I.. le i  r2  is plotted against time (1). for different  

values of y, corresponding. in our scheme, to rather indicative psychological or personality states, providing thus our  

psychological or personality profile! Depending on the value of ti. the curves are schematically denoted as "t•l.+tblr".  

"violet", "ultraviolet", and "infrared". A common feature of all these_ curves is the increase with time of 1(. 1  12 . until  

it reaches some rather big (close to 1) value (say 0.9), at which point one safely may assume that synchordic  

collapse is occuring. At this moment., we pass from the superimposed (e l * i + c2''2) quantum state, identified here  

with the preconscious state, to the chosen NI I )state. identified here with the conscious state or event. i.e.. we "feet'  

it! Fig. I.(a) indicates a normal psychological state, in which things happen in a straightforward way as represented  

by the canonical, standard ("visible") value of -;= 1 liz. corresponding to r^'nr^'" 0(1 sec) (38). Fig. 1.(h)  

indicates ercitement ("violet"), in other word things are happening quicker by involving, maybe. more tubulins  

(increase N in (37) and thus (28,29) increasing 7, say y = 2 or rc"nrainn 1 0(0.5sec). Clearly. in this rase  

there is less time for quantum computations, and maybe.. not enough time for very wise "decisions", thus we may  

start acting a bit incoherent in the social sense! This case gets much worse in the presence of "stimulants - . where  
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maybe many more than the usual t a rbulins get. involved and thus the synchordic collapse frequency gets much bigger 

( - ultraviolet') disrupting, eventually. complete "collapse - . as schematically indicated in Fig. 1.(c). In this "high-

statr (10G). while we are "closer" to a coherent quantum superposition. we clearly act in a completely incoherent, 

and thus unacceptable, social way. On the other end of the s gnrborrlir collapse frequency sector. in the "infrared' 

limit. lies the dream slate as indicated in Fig. I.(d). Indeed. during our sleep, basically by definition. the brain is 

working in a very slow. subnormal mode entailing thus rather small values of ;. (see Fig. 1.(d)). In such a case. a 

quantum superposition. initiated presumably in a parasitic way. may last much longer than a normal slate case. and 

thus, eventually. may get lost in the enrrronnre nlal background. one way or another, before suffering our specific 

synrhordic collapse, the agent of conscious err iris. That. is why in most. cases. we don't remember our dreams! 

Furthermore, as we all know. when we dream of someone. the person in the dream is usually a nurture of two or 

three rather similar people. read quantum supe•rposilion of relerant quantum states in our scheme. and eventually 

disappear without. leaving any strong imprint in our rnennnry, read absence of complete synchordic collapse in our 

scheme! Of course. it may happen. as in the case of not being quite asleep. that gets close to its "normal -  value 

(e.g., ¡ z 0.9 in Fig. I.(d)). in which case complete synchordic collapse is achievable and we do. then. vividly 

remember our dream or nightmare! It is amazing and worth tnentioning,that a similar. but phenomenologically 

post ulated picture explaining t he Dream states. or !tepid- liar-.1 ovemenl (l ENI) +lerp state. has been put forward 

in lief. [107).[32)(p.iti1-2). There. words like "disturbed". "superimposed". "condensation" are used to describe 

Dream slates in a generic way. without any reference to Quantum Physics. Here we see that such an explanation 

(107. 32] seems to emerge naturally from the quantum aspects of our dynamical scheme. 

It should be strongly emphasized that in order to be able io provide positive evidence or refute our scheme. 

further experiments are badly needed and !heir results eagerly awaited. MT dynamics have to he studied in rira 

and in vitro. We need to have a clear experimental picture about their assembly and disassembly Properties. 

including their growth: we also need to have experimental information on which specific mechanism, if any, of the 

ones that have been suggested. is responsible for sustaining quantum coherence of the conformational state;. We 

need further clinical studies of the "funny" time related phenomena. We also need to understand experimentally 

and theoretically. the role played by the K-code(s) in bioinforniation processing. and their connection to the genetic 

rode. Is it accidental that both codes have 6I  words? Is it accidental that M'I'-networks look suspiciously , iriiilar 

to "quantum computers"? C:an we use [ hero in entro for quantum computing'? Is it accidental that nticrotuhules. as 

participants in cemtrioles. are partially responsible for menses or cell division, thus "Interacting-  directly with he 

DNA. maybe thins being able to bring in eamronmcnlal information. sine , ' MT-networks extend all the way io the 

cell membrane? Is it accidental that both U,á`:1 and Nil's. he unique cellular smactures known io posses a rode 

system. are effectively 1+ I dimensional? Is it. accidental that as we move from micro-organisms to macro-organesuls. 

the amount/length of normal and selfish or Junk DNA and the length of N! - 1's do increase? Probably riot. hut we 

have to. and we are going to find out.. 

9 Microtubules and Density Matrix Mechanics (II): Quantum Psy-
chophysics 

Any scientifically sound theory of brain function, by its very nature. has not only to provide a credible picture 

of what is happening at the very microscopic (basic) level butt it should also accommodate naturally aII pltenrnurna 

observed at the very macroscopic (top) level, uses , personality heel as described by psychology. Psychology is usually 
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defined as the science of mental life. where the latter includes feelings. desires. intentions, cognitions, reasonings. 

decisions. and the like. It. is advisable and useful, for our purposes here. to distinguish between Jamesian psychology 

[8]. or psychology of the conscious, and Freudian's psychology [108. 1091 or psychology of the unconscious. I use 

here the term Freudian psychology instead of the. maybe. more proper one psychoanalysis for the following reasons. 

As defined by Freud [108], psychoanalysis falls under the head of psychology. not of medical psychology, nor of the 

psychology of the morbid processes. hut simply psychology. Psychoanalysis is certainly not the whole psychology. 

but its substructure and perhaps its entire foundation (unconscious—conscious)! But. psychoanalysis is also a 

method of psychotherapy. i.e.. it. consists of techniques for treating emotionally disturbed people. Since this last 

property of psychoanalysis is. commonly. the prevailing one, and since the therapy shouldn't swallow up the science. 

I prefer to stick to the term Freudian psychology. as the theoretical system. background of psychology, and view 

psychoanalysis strictly as a method of psychotherapy. We describe next the essentials of Jamesian psychology [8] 

and how they fit in (or are explained) within our scheme. which also seems able to accoinodate the basics of Freudian 

psychology [108. 109]. t.c.. we will move fronts the conscious to the preconscious to the unconscious! The relevance 

of the connection of Jamesian views of consciousness to Copenhagen Quantum Mechanics has been repeatedly and 

forcefully emphasized by II. Stapp [13]. 

The brain-mind interaction is of central importance in Jamesian thought [8). James opposed. vigorously. sterile. 

(pseudo)scientific. prevailing at his time, views purporting that feelings, no matter how intense that may be present 

can have no causal efficacy whatever Ile counterattacked by making a positivo argument for the efficacy of con• 

sriousness by considering its distribution. For James. consciousness is at all times primarily a selecting agency. being 

present when choices must be made between different possible courses of action [8]. Clearly. such distribution makes 

sense only if consciousness plays a role. one way or another, in making these selections. James went even further. 

developing his principal claim about the unity of each conscious thought [8]. It is the whole thoughts. he argued. 

that are the proper fundamental elements of psychology, not some collection of elementary components out of which 

t houghts arc assumed to he formed by aggregation. In other words, even if each thought has components. these 

component thoughts are experienced together in a particular way that makes the experienced whole an essentially 

new emerging entity! lie even had the courage to speculate that if all these properties were not to be born out of his 

contemporary physics (what we now call Classical Physics), physics has to be modified! All this activity was taking 

place in the 1890's!! (8] What a rinse Irian, indeed. Corning back to the 1990's. it is stricking to notice that Jam es 

views of consciousness are mapped. almost one - to - one to our dynamical theory of brain function. Our central thesis 

suggest. that every conscious event is the psychological counterpart of a related, specific synchordic collapse event in 

the brain, that triggers a specific neutral activity, described here by MT-dynamics. strongly correlated and quantum 

computably. responding to stimuli. An isomorphism, or a one - to - one mapping seems to emerge between conscious 

events. in a generic sense, and specific neural patterns, described by specific MT-networks, generated by. and thus 

strongly dependent on, synchordic collapse. By, just. recalling that it. is synchordic collapse that causes the quantum 

MT-system to "decide" its course of action in a fundamentally integrative character, EPR-like [22, 3] way, and using 

the isomorphism available in our scheme. one should be able to reproduce. almost verbatim, the Jamesian views of 

consciousness. If. James' proposal about consciousness is not the mental or psychological version. or counterpart. 

of our physical/physiological views about consciousness, frankly. I don't know what would ever be. however. in 

order to complete our isomorphism between mental events and neural patterns described by MT-network states. we 

Sigmund Freud (1856-1939). founder of psychoanalysis and arguably the single most important figure in pointing out the role of 
unconscious processes in our behavior and feelings. 
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clearly have to discuss the preliminary phase that - prepares-  the specific set. of superimposed M'I' quantum states. 

of which only one is going to be selected or chosen. But then. we naturally have been led to the domains of the 

other great master of modern psychology. 

Freud [l08) felt. that. consciousness was only a thin suet of the total mind, that like an iceberg. the larger part 

of it existed below the surface of awareness. He said that scientific work in psychology will consist in translating 

unconscious processes into conscious ones. and thus filling the gaps in conscious perceptions! Ile argued that the 

personality is a complex and intricate energy system [100]. The form of energy that operat es the personality and 

enables it. to perform work is called psychic energy. lie assumed that psychic energy comes from the energy of 

the body, but he was agnostic on how this transformation takes place. lie insisted, though. that there is nothing 

mystical. vitalistic or supernatural about the concept of psychic e.nrr•gy [109]. It performs work as does any other 

form of energy, but in this case is psychological work. thinking, perceiving. and remembering. There is a continuously 

transformation taking place of bodily energy to psychic energy and viceversa. 

A mental event is conscious or not. according to Freud [108. 109]. depending upon the magnitude of energy 

invested in it. mid the intensity of the resisting force! A person feels pain or pleasure when the magnitude of the 

pain or pleasure exceed a certain rathrrrs value which is called the threshold ratur. Likewise, (s)le perceives an 

object in the world when the perceptual process is energized beyond a threshold value. Sometimes even when the 

ratherts exceed the treshold, the feeling or perceptions may not become conscious because of the inhibiting effects of 

an anti-caiheris which prevents it from becoming conscious! Freud [108. 109] differentiated between two qualities of 

unconsciousnes,c, the preconscious and unconscious proper. A preconscious state is one which can become relrl•CIOrrn 

quite easily because of weak resistance. and in sharp contrast. to an unconscious proper slate where the opposing 

force is rather strong! Actually, there is a continuous sin etrurn of unconsciousness. At the one end. ending at the 

unconscious proper stale. there is memory that can never become conscious. because it. has no association with 

language. while at the other end, including the prr con.crruus state, there is memory which is "on the lip of the 

tongue". 

Freud assumed that. since a relatively large concentration of energy in a mental process is required in order for 

it. to become conscious, we can he conscious of only one thing at a time [101. 11oweveer. the rapid shifting of energy 

from one idea, memory. perception or feeling to another provides for a wide range of conscious awareness within 

a short time-lapse! The perceptual system is like a radar mechanism which rapidly scans and takes many quick 

pictures of the world. When the perceptual system discovers a needed object. or apprehends potential danger in 

the external world, it comes to rest and focuses its attention upon the object. or danger. Ideas and memories. i.e., 

mental representations of past experiences. are summoned form the preconscious to help the person ad,jusl to the 

situation confronting him. When the danger is past or the aced is satisfied, the mind turns its attention to other 

matters [108. 109). 

Concerning the nature of the "unconscious pr•nper'• Freud suggested [109] that "threatening' enunts could be 

repressed in memory so that they were not ordinarily available for conscious recall. Freud's analysis of repression. 

the selective inability to recall, is a forum of Darwinism (survival of the lit test) as applied to the mental world to 

become the Freudian suppression of the -threatening". -Threatening -  events belong to the set of the - unconscious 

proper events-  . Freud developed further [108. 1001a theory about the fate of the repressed events. connecting them. 

partially, to dreams! Dreams are filled with disguised or symbolic representations of repressed desires. When the 

disguise becomes too transparent, the dreamer usually wakes up. Anxiety dreams and nightmares. for example. are 
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caused by the emergence of repressed desires which makes the person anxious. Ile noticed that somatically. sleep is 

an act which reproduces intra-uterine existence,' fulfilling the condition of repose, warmth and absence of stimulus. 

The feature characterizing the mind of a sleeping person is an almost complete withdrawal from the surrounding 

world and the cessation of all interest in it. Freud pictured [109] the situation which leads to dream formation 

as follows: the preconscious dream-wish is formed. which expresses the unconscious impulse in the material of the 

preconscious day-residues. This dream-wish must be sharply distinguished from the day-residues. it need not have 

existed in waking life and it may already display the irrational character, e.g., a person in the dream is the rntrture 

of two or three rather similar people. etc. noticeable in all that is unconscious when we come to translate it into 

terms of consciousness! The logical validity, freshness. and stunning resemblance to our presently holding views 

about brain function. characterizing Freudian psychology [108, 109], are properties very hard to miss. Since his 

time, ample evidence has accumulated front the study of neurosis, hypnotism. and parapraxes to show that his 

basic views about the action of the unconscious and its role in behavior, were essentially correct. 

After our, hopefully, enjoyable and useful excursion to Freud-land, we have all that is needed to complete the 

above-discussed isomorphism between mental events arid neural patterns, described by MT-quantum states. Freud's 

psychic energy as opposed to bodily energy and the transformation into each other, corresponds to the exchange of 

energy/interactions between the 1V 1 -world or attainable physical world localizable stales and the W2-world or global 

stains, as explicitly indicated in (2+). Notice. as (25) explicitly shows, that there is conservation of energy it) our 

scheme! Furthermore, the "preparation -  of the relevant superimposed MT-quantum states depends on the nalurt 

and intensity of the stimulus. as discussed in sections 2.4,7.8. i.e., if it can "easily" "straigthen up" the relevant 

stales, corresponding to a preconscious slate, or if, it can "hardly" have any effect on the states, corresponding to 

-unconscious proper" stales. In the case of preconscious states. identifiable with the relevant superimposed quantum 

states. synchordic collapse follows easily, turning it into a conscious state! In the case of "unconscious propr.r -

states, identifiable with either isolated, not easily reproduced. or random states, nothing happens! Clearly. there 

is a continous spectrum of quantum states from the "preconscious' to the "unconscious proper'. In the case that 

an "unconscious proper" stain gets "prepared". then synchordic collapse leads to Freud's "threatening events". 

For example, while we sleep being "off guard", "unconscious proper' states may be partially and parasitically 

prepared. even in disguised form, and may lead to nightmares! On the other hand, synchordic collapse, of variable 

effectiveness, of presumably partially parasitically prepared preconscious dream -slates, as discussed in the previous 

section (see Fig. 1.(d)) reproduces Freud's basic views about dream formation discussed above. If our dynamical 

theory of brain function. with its now completed isomorphism between mental events and MT-quantum dynamics 

states has not reproduced, almost verbatim the basic elements of Freudian psychology, I don't know what would 

ever do. Needless to say. Freud's terms are psychological, while ours are structural. It. is in this sense that. we 

consider the mental world somehow isomorphic to the W2 - world of physical global stales that help to "prepare' and 

eventually dismantle, by "synchordic collapse", the relevant superimposed MT-quantum states of the W 1 -attainable 

physical world constituted by tubulin-dimer conformational states, as depicted clearly in (2) and (27). It should be 

mentioned here (see relevant discussions in sections 6,8) the rather fundamental role played by the K-code(s) [57] 

possessed by the microtubules, in advancing and completing our isomrphism between the mental world and the 1V2

-world, by acting as a dictionary translating psychological orders into physiological actions. It is in this sense that I 

propose to call the K-code(s). the Alental Code, playing in a way the role of the genetic code, but in the mental world. 

'There is. presently, evidence to suggest that in the womb, especially in the third trimester. Dream or REM sleep occurs more than 

8 hours a day (1071. 
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It should be stressed once more here (see the appropriate discussion in section 5, between (22) and (23), that there 

is nothing mystical or supernatural about the 1V 2  world global states. or the way they interact with the li' i  - world 

attainable physical states, except that, due to their delocalized nature, sometimes, a hit different than normal, novel 

properties may emerge! Through the above mentioned isomorphism. these novel properties are transmitted to the 

mental world, which thus is an (emerging) part of the physical world, but with (inherited) distinct. qualities. Notice 

further, that in particle physics at very high energies. we only talk about electroweak interactions, and only at low 

energies we may talk about "effective-  electromagnetic and weak interactions. Similarly here and in a unified theory 

sense. we should talk only about the physical world (W) when all slates, localized and delocalized are accounted for 

(2,27), and only talk about the attainable physical world (W1 ) and the mental world and their interactions. i.e., 

an effectively emerging dual world (1), only when the delocalized states get truncated, which happens realistically 

most of the time! Incidentally, if all these kind of (post) modern views sound pretty drastic. let me remind you that 

Empedocles (490-930 B.C.), the famous, ancient greek, presocratic philosopher, in his "cosmic phantasy". ascribed 

to the whole universe the same animistic principle as is manifested in each individual organism! If he was not 

describing, in his way, the 11'2 -world global. delocalized states. I don't know whatever would do better. He certainly 

was the first complete effective dualist! Hopefully, this emerging compromising resolution of the age-old problem 

concerning the brain-mind relation, will bring peace, once and for all, to the different quarters of dualist% and 

non - dualists. and avoid further duels! Nevertheless, as I already mentioned in the Introduction (just after (2)). 

hard-core materialists may. if they so wish, concentrate their attention on the physical relation/transition between 

the I•t' - physical world and the Wi - attainable physical world. It is immaterial to tire! 

The interface between psychology and physics (psychophysics) has always been rather interesting, though-

provoking. challenging, sometimes controversial. hut certainly not dull. Before Darwin, roan was set. apart front the 

rest of the animal kingdom by virtue of having a soul. The evolutionary doctrine made man a part, of nature, an 

animal among other animals. Man became an object of scientific study., no different save in complexity. from other 

forms of life. Literally at the same time (1860). Fechner founded the science of psychology. by showing that the mind 

could be studied scientifically and that it. could be measured quantitatively. At about the same time, the physical 

formulation of the principle of conservation of energy, notably by Helmholtz, staring that energy is a quantity that 

can he transformed, but it cannot be destroyed. had rather far reaching consequences for biology and psychology. 

It made possible an even more radical view of man. This is the view that man is an energy system which obeys 

the same physical laws that regulate. say, the fall of an apple or electromagnetic phenomena. Thanks to Freud's 

genius. the physical dynamics extended to apply to man's personality, and not. only to her/Iris body. This really 

amazing visionary step, as taken by Freud, led to dynamical psychology [108], i. e.. one that studies transformation 

and exchanges of energy within the personality, as well as between the personality and the body. It is an amusing 

coincidence to notice that Freud's chef d'oevre "The Interpretation of Dreams -  [108], and Planck's revolutionary 

paper on energy quantization. both appeared in 1900 (!). and both after considerable hesitation and self-doubt!!! 

The dynamical scheme presented here. is nothing more than a supermodest attempt to continue the psychophysical 

tradition described above, by combining the most recent advances in quantum dynamics, as described in non-

critical superstring theory [5, 6, 7), with the amazing progress in microt.uhules and their dynamics [I]-[4). A unified 

scheme of brain-mind dynamics emerges, consistent with all known laws of physics. notably including the law of 

conservation of energy, and at. the same time, providing satisfactory answers to age-old problems such as what 

is consciousness, the binding problem or unitary sense of self, free-will and the like, involving parts or the entire 
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activity of the brain. Indeed, conscious Thoughts seem to correspond to metastable states of the brain associated 

with particular integrated patterns of neural excitations, that are selected by synchordic collapse, from among a 

plethora of such neural patterns described by MT-network states (quantum) mechanically generated according to 

(3,4). Since synchordic collapse is due to the truncation of global delocalized states, our consciousness is nothing 

else but a localized aspect of a global, integrative process. There is a new image of man emerging, in which human 

consciousness is placed in the inner workings of a non-local global process that link the whole universe together, 

defying classical physics and observations of usual everyday life. It seems, that we are intimately and integrally 

connected into the same global process that is actively creating the form of the universe, as we suggested in [52]. 

thus providing a whole new meaning to the, presently fashionable. expression global village. There seems to be a 

central organizing principle at work, essentially what I called the Protean Principle at. the end of my review "As 

time goes by ...° [6]. This new view of man's place in the universe is an essential "paradigm shift. We are not just 

small. irrelevant, struggling for survival creatures in a meaningless universe, but through our dynamically created 

consciousness, we participate actively in the intrinsically global process that forms the world around us. 112 are 

brains with strings attached! I do believe that this, scientifically geared. "paradigm shift" in our Weltanschauung. 

or "world view", is bound to have a tremendous impact, but mostly presently unimaginable, in all forms of human 

behavior form the individual to the social level. Sonic visionary people have already started talking about the dawn 

of the brain man, at the dawn of third wave [110] of civilization, characterized by strongly declining muscle work 

and fastly increasing brain work, that succeeds the "second wave" related to the industrial revolution of 300 years 

ago. and which in turn succeeded the "first wave" related to the agricultural revolution of 10.000 years ago. This is 

just. the dawn of the Homo Quantum ... 
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Event Generators in Particle Physics 

Torbjõrn Sjõstrand• 
Awry Division. CERN. CH - 1211 Geneva 23. Switzerland 

This presentation gives an introduction to the topic of event generators in particle physics. 

The emphasis is on the physics aspects that. have to be considered in the construction of a 

generator, and what lessons we have learned from comparisons with data. A brief survey 

of existing generators is also included. As illustration, a few topics of current interest are 

covered in a bit more detail: QCD uncertainties in W mass determinations and 7p/77 

physics. 

1 Introduction 

The ultimate goal of particle physics is to find and understand the underlying theory of the Universe. Experimental 

progress in this direction requires exploration at ever higher energies. This way one hopes to gain access to new 

particles and reactions not allowed at lower energies, to observe hints of sytnntctries that. are spontaneously broken 

at some high energy scale, and to profit from a smaller re,(Q 2 ). The latter point also implies a reduced dependence 

of non-perturbative physics, such as confinement and hadronic wave functions, that are not all too well understood. 

Experimental data are consistent with the hypothesis that, above some grand unification scale, the three couplings 

of the standard model come together (at leas) if supersymtnet.ry is included in the game) [I]. So it. is no wonder 

that theorists' folklore says that physics is simpler at higher energies. 

From an experimental point of view. this is all wrong. if the energy of a process is increased. the amount of 

cascading is also increased. With cascading I here mean. in a very broad sense, all the mechanisms that increase 

the number of quanta that are needed to describe the event as times goes by: decays of exotic new particles or 

the familiar «' and Z resonances, initial- and final-state QCi.) Parton showers. fragmentation mechanisms that 

turn partons into flatirons, and decays of ordinary unstable particles. The lower cut-off of the cascading is given 

essentially by the pion mass, independently of the full energy of the process. So higher energies means a larger 

energy range over which cascading can occur. i.e. higher multiplicities. and thus larger experimental challenges. 

The evolution of experimental particle physics is therefore towards larger complexity. in the fifties and sixties, 

the emulsion and bubble chamber data of the time showed every single vertex of the processes studied, usually with 

two or three outgoing particles. Around 1980. the turn-on of higher-energy a+e —  and lip colliders gave events with 

tens of charged particles, sometimes even above 100. When we today plan ahead for the LIIC. the expected average 

charged multiplicity per event is above 100. At nominal luminosity, with around 20 events overlayed in each single 

beam crossing, any physics will have to be dug out among 4000 charged or neutral particles! 

There are ways to get back to sortie kind of simplicity. One is to consider (send-) inclusive quantities, such as jets, 

where a set of particles is characterized just by a summed energy and a direction vector. These jets approximate 

the partons of a simpler perturbative description, but with a non-negligible smearing that has to he understood for 

precision physics. Another is to search only for especially clean (parts of) final states. As an example. a 200 Gel' 

Higgs particle can decay into two Z°'s, each of which can subsequently decay to a lepton pair. So the observation 

'On leave of absence (until February I) from the Department of Theoretical Physics 2. University of Lund. Lund. Sweden. 
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of events with four well isolated leptons, with invariant mass distributions peaked in the appropriate places. would 

provide clear evidence for new physics. However. there is a price to be paid, in that the clean states normally 

have small branching ratios. When we search for a process that is rare in the first place, this may not always he 

acceptable. Combine this with an unrealistic definition of 'isolation' of leptons among 4000 other particles, and a 

promising signal may he gone. Remove the isolation criterion, and leptons from the decays of top quarks and bottom 

mesons will completely overwhelm the new physics. It then becomes imperative to understand the finer details of 

detector acceptance and resolution. to devise an analysis strategy that cuts away these backgrounds without too 

much of a loss to the signal. 

As we see, it. is seldom possible to avoid all the complications of high-multiplicity events. Furthermore. even if 

we firmly believe in QCD today, it is somewhat embarrassing that we know so little about how confinement really 

works. After all, this is a unique chance that the standard model provides us with to study strong-coupling physics! 

One line of approach is to devise models that allow various aspects of confinement. to he tested by a judicious 

analysis of data. The foremost place where the two aspects above (experimental demands and theoretical curiosity) 

come together is event generators. 

2 Event Generator Survey 

In real life, an accelerator provides events. These events are registered in a detector as electronics signals. A data 

acquisition system stores a digitized and compressed version of the information, often only for the 'promising' part 

of the full event rate. In an event reconstruction program, the digitized electronics signals are turned hack into a 

list of particle momenta and charges. The reconstructed events can then he used for physics analysis. 

In the 'virtual reality' world, event generators take the rile of the accelerator in providing the events. The 

response of the detector is then modelled in a detector simulation program. The most frequently used such program 

is GEANT [2]. This program provides an output in a format identical to that of the experimental data acquisition 

system. except that the original physics event input is also kept for later reference. Therefore the sauce reconstruction 

programs can be used, and the same physics analysis strategies. Comparisons between real data and simulated data 

form an important ingredient for the final results that can be published. 

While event generators are not always as fast as desirable, the real bottleneck is detector simulation. where 

(for some applications) it is necessary to trace hadronic and electromagnetic shower evolution in excruciating 

detail. For many studies it is therefore common to jump directly from the event generator to the physics analysis. 

Detector effects are then completely neglected. or simulated by simple geometrical cuts and rule-of-thumb smearing 

of momentum vectors. 

The phenomenologist is not normally concerned with the detector-specific aspects. and therefore may use the 

event generator as it is to explore various potentially interesting aspects. Ile/she might, for instance. introduce 

'crackpot' alternative models just to check whether one should expect any testable consequences. 

The description above may help illustrate why generators are useful. Let us try to give a somewhat more 

formalized list. subdivided by interest group. For the event generator author 

• it allows theoretical studies of very complcr multiparticle physics, by a subdivision of the complete problem 

into more manageable subtasks; 

e it gives a larger flexibility in the spectrum of physical quantities that can be studied (no need to worry whether 

an observable is infrared finite or not in perturbativc  

• it provides a vehicle for the dissemination of interesting theoretical ideas to the experimental community; 

• it. allows a larger feedback from the experimental community, and hence a faster path for improved under- 
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standing of the underlying physics; and 

• it is a source of fun and satisfaction (for some of' us) to attack the non-trivial challenges. 

For the experimental physicists (and many phenomenological ones as well), an event. generator can he used 

• to predict event rates and topologies. and hence to estimate the feasibility of an intended physics study in the 

first place; 

• to simulate possible backgrounds, and hence to devise analysis strategies that optimize signal-to-background 

ratios: 

• to study detector requirements, and hence to optimize the detector design and trigger strategy: and 

• to study detector imperfections, and hence to evaluate acceptance corrections. 

To the lists above, a final point should be added: nature is random! We are all familiar with the quantum 

mechanical uncertainty principle, with the principle of superposition, with the collapse of the wave function at 

measurements, and so on. What this means is that each event is unique. Had we had a perfect. understanding of 

QCD, and infinite computing power. it would still have been a formidable task to enumerate all possible lradronic 

final states allowed, e.g. at LEI', as a function of the complete setup of all quantum nuinbers of the event (flavours. 

momenta, decay vertices, spins, ... ), to calculate the complete matrix element for each such state. and to sum it 

all up to arrive at something as straightforward as a charged multiplicity distribution. It is therefore natural to 

subdivide the complete process into a sequence of smaller steps: the Z° decaying to a specific qti  flavour: these 

developing a shower by consecutive branchings q — qg and g — gg; fragmentation of a complex partonic system 

as the iterative production of one particle at. a time: a sequential chain of secondary hadronic decays; and so 

on. In each step, nature is assumed to make a random choice between the allowed possible outcomes. and the 

relative probabilities may be calculated or modelled. This sequence of random choices may be simulated in an 

event generator by the use of random numbers. After each new step the set of possible states that could 1w reached 

is larger and more varied, until the final output has the full complexity observable in nature. Therefore. just as 

each experimental event is unique, so is each generator event. It is the average over many events that. should be 

compared, and the fluctuations around this average. 

There is one catch: the basic description of quantum mechanics is in terms of amplitudes rather than probabili-

ties. One therefore has to watch out that a probabilistic description does not lose some of the fundamental aspects 

associated with interference terms. 'There is no generic recipe to handle this problem, but often nature is kind to 

us, so that reasonable ways out can be found. 

There exist a wide range of generators, and by now the zoology may be quite confusing. However, in view of 

their increasing importance, a number of workshops have been devoted in part to collect information and critically 

compare all main generators by topic. Surveys are available for LEI' 1 [3], for IIER.A (4], and for hadron colliders 

[5], and another will appear within the framework of the current LEI' 2 workshop. 

Generators can be designed for different purposes, and therefore also be quite different in size. The two with 

the widest scope are FIERWIG [6] and PrrnIA/,]E't•st.T [7], which can be used for e+e_. ep and pp collision alike, 

which contain a wide range of allowed subprocesses. and which are attempts to cover all the aspects of the way from 

a hard process to a complex multihadronic final state. Almost in the same class is ISA.IET [S], which is primarily 

intended for pp physics. The development and support of programs like these can easily he full-time efforts, where 

many model aspects related to non-perturbative QCD have to be developed from scratch. 

There is then a broad spectrum of other generators, with more specific scopes. Some are devoted to the study of 

QCD parton shower evolution, or to the non-perturbative fragmentation modelling, or to more precise descriptions 

of particle decays, or to the simulation of multiparton matrix elements, or to multiple QED radiation, or to higher- 
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order (including loop graphs) corrections to electroweak processes, or to a multitude of other tasks. Most of them 

do not contain models for fragmentation. So long as non-hadronic final states are considered, or observables not 

so sensitive to fragmentation, these programs are often superior to the general-purpose ones above. Therefore. the 

choice is sometimes between describing a few things very precisely or 'everything' at a reduced level of precision. 

In practice, often both are needed. 

In the following, the discussion will tend to be centred more around the former kind of approach, firstly because 

this is where my own interests lie, and secondly because it gives me the chance to address a wide range of topics. 

3 e+ e -  Physics 

Jet physics started in earnest. when the experiments at PEvTRA observed clean two- and three-jet events. Experience 

has shown that a sensible approach is to divide the process into four consecutive steps: 

I. A hard process e+e' — T7 — qit. This process is pert.urbatively calculable in the standard model. Often 

initial-state QED radiation is also included in the description. The `final state' of this step is given by the q 

flavour and angular distribution, plus possibly the distribution' of additional photons. 

2. A stage where perturbative QCD is applicable. Full second-order matrix-element calculations have been 

performed for the jet rate, which means that the production of two-, three- and four-jet events can be described 

consistently to that order. The game gets increasingly more complicated for each new order, however, at the 

same time as higher-order effects are clearly visible in the data. The alternative is therefore to ,adopt the 

parton-shower approach, wherein the evolution towards higher parton multiplicities is described as a sequence 

of branchings at decreasing virtualities. of the kinds q — qg, g — gg and g — qq. This is an approximation 

to the correct answer, which should be good in the collinear limit but less good for widely separated jets. A 

standard method is to match the first. branching of the shower to the first-order matrix element, so that a 

reasonable description is thereby obtained over the full kinematical range. 

3. The fragmentation stage. When the shower is evolved towards smaller virtualities, the running a, becomes 

larger, and ultimately a limit is hit where perturbation theory breaks down. In models this scale typically 

'comes out to be around 1 GeV. Below this scale, the coloured partons arc somehow transformed into colourless 

hadrons. Currently only phenomenologically motivated models are available, today normally string or cluster 

fragmentation. 

4. Secondary decays occur since many of the hadrons produced above are unstable. Normally also this step 

involves non-perturbative physics, but experimentally determined branching ratios [9] can here often be used 

. as input. 

3.1 Parton Showers 

The parton-shower picture is derived within the framework of the leading-logarithm approximation, LLA. In this 

picture, only the leading terms in the perturbative expansion are kept in a systematic manner. Some subleading 

corrections are included, as we shall see, but most are neglected. The overall theoretical picture is rather encouraging: 

there is reason to believe that neglected effects are small. and the predictive power of this approach is increasing 

year by year. 

Phenomenologically,.the main reason for the I,LA success is our ability to formulate it. in terms of a probabilistic 

picture, suitable for event generation. The probability V that a branching a — be will take place during a small 
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change dt = dQ;.o1 /Q^,.ot  of the evolution parameter t = In 	is is given by the evolution equations [I0 .1 

dTa
-bc  — 

 

I cl 7,
s

Ya—i,c(z) • 	 ( 1 )  
1.r  

For gluons it is necessary to sum over all allowed final-state flavour combinations b and c to obtain the total  

branching probability. The PP _bc (.) are the Altarelli-Parisi splitting kernels  

Pg-qg(:) = CF
I 

F  II +  

Pg--g4(.) = TRW + (I - )') , 	 ( 2 )  

with Cp = 4/3. NC  = 3, and TR = n¡/2, i.e. TR receives a contribution of 1/2 for each allowed c tit  flavour. The  

variable specifies the sharing of four-momentum between the daughters, with daughter 6 taking fraction c and  e 

taking 1 -  _. 
Starting at the maximum allowed virtuality /max  for parson a. the 1 parameter may be successively degraded.  

This does not mean that an individual parson runs through a range oft values: each parson in the end is associated  

with a fixed t value, and the evolution procedure is just. a way of picking that value. It is only the ensemble of  

partons in many events that evolve continuously with 1, cf. the concept of structure functions. The probability 

that no branching occurs during a small range of t values, 61, is given by (1 - h1 dT/dt). When summed over many  

small intervals. the no-emission probability exponentiates  

¡rte.. 
Pun—emiuion( 1 annx, 1 ) = exp (- J de 	

(IV 
bc )  - 	 (.1)  

r 	 J  

This is (almost) what is normally called the Sudakov form factor. Thus the actual probability for a branching of a  

given I is the naive probability, eq. (1), multiplied by the probability that a branching has not already taken place. 

eq. (3). Compare with the exponential decay law of radioactive decays, with a 1-dependent. decay probability. 

Once the branching of parson a has been selected. the products 6 and c may be allowed to branch in their turn. 

and so on, giving a tree-like structure of branchings at successively smaller I values. The branching of a given 

Parton is stopped whenever the evolution parameter is below 1,,,;,,.  

Very valuable input for model builders is provided by the theoretical studies of corrections beyond leading log.  

such as coherence effects [11, 12. 13]. The latter come in two kinds: 

• The intrajet coherence phenomenon is responsible for a decrease of the amount of soft gluon emission inside 

jets. It has been shown that an ordering in terms of a decreasing emission angle takes into account the bulk of 

soft gluon interference effects. Algorithms which contain angular ordering are loosely said to produce coherent. 

showers, while those without. generate conventional ones.  

• The interjet coherence phenomenon, responsible for the flow of particles in between jets, with constructive or  

destructive interference depending on colour configuration ('colour drag plienottmena'), cf. [12]. This form of  

coherence is not just a direct consequence of the ordering of (polar) emission angles mentioned above, but  

also requires that azimuthal angles of branchings be properly disiributed.  

The angular ordering may be understood as follows, for the example of a branching q o  — qg. In the branching.  

the original qo  colour is inherited by the gluon, while the q and g share a new colour-anticolour pair. A soft gluon  

g' (emitted at large angles) corresponds to a large (transverse) wavelength, so the soft gluon is unable to resolve the  

separate colour charges of the q and the g, and only feels the net charge. This is nothing but the original charge  

carried by the qo. Such a soft gluon (in the region agog' > Ogg) could therefore be thought of as being emitted  
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by the q0 rather than by the q-g system. If one only considers the emission that should be associated with the 

q or the g. to a good approximation, there is a complete destructive interference in the regions of non-decreasing 

opening angles, while parsons radiate independently of each other inside the regions of decreasing opening angles 

(Ogg ,  < Ogg  and Ogg' < Oqg), once azimuthal angles are averaged over. The details of the colour interference pattern 

are reflected in non-uniform azimuthal emission probabilities. 

Parton-shower programs generally give a good account. of LF,P data [14): thrust distributions, jet masses. the 

number of jets as a function of the resolution parameter. and so on. In some variables. deviations are visible, such 

as the four-jet relative angular distributions used to test the triple-gluon vertex [151. This is not so surprising. 

since the parton shower does not contain any explicit information about the four-jet matrix elements. So, while 

the overall rate of four-jet emission is well described. some of the azimuthal angular distributions are not correctly 

simulated. 

Many of the above distributions do not test coherence specifically. Better signals are a slower increase in 

multiplicity as a function of energy. or in a characteristic depletion of particle production at low momenta [ET 

The data clearly speak in favour of coherence. Recently, two new tests have been performed. One is to consider 

the rate of particle pairs as a function of the relative angle, and specifically the difference in rate between the pairs 

almost back-to-back and those almost collinear [16]. Another is to classify events as either three- or two-jet ones at. 

some given resolution scale, and then compare the average number of additional sub-jets that. are found when the 

resolution parameter is reduced [17). Again incoherent models fail to describe the data, while the coherent ones do 

very well. The only catch is that all the tests above probe not only the perturbative but. also the non-perturbative 

aspects of the models. so some caution is necessary in not overinterpreting the results. 

Recently, the h-quark rate in hiadronic Z° decays has been a topic of sonic controversy. The experimentally 

observed bg rate is about two standard deviations above the theoretically predicted one in the standard model [1S). 

This may not seem enough of a deviation to worry anybody hut, given the excellent agreement with the standard 

model in almost every other respect, it is natural to closely scrutinize every hint of even the slightest crack in the 

shiny wall. One possibility put forward is that there is a larger rate of secondary bg production, i.e. brancltings 

g — bb, than assumed in current shower programs. Since the absolutely overwhelming contribution comas from 

primary '''Z — bg production. the small excess observed translates into a requirement, to enhance the g — bg rate 

by at least a factor of 4. The issue has been studied in some detail [19), by comparing parton-shower programs 

with resummed matrix-element calculations. The conclusion is that parson showers seem accurate in this respect 

to about the 20% level. This does not include general uncertainties such as what is the proper b quark mass (trot 

necessarily the same for the high-virtuality 'G° — bb vertices as for the close-to-threshold g bb ones), but it is 

still difficult to imagine a total error of a factor of 1, let alone one of 4. The discrepancy. if there is one, is therefore 

likely to be found elsewhere. One example might be in uncertainties in the shape of the h fragmentation function. 

specifically' how often a B hadron is so slow that no secondary vertex is registered in the detector. 

3.2 Fragmentation 

The fragmentation process has yet to be understood from first principles, starting from the QCI) Lagrangian. This 

has left the way clear for the development of a number of different phenomenological models. Being models, none 

of them can lay claims to being 'correct'. The best one can aim for is a good representation of existing data, plus 

a predictive power for properties not. yet studied or results at higher energies. 

All existing models are of a probabilistic and iterative nature. This means that the fragmentation process 

as a whole is described in terms of one (or a few) simple underlying branchings, of the type jet — hadron + 

remainder-jet, string hadron + remainder-string, cluster -- hadron + hadron, or cluster — cluster + cluster. At 
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each branching. probabilistic rules are given for the production of new flavours, and for the sharing of energy and 

momentum between the products. 

Three main schools are usually distinguished, string fragmentation (SF), cluster fragmentation (CF) and inde-

pendent fragmentation (IF) [20]. "These need not be mutually exclusive; it is possible to have models which contain 

both cluster and string aspects. or models which interpolate between independent and string fragmentation. Lo-

cal parton—hadron duality (LI'H I)) is a fourth approach, wherein the perturbat.iyely calculable rate of parsons is 

assumed directly translatable into corresponding rates of hadrons: it is not a complete scheme in the sense of the 

others, but it is useful for some obscrvables. 

While the evolution of fragmentation models was rapid in the early eighties. no really new algorithms have 

been introduced in the last. ten years, and only a modest. amount of refinement. of he existing approaches has been 

performed. 

For lack of time. and because of personal bias, in the following I concentrate on the string fragmentation approach 

(2I]. 

While non-perturbative QCD is not solved, lattice QCI) studies lend support to a linear confinement picture (in 

the absence of dynamical quarks). i.e. the energy stored in the colour dipole field between a charge and anticharge 

increases linearly with the separation between the charges, if the short-distance Coulomb term is neglected. This 

is quite different. from the behaviour in QED. and is related to the presence of a three-gluon vertex in QCD. The 

details are not vet well understood. however. 

The assumption of linear confinement provides the starting point for the string model, most easily illustrated for 

the production of a hack-to-back q q jet pair. As t he parsons move apart. the physical picture is that of a colour flux 

tube (or maybe colour vortex line) being stretched between the q  and the q. The transverse dimensions of the tube 

are of typical hadronic sizes, roughly I fm. If the tithe is assumed to he uniform along its length, this automatically 

leads to a confinement. picture with a linearly rising potential. In order to obtain a Lorentz covariant and causal 

description of the energy flow due to this linear confinement, the most straightforward way is to use the dynamics 

of the massless relativistic string with no transverse degrees of freedom. The mathematical. one-dimensional string 

can he thought of as parametrizing the position of the axis of a cylindrically symmetric flux tube. From hadron 

spectroscopy, the string constant. i.e. the amount of energy per unit. length. is deduced to be ti I GeV/Gut. 

As the q and q move apart, the potential energy stored in the string increases. and the string may break by the 

production of a new Or pair, so that the system[ splits into two colour singlet systems qy and q'if. If the invariant 

mass of either of these string pieces is large enough. further breaks may occur. In the Lund string model. the string 

break-up process is assumed to proceed until only on-mass-shell hadrons remain. each hadron corresponding lo a 

small piece of string. 

In order to generate the quark—antiquark pairs q' j , which lead to string break-ups, the Lund model invokes the 

idea of quantum mechanical tunnelling. This leads to a flavour-independent Gaussian spectrum for the transverse 

momentum of q'q' pairs. Tunnelling also implies a suppression of heavy quark production. u : d : s : c I : 1 : 0.a : 

10 -11 . Charm and heavier quarks hence are not. expected to be produced in the soft fragmentation. 

A tunnelling mechanism can also be used to explain the production of baryons. This is still a poorly understood 

area. In the simplest possible approach. a diquark in a colour antitriplet state is just treated like an ordinary 

ant.iquark, such that a string can break either by quark--atit.iquark or antidiquark--diquark pair production. The 

production probabilities are then given by the effective diquark masses assumed. plus simple flavour C'leh'ch-Gordan 

coefficients of the baryon wave functions. In this approach. the baryon and antibaryon are produced next to each 

other, and share (at least) two quark flavours. A more complex scenario is the 'popcorn' one, where diquarks as 

such do not exist.. but rather quark—antiquark pairs are produced one after the other. Part of the time. this scenario 
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gives back an effective diquark picture, but in addition configurations are possible where one or more mesons are 

produced in between the baryon and antibaryon. and where therefore these two are no longer required to he as 

strongly correlated in flavour content. 

In general. the different string breaks are causally disconnected. This means that it is possible to describe the 

breaks in any convenient order, e.g. from the quark end inwards. Results. at least not too close to the string 

endpoints, should be the same if the process is described from the q end or front the it one. This `left-right' 

symmetry constrains the allowed shape of fragmentation functions f(:). where . is the fraction of E+Pt,  that the 

next particle will take out of whatever remains. Here pt, is the longitudinal momentum along the direction of the 

respective endpoint, opposite for the q and the q. Two free parameters remain. which have to be determined front 

data. 

If several parsons are moving apart front a common on origin, the details of the siring drawing become more 

complicated. For a qqg event, a string is stretched from the q end via the g  to the it end. i.e. the gluon is a kink 

on the string, carrying energy and momentum. As a consequence. the gluon has two string pieces attached. and 

the ratio of gluon/quark string forces is 2, a number that can be compared with the ratio of colour charge Casimir 

operators, Nc /CE• = 2/(l - 1  /.V ) = 9/4. In this, as in other respects. the string model can be viewed as a variant 

of QCD. where the number of colours Nc  is not :i but infinite. Fragmentation along this kinked string proceeds 

along the same lines. as sketched for a single straight string piece. Therefore no new fragmentation parameters have 

to be introduced. 

The more prominent. features of LEI' data are well described by the string model. when combined with t he  

Parton-shower approach mentioned before. One recent example is detailed comparisons of quark and gluon jet 

fragmentation. which have been made possible by the high statistics and good flavour tagging capabilities of LE1' 

experiments (22). It is now clearly established that gluon jets have a softer particle momentum spectrum and a 

broader angular distribution than quark jets of the same energy, and that the results are in excellent agrecttent 

with the model predictions. However, as a consequence of the increased statistics, also discrepancies start to show 

up. This is most. notable in the flavour composition. i.e. in the rate of various mesons and baryons: even with 

a rather large number of free parameters available. the current string fragmentation approach is somewhat off in 

many places and fails miserably in some 124 So the conclusion seems to be that the general space-time structure 

of fragmentation is under control. but that the detailed mechanism of flavour production and hadron formation is 

still not so well understood. 

3.3 W+W-  Events 

Based on the above sections, the situation might. seen: rather satisfactory: if both pert urbative and non-perturbative 

QCD aspects appear reasonably well under control, then, from now on. effectively we can forget about QC'D whenever 

we go about the business of testing the standard model in the weak sector. however. this is not quite true, and aS 

an example we can consider determinations of the W mass. The mw will be the critical observable of UP 2, which 

should allow new precision tests. 

The problem is that. QCD interference effects between the \1'+ and W -  decays undermine the traditional 

meaning of a W mass in the process a+e -  — W+W -  — cltil•:  c13g1 . Specifically. it. is not even in principle possible 

to subdivide the hadronic final state into two groups of particles, one of which is produced by the q t q_ system of 

the W+ decay and the other by the g3gl, t  system of the W -  decay: some particles originate front the joint. action of 

the two systems. 

In order to understand which QCD interference effects can occur in hadronic \v+W -  decays. it is useful to 

examine the space-time picture of the process. Consider a typical c.m. energy of 170 GeV. a W mass titw = 80 
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GeV. and a width í . = 2.08 GeV. The averaged (over the W-mass distribution) proper lifetime for a W is  

(r) . (2/3)h/f w 0.06 fm. This gives a mean separation of the two decay vertices of 0.04 fm in space and 0.07 fm  

in time. A gluon with an energy w > fw therefore has a wavelength much smaller than the separation between  

the W+ and Lir -  decay vertices, arid is emitted almost incoherently either by the q t y_ system or by the g3g4  one.  

Only fairly soft gluons, to S.- rw, feel the joint action of all four quark colour charges. On the other hand, the  

typical distance scale of hadronization is about 1 fm, i.e. much larger than the decay vertex separation. Therefore  

the hadronization phase may contain significant interference effects.  

A complete description of QCD interference effects is not possible since non-perturbative QCD is not well 

understood. The concept of colour reconnection/rearrangement [24) is therefore useful to quantify effects (at least.  

in a first approximation). In a reconnection two original colour singlets (such as gtg2 and q3q 4 ) are transmuted into  

two new ones (such as í11ï14  and q34.,). Subsequently each singlet system is assumed to hadronize independently  

according to the standard algorithms, as outlined above. Depending on whether a reconnection has occurred or  

not. the hadronic final state is then going to be somewhat. different.  

In the following, we will first discuss perturbative effects and subsequently non-perturbative ones. Further details  

may be found in [25].  

Until today. perturbative QCD has mainly been applied to systems of primary partons produced almost.  

simultaneously. The radiation accompanying such a system can he represented as a superposition of gauge-

invariant terms, in which each external quark line is uniquely connected to an external antiquark line of the same  

colour. The system is thus decomposed into a set. of colourless qq antennae/dipoles. Neglecting interferences, the  

c+ e ' — W+W- — q1^2 g3F14 final state can be subdivided into two separate dipoles. qt y and g3g4 . Each dipole  

may radiate gluons from a maximum scale rrrw downwards. Within the perturbative approach. colour transmuta-

tions can result only from the interferences between gluons (virtual as well as real) radiated in the W+ and W -

decays. A colour reconnection then corresponds to radiation. e.g. from the dipoles q4  and (Di,. The emission of  

a single primary gluon cannot give interference effects, by colour conservation, so interference terms only enter in  

second order in cr,.  

The general structure of the results is well illustrated by the interference between the graph where a gluon with  

momentum k1 (k_,) is emitted off the qty (8313 i4) dipole and the same graph with k 1  and k, interchanged:  

00 	 .^ 1 	Wz 

(Cr 

 47r- 	r\ C  - I  
—do 	Xis H(kt) H(kz) • 	 ( 4 ) 

I 	m ` 	d3k1 d3k2 	u , 
, 	

I 

Note that the interference is suppressed by l/(A - f) = I/8 as compared to the total rate of double primary gluon  

emissions. This is a result of the ratio of the corresponding colour traces.  

The so-called profile function .y12  controls decay-decay interferences. It quantifies the overlap of the W propa-

gators in the interfering Feynman diagrams. Near the W+«,- 
 pair threshold. 1_, simplifies to  
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Other interferences (real or virtual) are described by somewhat different expressions, but have the same general  

properties. The profile functions cut down the phase space available for gluon emissions with c., 1'w by the  

alternative quark pairs. The possibility for the reconnected systems to develop QCI) cascades is thus reduced. i.e.  

the dipoles are almost sterile.  

The radiation pattern H(k) is given by  

11(k) = chg., + c 13 <{, — s lii{3  - ^I^ {.t  (0)  
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where the radiation antennae are 

_ 	(Pi'Pi)  r^ 
W (p i  - k)(pi k)  

In addition to the two dipoles ytq, u  and r{3il_, which may be interpreted in terms of reconnected colour singlets.  

one finds two other terms, tRa and 4 244 , which come in with a negative sign. The signs represent the attractive 

and repulsive forces between quarks and atttigttarks. The effects of the reconnected almost sterile cascades should  

appear on top of a dominant background generated by the ordinary-looking no-reconnection dipoles qty_, and q:t: 4 .  

The negative-sign interference terms are therefore perfectly physical. and distort the overall radiation pattern in 

the same direction as the positive-sign ones.  

We now turn to the possibility of reconnection occurring as a part of the non-perturhative hadronization phase. 

This requires model building, beyond what is already available in the standard string fragmentation approach.  

Specifically, the string model does not. constrain the nature of the string fully. At one extreme. the string may  I•. 

viewed as an elongated bag, i.e. as a flux tube without, any pronounced internal structure. At the other extreme.  

the string contains a very thin core, a vortex line, which carries all the topological information, while the energy is  

distributed over a larger surrounding region. The latter alternative is the chromoelectric analogue to the magnetic  

flux lines in a type I I superconductor, whereas the former one is more akin to the structure of a type I superconductor.  

We use them as starting points for two contrasting approaches. with nomenclature inspired by the superconductor  

analogy.  

In scenario I, the reconnection probability is proportional to the space-time volume over which the \V and 

 IV' strings overlap. with saturation at unit probability. A consideration of distances in the W+W -  system shows  

that each W can effectively be viewed as instantaneously decaying into a string spanned between the parsons :  from  

a quark end via a number of intermediate gluons lo the antiquark end. The strings expand, both transversely  

and longitudinally, at a speed limited by that of light. They eventually fragment into hadrons and disappear.  Au 

overlap of the `V  and %V -  strings may be calculated by making an ansatz for each individual string field, uniform  

in the longitudinal direction and falling off as a Gaussian of approximately 0.5 fm width in the transverse direction.  

and an average proper Lime of decay of ears  1.5 fin. This gives a model with one free parameter. the constant of  

proportionality between the space-time integral of the overlap and the probability of a reconnection.  

In scenario 11 it is assumed that reconnections can only take place when the core regions of two string pieces  

cross each other. This means that the transverse extent of strings can be neglected, which leads Lo considerable  

simplifications compared with the previous scenario. Such an approach does not introduce any new parameters.  

The reconnection probability comes out. to be about 35% at 170 GeV; the free parameter of model I has been  

adjusted to give the same answer at this energy. This probability does not vary by more than a factor of 2 over the  

full LEP 2 energy range.  

Comparing scenarios 1 and II above with the no-reconnection scenario, it turns out that reconnection effects are  

very small. The change in the average charged multiplicity is at the level of a per cent, or less, and similar statements  

hold for rapidity distributions, thrust distributions, and so on. This is below the experimental precision we may  

expect, and so may well go unobserved. One would like to introduce more clever measures, which are especially 

sensitive to the interesting features. but so far we have had little success. 

Ultimately, the hope would he to distinguish between scenarios I and II. and thereby to gain sonic insight into  

the nature of the confinement mechanism. In principle, there are such differences. For instance, the reconnection 

probability is much more sensitive to the event topology in scenario II, since the requirement of having two string  

cores cross is more selective than that of having two broad flux tubes overlap.  

We now conic to the W mass. Experimentally, mw depends in a non-trivial fashion on all particle momenta of an  
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event. Errors in the ),V mass determination come from a number of sources [26], which we do not intend to address 

here. Therefore we only study the extent to which the average reconstructed W mass is shifted when reconnection 

effects are added, but everything else is kept the same. Even so, results do depend on the reconstruction algorithm 

used. We have tried a few different ones. which however are all based on the same philosophy: a jet finder is used 

to define at least. four jets. events with two very nearby jets or with more than four jets are rejected, the remaining 

jets are paired to define the two W's, and the average W mass of the event is calculated. Events where this number 

agrees to better than 10 GeV with the input average mass are used to calculate the systematic mass shift. 

In scenario I this shift is consistent with being zero, within the 10 MeV uncertainty in our results from limited 

Monte Carlo statistics (160,000 events per scenario). Scenario II gives a negative mass shift, of about —30 MeV: 

this also holds for several variations of the basic scheme. A simpler model, where reconnections arc always assumed 

to occur at the centre of the event, gives a positive mass shift instead: about +30 MeV if results are resealed to 

a reconnection probability of 3.5%. We are therefore forced to conclude that not even the sign of the effect ;an 

he taken for granted, but that a real uncertainty of ±30 NleV does exist from our ignorance of non-perutrbat.ive 

reconnection effects. Studies show that pure pert urbative effects could add at most about 5 MeV to this. while the 

potential interplay between pert.urbative and non-perturhative effects (one IV decaying inside the hadronic field of 

the other W) has been assumed no larger than that. 

Since the three sources are not independent, the numbers are added linearly to get an estimated total uncertainty 

of 40 MeV. In view of the aimed-for precision. this is non-negligible. and should be a cause for worry. It is not 

impossible that one could tailor-snake experimental algoritluns that. are less sensitive to these effects, however. 

Potential reconnection effects may not be the only uncertainty. Currently we are studying the uncertainties that 

could come from Bose—Einstein effects (21. The underlying reason is the saute as for the W reconnections: the 

two W's decay so close to each other compared with typical hadronization distances and Bose—Einstein radii. For 

a pair of nearby a ° 's. say, the production amplitude then should be symmetrized with respect to which .r' comes 

from which W. Even neglecting reconnection phenomena. the concept of a W mass on the hadron level is then 

undermined. The Bose-Einstein phenomenon is very poorly known, so we cannot definitely claim that there have 

to be observable effects. However, attempts at modelling indicate that the uncertainty in the W mass can well turn 

out to be comparable with or even larger than the one quoted for reconnection phenomena. 

4 Hadronic Physics 

The need for event generators is excellently illustrated by the recent C'1)I top paper [28]. In order to reach a 

conclusion, generators are used at. every step of the way: to study the signal. potential backgrounds. detector 

response and imperfections, and so on. This shows how critical the generator aspects are, for better or for worse. 

While hadron colliders are well suited to reach energies higher than a+e_ ones (cf. the '1'evatron and LEI'). 

there are disadvantages. líadrons have a complicated internal structure of quarks and gluons. This means that 

hadronic collisions are more complex than lept.onic ones. Leptoproduction ep events are intermediate to the el - e' 

and the pp/jtp ones, with a simple probe on a complicated target. 'Therefore the experience from 11E11  will be 

invaluable in reaching a better understanding of the hadronic structure in its broadest sense. i.e. also including 

aspects such as initial-state QCD radiation. interference between initial- and linal-state radiation. and beam-jet 

fragmentation. However, from an event-generator point of View. Cl)  and a+e` processes may be viewed as special 

cases of the hadron—hadron description. 1 therefore now jump directly to the latter kind of processes. 

A summary of the physics in hadronic event generators is the following: 

• An event. is normally classified by the `hardest' (i.e. the one with larges t momentum transfer) interaction that 
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occurs. This can be a process such as qg — ctg, LIT — 11 + , qi{ — ti,. or anything else. The corresponding 

matrix element is perturbatively calculable. Not all events treed contain a hard. calculable subgraph. exceptions 

are found among elastic, diffractive and low-p1 events. 

• In order to calculate a cross section, the squared matrix element has to be multiplied by two parton-distribution 

functions. which describe the part.onic content of the two incoming hadrons. The analogy with a+e' and ep 

physics is trade more transparent if one introduces Parton distributions also for leptons. The evolution is 

here not given by QCD processes but by QED branchings such as e — e'y. The probability that the electron 

retains a fraction x of the full momentum if it is probed at a scale Q= is fully perturbatively calculable. unlike 

the QCD case. 

• The initial-state radiation that gave rise to the two incoming parsons has to be reconstructed. i.e. the inclusive 

parton-distribution description has to be turned into an exclusive set of radiated partons. 

• Also partons in the final state can radiate further, in the same spirit as described for a+e' events. 

• Not all partons of an incoming hadron take part in the hard interaction. A remnant is left behind, 'attached' 

to the hard interaction by its colour charge. Nothing forbids several partons being kicked out, by independent 

(semi-)hard interactions. All this gives a 'heain jet' structure that still is not so well understood. 

• Again outgoing coloured partons turn into colourless hadrons by fragmentation. Normally the fragmentation 

process is assumed universal, i.e. the same models can be used as in e+c - . This need not he correct — 

universality is known to break down if one tries to extrapolate from pp collisions to heavy-ion ones — but it 

is a reasonable starting point. 

• Unstable particles decay, just. as in a+e - . 

Below we give some further details on the topics not already covered for a+e-. 

4.1 Hard Processes and Parton Distributions 

The 'vide range of physics processes that, are of interest. in hadronic physics leads to a need for generators to contain 

a hit of everything. For instance, Pv rlIIA contains the following major groups: 

• Hard QCD processes, e.g. qg — qg. 

• Soft QCD processes. such as diffractive and elastic scattering, and minimum-bias events. 

• Heavy-flavour production. e.g. gg — t.6. 

• Prompt-photon production. e.g. qg — 

• Photon-induced processes, e.g. rg — qq. 

• Deep inelastic scattering, e.g. of — qC. 

W/Z production, such as e+e -  — -, /Z° or qg — W+W'. 

• Standard model Higgs production, where the Iliggs is reasonably light and narrow, and can therefore still be 

considered as a resonance. 

• Gauge boson scattering processes. such as W1,W1, ---- \\LWt , (I, = longitudinal), when the standard model 

Higgs is so heavy and broad that resonant and non-resonant contributions have to be considered together. 

• Non-standard Higgs particle production. within the framework of a two-Higgs-doublet scenario with three 

neutral (h°. 11 °  and A°) and two charged (11±) Higgs states. 

• Production of new gauge bosons, such as a 7/, W' and It (a horizontal boson, coupling between generations). 

• Production of fourth-generation fermions. 

• Leptoquark (Lq) production. 
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• Technicolour, e.g. gg — thechn ¡•  

• Compositeness, e.g. d' and u' production.  

• Other deviations from standard model processes, e.g. due to contact interactions or a strongly interacting  

gauge boson sector. 

The list is by no means a survey of all interesting physics. Most notable is the absence of supersymrnetric particle  

production and decay, but many other examples could be found: axigluons, baryon number violating processes,  

and so on. Also, within the scenarios studied, not all contributing graphs have always been included, but only the  

more important and/or more interesting ones. In many cases, various approximations arc involved in the matrix  

elements coded. Other generators contain also other processes, and sometimes in other approximations. so  there is  

a lot of complementarily.  

The cross-section for a process ij -- k is given by  

Qij, k = Jdxt  J 	lx?,`K ^Q¡• k(s) •  

Ilere v is the cross-section for the hard partonic process, as codified in the matrix elements for each specific process.  

For processes with many particles in the final state it would be replaced by an integral over the allowed final-state  

phase space. 

The j°(x, Q 2 ) are the parton distribution functions. which describe the probability to find a parton i inside beam  

particle a, with parton i carrying a fraction r of the total a motnentunt. when the a is probed at some squared  

momentum scale Q 2  that characterizes the hard process. Since we do not understand QCD in the low-Q=' region. a  

derivation from first principles of the parton distributions of hadrons does not yet exist. It is therefore necessary to  

rely on parametrizations, where experimental data are used in conjunction with the evolution equations for the Q=  

dependence, to pin down the parton distributions. The most complete selection of distributions is found in PUFLIB  

[29 ]  

The input. from HERA has provided further stimulus for studies in this field. What is the sunall-x. behaviour?  

Do parton distributions saturate? What is the róle of the pomeron and rapidity-gap events? A number of questions  

remain to be answered.  

4.2 Initial- and Final-State Radiation  

For parton showers, a separation of radiation into a hard scattering and initial- and final-state showers is arbitrary.  

hut very convenient. There are also situations where it is appropriate: for instance, the process c+e_ — '!,° — rig  

only contains final-state QCD radiation. while qy — G °  — e+e -  only contains initial-state QCD radiation. Similarly,  

the distinction of emission as coming either from the q or from the is arbitrary. In general, the assignment of  

radiation to a given mother parton is a good approximation for an emission close to the direction of motion of  

that parton, but not for the wide-angle emission in between two jets. where interference terms are expected to be  

important. For such configurations the matrix-clement approach is better, if possible.  

In both initial- and final-state showers, the structure is given in terms of branchings a — bc, specifically e — e7.  

q — qg, q — q-y, g — gg, and g — q? . These processes are characterized by the splitting kernels and evolution  

equations given earlier.  

Each parton is associated with some virtuality scale Q 2 . which gives au approximate sense of time ordering to  

the cascade. In the initial-state shower. Q 2  values are space-like (>n 2  < 0) and gradually increasing as the hard  

scattering is approached. while Q'- is time-like (rrr 2  > 0) and decreasing in the final-state showers. Emission angles  

increase on the way in to the hard interaction and decrease again thereafter. Only the energy per parton is decreased  

at both stages, as more and more partons are created an 
 

d share the original energy.  

(S )  
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A closer look reveals further differences. In a final-state branching. the two daughters are on an equal footing, 

both being time-like (or on the mass shell). In the initial-state branching, the mother parton and one daughter 

parton are space-like, whereas the other daughter is time-like (or on the mass shell). It, is the space-like daughter 

that goes on towards the hard interaction, while the other daughter may initiate a time-like cascade on a side 

branch, just as in final-state radiation. The initial-state cascade may be viewed as a virtual fluctuation, wherein 

an initial parton almost on the mass shell is resolved into a set of partons with the same net invariant. mass. Such 

fluctuations are born and die continuously in the proton wave function. It is the hard interaction that provides the 

momentum transfer to turn the space-like virtualities of the two incoming partons into time-like virtualities of the 

outgoing partons. It. thereby also allows all the side branches to be promoted from a status of virtual fluctuations 

into one of final-state parsons. Space-like fluctuations in principle are allowed on the side branches, but then remain 

purely virtual and are not observable in the final state. 

A sequential evolution of the shower in time is not very convenient for generator applications, since the momenta 

of the incoming parlors are then not known beforehand, which makes a matching to a desired hard scattering very 

costly in terms of efficiency. A common solution is backwards evolution [30], wherein the evolution equations are 

rewritten to act in the opposite direction for inital-state showers, i.e. from a given daughter-parton, the mother 

that produced it. (together with a sister) is reconstructed. The procedure can then be started at the hard scattering, 

with known kinematics, and traced back to the two shower initiators. 

Shower evolution is cut, off at some lower scale Qo. typically around 1 GeV for QCD branchings. The same 

cut-off scale is also used to regularize the soft-gluon-emission divergences in the splitting kernels. From above, a 

maximum scale Qmnx is introduced, where the showers are matched to the hard interaction itself. The relation 

between Q,,, a=  and the kinematics of the hard scattering is uncertain, and the choice trade can strongly affect the 

amount of well-separated jets. 

We already mentioned a few open questions in the description of parton distributions; clearly, also these are 

reflected in corresponding uncertainties in the structure of initial-state parton showers. On top of this, the coherence 

conditions that we encountered for final-state radiation have a n nich more complicated and poorly understood 

analogue for the initial state [31]. Although existing parton shower programs do rather well by comparison with 

experiments, it should therefore not. be a surprise that the level of confidence is not as high as in a+e -  annihilation. 

However, progress is being made. For instance, CDF recently presented an interesting study that shows the 

importance of angular ordering in the initial-state radiation or, more specifically, how the angles in the shower are 

matched to the hard scattering angle [32]. 

4.3 Beam Remnants and Multiple Interactions 

In a hadron-hadron collision, the initial-state-radiation algorithm reconstructs one shower initiator in each beam, 

by backwards evolution from the hard scattering. This initiator only takes some fraction of the total beam energy. 

leaving behind a beam remnant that takes the rest. For a proton beam, a u quark initiator would leave behind 

a ud diquark beam remnant, with an antitriplet colour charge. The remnant is therefore colour-connected to the 

hard interaction, and forms part of the same fragmenting system. Often the remnant is more complicated. e.g. 

a g initiator would leave behind a uud proton-remnant system in a colour.octet state, which can conveniently he 

subdivided into a colour triplet quark and a colour antitriplet diquark, each of which are colour-connected t.o the 

hard interaction. The energy sharing between these two remnant objects, and their relative transverse momentum, 

introduces additional degrees of freedom. 

So far we have assumed that each event only contains one hard interaction, i.e. that each incoming particle has 

only one parton that takes part in hard processes, and that all other constituents sail through unaffected. This 
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is appropriate in a+e -  or ep events, but not necessarily so in hadron-hadron collisions. Here each of the beans 

particles contains a multitude of partons. and so the probability for several interactions in one and the same event. 

need not be negligible. The dominant mechanism is expected to be that disjoint pairs of partons, with one parson 

from each beam, undergo 2 — 2 scatterings. 

The dominant 2 — 2 QCD cross sections arc divergent for pi — 0. and drop rapidly for larger pi. Probably the 

lowest-order perturbative cross-sections will be regularized at small pi by colour coherence effects: an exchanged 

gluon of small pi has a large transverse wave function and can therefore not resolve the individual colour charges 

of the two incoming hadrons; it. will only couple to an average colour charge that vanishes in the limit. pi — 0. 

Customarily. some effective pi m;,, scale is therefore introduced, below which the perturbative cross-section is either 

assumed completely vanishing or at least strongly damped. Phenomenologically, in some approaches. pi,,,;,, comes 

out to be a number of the order of 1.5-2.0 CeV [33]. 

In a typical `minimum-bias' event one therefore expects to find one or a few scattering(s) at scales around or a 

hit above pim,n.  while a high-pi event. also may have additional scatterings at the pimin  scale. The probability to 

have several high-pi scatterings in the same event is small, since the cross-section drops so rapidly wit h pi. 

The understanding of a multiple interaction is still very primitive, and even the experimental evidence that it. 

exists at all is rather weak [34]. The approach taken to this problem therefore varies significantly from one generator 

to the next. This may not always he appreciated by the normal user, since any approach by necessity contains 

a number of free parameters, and these parameters have been tuned by comparisons with essentially the same 

experimental data. Only when a broad range of properties are studied, preferably at. several different energies. can 

one hope to better understand this complex part of physics. 

IiERA may provide very interesting possibilities to test. these issues: a deep inelastic scattering should only give 

one interaction, but in the Q 2  — 0 limit the hadronic nature of the photon takes over (see below) and one conies 

back to a hadron-hadron physics scenario with the possibility of multiple interactions. 

4.4 fp and 77 Events 

There are many reasons for being interested in 7p and 77  physics. The process cp -- e7p — eX is a train one at 

HERA and a+e -  — e. + e - 77 — e+e_X will he a main one at. LEP 2 and future linear a+e -  colliders. Therefore, these 

events are always going to give a non-negligible background to whatever other physics one is interested in. However, 

more importantly, collisions between real photons provides the richest. spectrum of (leading-order) processes that is 

available for any choice of incoming elementary particles. For instance, since the photon has a hadronic component., 

all of hadronic physics is contained as a subset of the possibilities. A correct. description of the components of the 

total yp and 7y cross sections is therefore the ultimate challenge of 'minimum-bias' physics. (Leaving heavy-ion 

physics aside.) This also explains why 7p and 77 events here appear under the heading of hadronic physics. In the 

following 1 will describe the approach developed in [35]. 

To first approximation, the photon is a point-like particle. Ilowever. quantum mechanically, it may fluctuate into 

a (charged) fermion-antifermion pair. The fluctuations 7 — qq arc of special interest to us. since such fluctuations 

can interact strongly and therefore turn out to be responsible for the major part of the 7p and 77 total cross sections. 

as we shall see. On the other hand, the fluctuations into a lepton pair are uninteresting, since such states do not 

undergo strong interactions to leading order, and therefore contribute negligibly to total hadronic cross sections. 

The leptonic fluctuations are perturbatively calculable, with an infrared cut-off provided by the lepton mass itself. 

Not so for quark pairs, where low-virtuality fluctuations enter a domain of non-perturhative Q(:'1) physics. It is 

therefore customary to split the spectrum of fluctuations into a low-virtuality and a high-virtuality part. The former 

part can be approximated by a sum over low-mass vector-meson states, usually (hut not necessarily) restricted to 
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the lowest-lying vector multiplet. Phenomenologically. this Vector Meson Dominance (VMD) ansatz turns out  

to be very successful in describing a host of data. The high-virtuality part. on the other hand, should be in a  

perturbatively calculable domain.  

	

In total, the photon wave function can then be written as 	

5 
17) = Cbare l7bare) + 	E 	cv l t') + 	E 	CqI C1 ) + E CI 1

€'
'  • 	 ( 9  )  

q=u.d.s.c.b 	C_e,x+.'  

In general, the coefficients c; depend on the scale p  used to probe the photon. Introducing a cut-off parameter po to  

separate the low- and high-virtuality parts of the qif fluctuations. one obtains cq (o C42r)2e 42  In(p 2 /14). The VMI1)  

part corresponds to the range of qy fluctuations below po and is thus yr-independent (assuming ft > po). The major  

contribution comes from the p°. cr  0.04. Finally, cba,Y  is given by unitarity: Cbare _ Z3 = 1 — E  c?. – E e — E c7.  
In practice, cbnre  is always close to unity. Usually the probing scale p is taken to he the transverse momentum of  

a 2 — 2 parton-level process. Our fitted value Po  ^. 0.5 GeV then sets the minimum transverse momentum of  + 

perturbative branching 7 —  

The subdivision of the above photon wave function corresponds to the existence of three main event classes in  

7p physics: 

1. The VMD processes, where the photon turns into a vector meson before the interaction. and therefore all  

processes allowed in hadronic physics may occur. This includes elastic and diffractive scattering .as well as  

low-F1 and high-pi non-diffractive events.  

2. The direct processes, where a hare photon interacts with a parton from the proton.  

:4. The anomalous processes, where the photon perturbatively branches into a qif pair, and one of these (or a  

daughter parton thereof) interacts with a parton from the proton.  

All three processes are of O(Q em). Ilowever. in the direct contribution the photon structure function is of 0(1) and  

the hard-scattering matrix elements of O(uem ), while the opposite holds for the VMD and the anomalous processes.  

The VMD component contributes about 80e%o of the total ¡p cross section, but less in the jet cross section: at  

intermediate pi values the anomalous processes are contributing most and at large pi values the direct processes  

dominate.  

The difference between the three classes is easily seen in terms of the beam jet structure. The incoming proton  

always gives a beam jet containing the parsons of the proton that did not. interact. On the photon side, the direct  

processes do•not give a beam jet at all. since all the energy of the photon is involved in the hard interaction. The  

VMD ones give a beam remnant just. like the proton, with a 'primordial k 1 ' smearing of typically up to half a GeV.  

The anomalous processes give a beam remnant produced by the 7 - qt branching, with a transverse momentums  

going from po  upwards. Thus the transition from VMD to anomalous should he rather smooth.  

A generalization of the above picture to 77  events is obtained by noting that each of the two incoming photons  

is described by a wave function of the type given in eq. (9). In total, there are therefore three times three event.  

classes. By symmetry. the 'off-diagonal' combinations appear pairwise. so  the number of distinct classes is 'only'  

six: VM Dx VM D, VtMDxdirect. VMDxanonalous, direct x direct. d i rect x anomalous and anomalous x anomalous.  

The pattern of their relative importance is the same as for the 7p process: VMDxVMD dominates the total cross  

section and directx direct the jet cross section at large pi.  

When pp (or pp), 7p and 7y events are compared at a common energy, the above ansatz leads to characteristic  

differences. There are most jets in 77  events and least in pp ones. not surprisingly. and this is also reflected in the  

total transverse energy flow, in the multiplicity distribution. and so on. Indications along these lines now start to  

appear at HERA, e.g. in the inclusive pi spectrum of charged particles [36]. The excess of jets in yy events is  

observed at TRISTAN [37] and LEP 2 should have much more to say.  
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5 Summary and Outlook 

This talk has only scratched the surface of the aspects that have to be programmed in a modern, versatile generator. 

If one looks back, the evolution has been explosive. The first version of the Lund Monte Carlo. in 1918. was about 

200 lines long (and coded on punched cards!). Today. PYTH1A/JETSET together is over 30,000 lines of code. 

supplemented by a 300 pages long physics description and manual [7]. The growth in physics potential of the 

programs has been fairly linear over these years (a roughly constant number of persons contributing a rather 

constant number of new aspects per year), whereas the increase in the code itself has been closer to an exponential. 

This in part reflects changes in programming style, in part the trend to address more subtle and difficult-to-program 

problems as the simpler are `solved'. 

Of course. Lund is only one family of generators. Historically one should presumably start with models based on 

pure phase space or longitudinal phase space. but the first event generator in a more modern sense (that I am aware 

of) is the Artru—Mennessier model of 1974 [38]. The Field—Feynman ansatz of 1978 [39] had an enormous impact 

(partly due to the magic of the name Feynman). Starting with I ETRA, the use of event generators has taken off. 

so that today there is hardly any experimental analysis presented or planned without the help of generators. 

Initially there was a lot of scepticism, and it. is not so easy to say when that disappeared. In retrospect it is 

tempting to call the UA1 experiences of 1984 the watershed. The 'discoveries' of supersymmetry and of top [40] 

can be traced back at least in part to a poor understanding of the signal, of the backgrounds, and of the detector 

response. and the only way one has found to do better in cases like these is to have more elaborate event generation 

and detector simulation programs. 

Today, the problem is rather the opposite: sonic people have too deep a faith in generators. For instance. in the 

LEP 1 workshop our main recommendation was that. 'Due to the large uncertainties present in any realistic QGD 

Monte Carlo, physics studies must be based on the use of at least. two complete and independent. programs.' [3]. 

but this rule is not always followed. It is therefore important to remember the size and complexity of current-day 

generators. hopefully this talk has given you some insight into the different aspects and assumptions that enter. 

and the many question marks that still remain. Even if the 'pioneering days' may be past, there is every need 

for continuing studies, e.g. in the area of multiparticle production. to address the new problems that come along. 

This way, hopefully, event generators will remain in the heartland of phenomenological and experimental particle 

physics. 
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Triviality of (A 0 0),+1 4)5+1  in the Lee Approximation  

F.A.B. Coutinho..1.F. Perez and W.F. Wreszinski  
instituto de Físrcn. Universidade dc São Paulo  

The issue of (non) triviality of (a00 4 ) 3 + 1  where s denotes the space dimension. and ao the "bare" coupling  

constant, remains as one of the most important, conceptual questions in quantum field theory (1). In this note we  

summarize some of the ideas in two recent papers ([2], [3]).  

Unfortunately. there are no rigorous results on triviality for s = 3 [1]. Ii. is also important to compare this case.  

which is conventionally renormalizable with s = 2, which is superrenormalizable. Folklore predicts triviality in the  

former-case, and nontriviality in the latter [1].  

Our basic result concerns the so called Lee approximation.  

The Lee approximation has a long history, reviewed in (14]. chapter 11)1. We are basically interested in the model  

, ,+i ([4]. pg. 69), defined by 

ii, = Ho 1. 1.;  

on symmetric Fock space where Ho is the free Hamiltonian for a scalar Boson field. and 	is the cut-off (in our  

notation)  

¡ 

4  j O.;  _ ^ I  n J  —b(Pt + F'2 — — Pa)ct (pt )a {N2)a(P3)(44) 	 ( 1 1  
13. 1=1 	lli  

with pi = p(pi) = 1137 + 1n2 .  

H, is singular for c — 0. In this model, s is the space dimension. In which sense is this model an "approximation"  

to (ao¢a), +r ? For this purpose, it is convenient to return to the interaction term in the nonrelativistic approximation,  

which may be written, up to multiplicative constants. in momentum space as [2].  

1R.  ñ j d^,  605.+172    — 173 — Pa )Q + IPI )a + (1=)a(p3)a(Pa ) 
jli 

with p; -= rnoc2 . if relativistic kinematics is preserved, i.e., lr; = p(j) = 	+ m2  we are led to [2).  

The significance of the Lee approximation may be understood from the model's limitations. As in the non  

relativistic limit (nrl), where creation and annihilation processes are kinematically suppressed, such procsses are  

neglected in the Lee approximation: here, too, the number operator commutes with the Hamiltonian, with Fock  

space decomposing into dynamically independent sectors. Further, due to the absence of vacuum polarization. the  

free and physical vacuum are identical, and hence no space cutoff is necessary to make the Hamiltonian a well-

defined operator (Haag's theorem does no apply). However, the difficulties due to high momenta are present. and  

renormalization of mass and coupling constant are necessary. It will he seen that these features suffice to furnish  

results on triviality which are consistent with folklore. The main reason is that, relativistic kinematics introduces a  

sort of ultraviolet cutoff in comparison with the trrl, compare [I] and [2] (where in the latter lei _ rnoc2 ). Indeed.  

there is no Thomas effect when the kinematics is relativistic [2]. and may restrict the analysis of the model to the  

N=2 particle sector.  

One of our basic results [2, 3] is Theorem. In the Lee approximation the theory is either trivial or unbounded  

from below in some N-sector for N sufficiently large (hence physically unacceptable) ifs = 3, and is nontrivial with  

semibounded Hamiltonian ifs = 2. The above result is the first one supporting the folklore for s = 3.  

(2)  
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Vassiliev's knot. invariants [1) contain all the invariants. such as the Jones, HOMELY and Kauffman polynomials, 

which can he obtained from a quantum group deformation Uh (G) of the Ilopf algebra structure, of enveloping algebras 

UM, where Ç is a semisimple Lie algebra. 

For a compact. semisimple Lie group G with Lie algebra G. Wilson loops in the quantized Chern-Simons model 

give knot invariants associated to lih(Ç) at special values h = 2ai A -t , k a positive integer. The coefficients of 

the expansion in powers of h of these observables are examples of Vassiliev invariants. This is a particular case 

of a general theorem [2], which states that for all h the coefficients of the power series expansion of the invariants 

associated with semisimple Lie algebras arc Vassiliev invariants. 

By treating the Chern-Simons model with the conventional methods of perturbation theory, the coefficients of 

the powers of h of the observables can be computed [3). Feynman diagrams and Feynman rules are the main tools 

of the computation. Given a knot, or more generally a link L. and the degree u (order in perturbation theory) or 

power of h in which one is interested. the corresponding invariant t,,(L) results from the application of a Feynman 

rule WW  to a finite linear combination Z, s (L) of diagrams. The vector space D„ of diagrams of degree tt is of finite 

dimension, and Zc 5 (L) E D„ depends on L and on the form of the Chern-Simons action. The Feynman rule 14;, 

depends on c and the representations occuriug in the definition of the observables. It is an element of the dual 

space D. and Lin (L) = ( W, Z,c5 (L)). 
Here we have used Bar-Natan's way [4] of describing Feynman rules and diagrams. He found that the diagrams 

and rules of Chern-Simons theory obey a small number of fundamental properties, and this led him to define general 

diagrams and rules, the latter which he called weight. systems. by these same properties. Kontsevich [5] discovered 

an integral formula for an invariant Z„(L) E D„, which plays for generic h the same role as Zn s(L) does for the 

special values in the Chern-Simons case. The stain ingredient hiding behind it. is the flat connection associated with 

the Knizhttik-Zamolodchikov equations. The formal power series Z( L) =  Z„( L) h” is called the universal 

Vassiliev invariant, since by varying 11 7  in (1l', Z(L)) one gets all the invariants constructed from a deformation of 

the identity solution of the Yang-Baxter equation. 

The knot invariants constructed using the representations of Uh(Ç) have been generalized to all quasi-triangular 

llopf algebras by Reshetikhin and Turaev [6]. Their construction is purely combinatorial, the proof of invariance 

consists in verifying that the R.eiderneister moves do not change the relevant expressions. Recently, similar combina-

torial definitions of universal Vassiliev invariants have appeared (7]. In our paper [9] we show that the combinatorial 

and the analytic definition of Kontsevich arc equivalent.. lt, turns out that the main contribution t.o Z(L) is a type of 

series called ordered exponential in the physics literature. Ordered exportentials satisfy many interesting identities 

'"Palk given by the first author 
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which makes them very powerful. A crucial step in the proof of equivalence is to identify an expression for the 

Drinfeld associator [8] among the Kontsevich integrals. We do it quite naturally using only Drinfeld's definition of 

the associator as a tnortodromy operator between solutions of the Knizhnik-Larnolodchikov differential equations. 
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Através da caracterização de um espaço-tempo com simetria esférica, como subvariedade lo-
cal  de um espaço pseudo-Euclideano de dimensão seis e com diferentes assinaturas, investig-
amos a existência de uma diferença na topologia (não-Euclideana), R 2  x S2  da subvariedade. 
Esta diferença topológica está associada a diferença de assinatura do espaço ambiente. Ex-
aminamos especificamente os exemplos conhecidos, do espaço-tempo de Schwarzschild e de 
sua extensão máxima, o espaço de Kruskal. Verificamos que em algumas situações, como 
por exemplo o caso apresentado por Kasner, o espaç o-tempo está simplesmente imerso. Por 
outro lado, com base em argumentos de causalidade e da preservação da estrutura dos cones 
de luz no espaço-tempo, sugerimos a necessidade de se caracterizar um mergulho propria-
mente dito em lugar de uma simples imersão, de modo a tornar a subvariedade compatível 
com as propriedades físicas do espaço-tempo. 

Introdução 

Vamos considerar o seguinte problema: '`Determinar a geometria e a topologia do espaço físico externo a um 

corpo aproximadamente esférico de massa m. 

Gostaríamos de modelar nosso espaço físico através de um espaço-tempo quadridimensional [1]. A 

geometria para o nosso problema é descrita pela solução de Schwarzschild. 

Observamos que devemos retirar as regiões, r = 0 e r = 2m da variedade espaço-tempo nas coordenadas 

(I,  r, 9, e¢). Para garantirmos a existência de uma métrica associada ao nosso espaço, exigimos que este seja conexo 

e assim definimos, 

a) Espaço-tempo exterior de Schwarzschild: (V4i  g) 

Onde V4 = P7 x S' , P¡ = {(t, r) E R/ r > 2m) e S2  a esfera de raio r. A métrica g é dada pela solução de 

Schwarzschild. 

b) Buraco Negro de Schwarzschild: (B4 ,g) 

Onde B4 = P¡r  x 52  , P7, = {(t, r) E R/ 0 < r < 2m} e S2  a esfera de raio r. Novamente a métrica g é dada 

pela solução de Schwarzschild. 

E fato bastante conhecido que (B4i  g) e (V4 , g) podem ser estendidas para r = 2m. A extensão de (E, g) = 

([P7 U Ph] x S2 , g) foi dada por Kruskal (2], porém Fronsdal [31, um ano antes, obteve de forma indireta e usando 

o formalismo de imersão a indicação de tal extensão, (E', g') = (Q 2  x 52 , g'), onde Q 2  é chamado de plano de 

Kruskal [1]. 

2. Topologia de Schwarzschild 

Modelamos primeiramente nosso espaço físico por (E, g) = ([P¡ U Pr  f) x S', g). Temos que E é desconexo, já 

que é formado por duas componentes conexas desconectadas. Quando obtemos a extensão (E', g') = (Q 2  x S3 , g`), 

através da imersão de Fronsdal, encontramos que E` é conexa. Conseguimos um espaço-tempo conexo para o nosso 

modelo matemático do campo gravitacional fora do corpo esférico. 

Veja que Q 2  C R2  e [P¡ U Pf f ] C 'R2  . E fácil ver que a topologia de Q 2  é dada por uma base de abertos de 
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R2  [5], enquanto que a topologia  de [P ./2 U  P¡r ] é dada por  urna  base de abertos de R 2  menos a superfície r = 2m. 

Logo obtemos topologias diferentes para (E, g) e { E' , g'), esta última sendo do tipo R 2  x S2 . 

Tomamos uma curva o(t) sobre (E, g), esta última mergulhada local e isometricamente em (E6, rl) e em (E6, 9i). 

Escrevemos ern coordenadas, 

Y(a(t)) = (Yi(o(t)),....Y6(41 (t))) e % (ca(1)) _ (17(o(t)),.... }6(o(t))) , 

Onde observamos que no primeiro caso }'t  e Y.2  sendo funções periódicas de t podem levar pontos distintos da 

variedade imersa em um mesmo ponto, possibilitando aparecer problemas de causalidade em  (E, y).  esta última 

antes de ser imersa poderia ter sido considerada sem estes problemas. Vemos que para a imersão de Fronsdal não 

temos estes problemas e lembramos que (E' , g') foi obtida desta imersão. 

Uma diferença topológica aparece entre (E',g') e (E, g), vinda do fato de termos mudado as coordenadas de 

imersão e da mudança de assinatura de E6 [fi]. 

Analisando o comportamento qualitativo de cones de luz, vemos que em (E, g) não podemos definir cones de 

luz em r = 2m, enquanto em  (E',g') sim. 

Como foi visto a imersão de Kasner é uma imersão mas não é um mergulho, já que esta última possui aut o-

intersecções, para intervalos apropriados do parâmetro t. No caso de Fronsdal, um cálculo simples mostra que de 

fato Y' = Y'(r') é uma imersão além de ser um homeomorfismo, ou seja é um mergulho. 

Note que a partir das definições de imersão e mergulho podemos caracterizar a topologia do espaço- tempo imerso 

em questão. Isto sugere uma metodologia para determinarmos propriedades glogais de um espaço-tempo . 

Concluimos que (E',g') é o espaço-tempo que descreve o campo gravitacional exterior a um corpo de massa m 

e simetria esférica. A topologia deste campo é do tipo R= x 5 2 , não Euclideana. 
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Using the theory of Jordan matrices we discuss the algebraic classification of second order 
symmetric tensors (Ricci tensor) on five-dimensional (5-D) Lorentzian manifolds M. extend-
ing previous results on this issue. We show that a symmetric two-tensor R can be classified 
in four Segre types and their twenty-two degeneracies. Using real half-null pentad bases for 
the tangent space Tp (M) to M at p we derive a set of canonical forms for R. generalizing 
the canonical forms for a symmetric two-tensor on 3-D and 4-D space-times manifolds. 

1. ItttroductioU 

`l'Ite algebraic classification of the Ricci part .Sab of the Itiettrnratr tensor in 4-1) space-Limes (Segre classification) 

has been discussed by several authors [1] and is of interest in understanding some purely geometrical features of 

space-times [2-4], in classifying and interpreting matter field distributions [5-10], in determining limitsof non-vacuum 

space-times [11], and as part of the procedure for checking the local equivalence of space-times [12]. 

Kaluza-Klein-type theories in five and more dimensions is of interest in at least two contexts. In gauge theories 

they have been used as a way to unify the fundamental interactions in physics. From a technical viewpoint.. on the 

other hand. they have been employed as a tool for obtaining exact solutions in four dimensions [13]. 

In this work we briefly discuss the algebraic classification of second order symmetric tensors defined on 5-D 

Lorentzian manifolds M, extending previous results on this subject [14,15]. For a detailed account of our results 

see ref. [16]. 

2. Classification and Canonical Forms 

In this work M is a real 5-D manifold endowed with a Lorentzian metric p of signature (— + + + +). Tr ( M) 

denotes the tangent vector space to M at. a point p  E r1l , and any tensorial lower case latin indices range from O 

 to 4. 

Let R io he the covariant components of a second order symmetric tensor Ti at. p E M. Given Rd b we may use 

the metric tensor to have the mixed form Rat, of R at TAM). in this form the symmetric two-tensor R may he 

looked upon as a real linear operator R : T1,(r1l) — TAM). If one thinks of It as a matrix Rab , one can formulate 

the eigenvalue problem 

R ab t% b  - a F abl: b 	 (2.1) 

'internet: janiloi@dite.ufrn.br  
tinterntet: reboucasikat.cbpf.br  
'internet: teixeireecat.cbpf.br  
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where A is scalar and 1 76  are the components of a generic cigenvector V E Tp (:1/). The fact that we have dab  rather  

than g ab on the right hand side of equation (2.1) snakes apparent that we have cast the non-standard eigenvalue  

problem involving the hyperbolic (real) metric Rab  V b  = A gab V 6  into the standard form (2.1) well known in linear  

algebra textbooks. However, Rah  is no longer symmetric in general and the eigenvalue problem (2.1) gives rise to  

the Jordan block diagonal matrices.  

When all eigenvalucs of R are real similarity transformations exist under which R.a6  takes at p either one of the  

following Jordan canonical forms [16]:  

A t  1 0 0 0 At 1 0 0 0 A I  t) 0 0 0 

0 A t  I 0 U  0 AI 0 U U 0 A_, ü 0 0 
0 0 A l  0 1) 0 o A2  U 0 0 U A3 0 0 

Q 0 0 A2 0 0 0 0 A3  0 0 0 0 A4 0 
0 0 0 0 A3 0 0 U 0 A4 0 0 0 0 As  

(a) Segre type [311] 	 (b) Segre type [2111) 	(c) Segre type [1,1111] 

or one of the possible block-degenerated Jordan matrices. Ilere A i . • • • . As E i.. The Segre type is a list of digits  

inside square brackets. where each digit refers to the multiplicity of the corresponding eigenvalue. which clearly  

is equal to the dimension of the corresponding Jordan block. The comma in type [1,1111] is used to separate  

eigenvalues associated to titnelike and spacelike cigenvectors. We remark that the Lorentzian character of the  

metric g on M. together with the symmetry of Ra b. rule out the Segre types [5]. (4I], [32] and [221] and degeneracy  

thereof (see ref. [16) for details).  

When Rab  complex eigenvalucs one can show [16] that it is necessarily diagonalizable over the complex field and  

possesses three real eigenvalucs. i.e.. only the Segre type [: _ 11 1) and its specializations are permitted.  

As far as the canonical forms are concerned, although the most general decomposition for the Ricci tensor in  

5-D is given by  

Rab = 2 p1  l(a  rn6) + p2 1a!b + P3 ZQxb + P4 Jagb + Ps Za-b + PG mamb  

+2P7 11(izo 1-  2 Pel 1(allb) + 2,09 1(a4)+ 2PIO rn(a 1 6) +2P1[ m(Qya)  

+2/212 m(a ra) + 2  PI3 x(ayb) + 2 P14 z(0z6) + 2  P1S Y(a zb) , 	 (2.2)  

with pl, ... , pis E R, it is possible to show (16] that semi-null pentad bases with non-zero inner product  

lama  = ex. = ya ya = =° :a = 1 	 (2.3)  

can be introduced at a point p E Al, such that the possible Segre types and the corresponding canonical forms for  

a second order symmetric tensor R at p E M arc given by  

Segre type Canonical form  

(1,1111) Ra6 = 2 pi 1(a m6)+ P2 Nib +mamo) + P3xax6+P4yayb+ Ps :a Zia ,  (2.4)  

[2111] Rab = 2P1 1(a Mb)  ±laia +P3 xazb+p4üaYb+ P6:a ^6, (2.5)  

[311] Rab = 2Pt tomb) + 2 1(cZb) +p1 lax,+ P41lal16+ PS zazb , (2.6)  

(si 111] Rob = 2 P1 1(Qmb)+ P2 (la 1 6 — mam%) +P3xaxó+ p4yayb+ ptssozb , (2.7)  

and the twenty-two degeneracies thereof. Here pl, • - ,p5 E R and P2 0  O in (2.7).  
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The field equations of Einstein are nonlinear, and so there is no known method to obtain solutions for them. 

Hence the theory of perturbations is a powerful tool in gravitational and cosmological research. However, there 

are some difficulties known as "gauge problems": there is no unique way to map the background solution onto the 

perturbed one. We have used the Hawking's point of view to describe the perturbations only in terms of objects 

that vanish in the background, to get solutions for the vectorial and tensorial components of the perturbations 

of the Universe of Friedman-Robertson -Walker, the "Standard Model" of cosmology today. The formalism so 

obtained is translated to Hamiltonian language, making possible the quantization of the perturbations of a classical 

cosmological solution. Some remarks are made on the stability of the model being considered. 
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1. Introdução  

Em teorias do tipo Kaluza-Klein, formuladas em (rr = 4 + D) dimensões, as dimensões extras sofrem unia  corn-

pactificação, isto é, suas escalas características são da ordem  do  comprimento de Plarrck [1]. Escudamos as possíveis  

soluções cosmológicas da teoria de Kaluza-Klein para um modelo sem matéria. aras coin  dimensão arbitrária. Coin 

 a adoção cia métrica espacialmente plana dc Robertson-Walker reduzimos as equações diferenciais a um sistema  

planar e autônomo cujas soluções são analisadas utilizando a teoria dos sistemas dinâmicos [2].  

2. Equações dc Campo  

A densidade lagrangeana e a métrica adotada são  

ds -  = gy „dx¡'dz"  

onde pp,r.=0,1,2,3e i,j = 1,2...., D.  

Considerando gp v  como a métrica espacialmente plana de Robertson-Walker. definindo U = O D . substituindo  

X = ã ,onde a é o fator de escala para o espaço físico, e y = Ú = 1) = —g [3], onde c; é o acoplamento gravitational,  

as equações de campo tomam a forma de um sistema planar e autonõmo  

_ 	D(D — 1) ._$ :Sa1 + 	121J1) y +3
xy = k 	

1 	
U 	 (3)  

3x. (D+1)y:
+ zy + 	= ^L I y

D(D- 1)  + 	+ 	 ti_ 1 	 (4)  
2 	4D 	 2 	 l 

y+ y`+3zy= —kD(D-1)U_ 
	

. 	 ( 5 )  

3. Caso FR.W(li = 0) x `I'D(l; = 0)  

Considerando a curvatura do espaço interno nula encontramos  apenas duas soluções, sob a forma dc lei de  

potência, compatíveis coin as equações de campo. Estas soluções são representadas no diagrama dc fase por ret as 

passándo pela origem do plano (raios invariantes). Para D = 1, temos o primeiro raio invariante descrevendo uni  

universo onde o espaço-tempo é Minkowskiano, mas com acoplamento gravitational variando. No segundo raio  

invariante temos um segmento que representa um modelo Big-Bang evoluindo para o espaço-tempo de Illinkowski  

( I) 

(2)  
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corn acoplamento gravitacional crescente e contração das dimensões internas. O outro segmento representa uni  

Big-Crunch corn acoplamento gravitacional decrescente. Para D > 2, a solução fisicamente aceitável é semelhante 

 à descrita pelo segundo raio invariante para 1) = 1.  

4. Caso F111.11(!i = 0) x 5D (k 0  0)  
Para = I e D = 1 remos as mesmas soluções que o caso T = 0 e D = 1. Para ïl = 1 e D > 2 não hà soluções  

fisicamente aceitáveis.  

Para T —1 e D = I ternos novamente as anemias soluções encontradas no caso = 0 e D = 1. Para D > 2, a  

região física do espaço de fase apresenta soluções que representam um universo partindo de urna singularidade do  

t.ipo Big-Bang  corn  contração, no inicio, do espaço interno mas coin o espaço físico expandindo para llinkowski.  

5. Modelo Derivado da Supergravidade i onze dimensões  

Finalmente consideramos urna densidade lagrangeana derivada da supergravidade a 11—dimensões [4]  

C_  {¡(14 + ^FAticDF'
D )  

onde F A, = f (t)e r,,.a 7 (p, v, A,"  = 0, 1, 2, 3) [5].Com a mesma escolha da métrica e das  definições de r e y  nós  

obtemos o sistema planar  

:Sr' + 2 fry + 21 y' = 4TGf' .  

•i+2x'- +(ir.y+lj+7y_ =—TGf ' .  

+ 3r. = + 14,r:y+7r¡+28y' = 4 rGf ='  

(7)  

(8)  

(9)  

As soluções do tipo lei de potência só são compatíveis corn  as equações de campo para f imaginário ou nulo. As  

soluções físicas representam modelos partindo de urna singularidade e evoluindo para o espaço-tempo de Minkowski  

corn contração do espaço interno no início da evolução.  

6. Conclusão  

Em geral as soluções encontradas indicam que deve ocorrer urna  singularidade ou no passado ou no futuro.  

A presença dessa singularidade é inevitável neste caso. Encontramos também que nas soluções físicas o universo  

começa sua evolução  corn  o espaço interno contraindo-se.  
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Perturbações de Densidade com Pressões Negativas 

.Jtílio César Fabris'e .Jérôme i\.lartint 

9 dc Janeiro de 1995 

1. Introdução  

O problema da formação das estruturas em larga escalas observadas no Universo, é um dos mais relevantes 

atualmente em Cosmologia. O tratamento clrissico para este problema foi inicialmente feito por Lifschitz e KRa-

latnikov (E.M. Lifschitz, JETP 16. 587(1996); E.M. Lifschitz and I. Kltalatnikov. Adv.  Phps. 12, 185(1e963)). 

at ravés do estudo da  evolução de pequenas perturbações na densidade cm um Universo homogeneo e isótropo em 

expansão. A conclusão a que foram levados é a de que o crescimento de tais perturbações é insuficiente para ex-

plicar a existência das aglomerações de matéria em galáxias e aglomerados de galáxias. De qualquer forma, aqueles 

autores estabeleceram um método padrão para o estudo deste tipo de problema. Apesar de criticas posteriores que 

foram feitas ao método empregado. devido à não-invariància das quantidades fisicas cn, relação it escolha do sistema 

de coordenadas. o método de Lifschitz-Khalatnikov, utilizando o calibre sincrónico. forneceu todas as informações 

físicas brisicas existentes sobre este problema. 

Nos nos propormos a utilizar o método de Lifschitz-Khalatmiikov no estudo de pert urbações dc densidade com 

pressões negativas. 0 interesse de tal estudo reside no fato que. durante a fase inflacionária, quando p = — p. as 

perturbações de densdidadc são estritamente nulas: para se obter iiiho[nogeneidadcs na distribuição de matéria. 

é preciso se afastar da condição de inflação. Logo, a questão da  exist.encia de pressões negativas outras que a de 

inflação adquire sua relevancia. Nós mostraremos que. as perturbações dc densidade se dividem em tres tipos. 

'e•gurtdo o valor da equação de estado, que nós assumiremos como do tipo barotrópica (p = cop): Para I > n > 

existe um modo crescente e um decrescente; para — > ca > —I. existem apenas modos descrecentes; para —1 > o 

existem modos que crescem a ulna taxa do tipo exponencial. Existem dois valores críticos (n = —3. —1). que serão 

discutidos mais abaixo. 

2. As Equações Perturbadas e suas Soluções 

Nós consideramos as equações de Einstein, às quais impontas unia métrica espacialmente plana e una cometido 

material dado por um fluido perfeito com uma equação de estado barotrópica. Obtemos então as seguintes equações 

diferenciais conectando a(t) (fator de escala) e p(t) (densidade): 

:I(—)` = b aGp 	 ( 1 ) 
a 

re 
¡'> -i-  :i {I  (1 	G  )p 	= 	Ej 	. 	 (2) 

onde o é uma constante que define a equação de estado ( p = ee p ). A  solução geral para a(t) é: 

a(1) = a o f 3Trlim . 	 (3) 

• Departamento de Ffsica. Universidade Federal cão Espírito  Santo. Cuiabeires. Vithria - CEP290K0-900 - Espírito Santo - Brasil. 
r ta►boratnire de Gravitation et Cosmologie Relativistes. Univcrsité Pierre et Marie Curie - CNHS/IJHA 769, 4. Place Jusáieu - Tour 

22/12 - *rile tange - Raite Courricr 142. 75252 Paris Cedex US - França. 



1 14 	 J. C. Fabris c J. Martin  

Observamos que para a > -!.1  o fator de escala cresce mais lentamente que o horizonte; para a < —4  o fator de  

escala cresce atais rapidamente que o horizonte. Quando u = -a o fator de escala cresce à mesma taxa que o  

horizonte.  

Para estudar a evolução das perturbações de densidade, nós introduzimos as quantidades  

9 =g• +h 	P =p • +op . ¡1 =P 

• 

+bp ,  ( 4 )  

onde ?p,,. P e J' silo  as soluções de base descritas acirnae h,,,,. 6p c 6p são pequenas perturbações em torno delas. Nós  

impomos o calibre sincrónico h p e = O.  Visto quc estamos interessados em perturbações de densidade. nós podemos  

manipular as equações perturbadas, desaclopando os modos escalares e exprimindo-as em termo das quantidades 

 h = ó¢, c1 = e O = ;. Unta combinação das equações resultantes permite determinar uma'iriica equação  

para  d: 

	

11-3o _1 I q ^ 	2(Jn''+14r^ -5) 1 
, 

/ 	 y 

	

+ 3(1+a )  t +
`C1

( [t ) 	9 	(1 +O)2 	/ 2 ) 

^

a( q ): 1 - ^'(1+3o)(1 - 9n) 1 
,=ü 

a  I  9 (I + n))=' 1 3  

Essa equação admite uma solução geral, quando a é positivo. sob a forma.  

,= Il
1  r

4 lct./„(f¡.0+ c2A''„( (7yx))dx .  
r  

Ern (6). os J„ são funções de Bessel de ordem U. l'or outro lado, se o é negativo, nós encontramos.  

A = 
Z r 

 x3 (c r  1^„Gig^L) + c21„( f -r))dr .  

Ent (7), 1i„(x) e Ws)  são funções de Bessel modificadas.  

3. Análise dos Resultados  

O estudo assintótico das soluções permite compreender dr. forma mais simples o comportamento das perturbações  

de densidade segundo o valor de a. Nós nos limitaremos aqui a resumir os resultados. Fazendo t — 0, observamos  

que para a > —4. existem um modo crescente e outro decrescente; mas, se  —4 > o > -1, existem apenas modos  

decrescentes; por outro lado, para a < -1, existem modos que crescem fortemente. No caso ern que o = -1.  

as perturbações de densidade são nulas; por outro lado, quando o = - , obtemos A} = / -1 ± 07R, onde q é o  

numero de onda da perturbação. Observamos, finalmente, que as perturbações de densidade oscilam. corn modo  

crescente ou decrescente, quando entram dentro do horizonte, apenas quando a pressão é positiva; quando a pressão  

C negativa, tais oscilações não Ocorrem.  

(5)  

(6)  

( 1 )  
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Perturbações Cosmológicas na  
Teoria de Brans-Dicke  

J.  Plínio Baptista, Júlio C. Fabris, Sergio V. 13. Conçalves'  

Departamento de Física. Universidade Federal do Espirito Santo. Goiabeirns  

Vitória, Espi rito Santo. Brasil  

9 de Janeiro dc 1995  

E analisado o desenvolvimento de perturbações escalares na Teoria de lirans-Dicke(TBD). 
Assumindo a equação barotrópica p = ap, estudamos os seguintes casos: vácuo(p = 0), 
inflação (a = —1), radiação (a = 3), matéria incoerente (o = 0). 

1. Descrição do Modelo  

O ponto de partida da TBD é de se considerar C dependente do tempo atravt;s da introdução de um campo 

escalar  ó. 
A ação na TBD d dada por: 

o^ 
i = d4x f[—óR+ ^u( P

' !4 
	)+ lliT%mao)  

Através do Principio Variacional, impondo a métrica de Itohcrtson-Walker e 

um fluido perfeito, obtemos as equações de movimento: 

R 	R2 	k 	Sr  p + ul(P — p) 	¢ R 

exprimindo a matéria cm termos de  

(2)  

•• 
 (3)  

( 4 )  

(b)  

	

[ 	]  +2 R: +1 R "- 	;3+2u, 	4R  

—31. 	(1  + w) 	 u , 	, 	1 
"" + 	+  It 	

- 
7`p 
	(3 +  2w )  (P — 	̂_, o - 	7' 6  

á + 
 R0 = 3 + (P 3P) 

= —3—(P + 

Perturbando as equações de base, considerando k = 0, p = rtp e o calibre síncrono, temos as trés equações para 

as componentes da perturbação na métrica, h;^, h;^. fi a , além das equações perturbadas para o campo o e da 

conservação da energia: 

I 	R 

	

.1 R2 [Vhij — hjk.i ,k —ll;k.J ,A• — l=kke^ ,j ) — 21i^1 	ZR [a^l hkk — i+^i] " 

R= 	 8ar 
— h 

	

(w—u,a+ 1) Sa 	 +w) — 
 R1 

[2h;^ ó ;j k k] _ 	R = ë 	 — á_ p ;í ó 4 	+ — (Ph^j(—n — 	(1 — :33(111+(3 + 'lw ) 	ó 	(:i

(] 

 + 2u )  

+R. ^ó; 1 óp[a + ( 1  + w) 
 (1 — :3n))] + +  ó4:; :5  (3 + Iw) 	 ó (6)  

•E-mail: SERVITOONPD2.UFES.BR  

(I)  
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•1 	1 	 87r 	¡ 	u, 	l _ 
— ! (R.(—hkk,i+hik,k)) , [ = Ó póU (1+o)+ ó.^ód;1á;r +õbu:i ;r 

I 	f,H 	(R^— !tR} 

 

	

Sir 	(3wo +w+ 2 +:icr)  
2h= 

 (hkk —  2  {{ hkk + 2 	R _, 	hkk) = — ó'-  póó( 	
(3 + 2w) )+  

+ ^ [óp
(3wa 

3 + 2m 
 +3o)  2w ópo ^ + .2u' óó¢ — ó., óc,o + ^ãc, 

(3 	 ) 	ó 	v -  

A,;.••  R3 h kk^y, 
R^ 72  -4)—  ,^^3hkkP +3Hóó =  : i +lw^p(I 	 o) 

 

6,6 +34(1 + o)H —p( 1 +n)( '1R '= 1rkk 	 = O !^? iikk — óU'.;]  

Descrevemos agora as soluções para o modo escalar.  

• Universo sem matéria(p = 0):  

A 	{J (011 1 
r JI( I I _r r1 )+ L.rf ' I' m( 1 ^ —rr ](lf +Cu  

onde A = 6,  

• Universo corn matéria (p # O)  

•• lnflaçio (o = —I): 

A 
 

= ^ { J (C
1 1^J^( I —rl' )+ +v k( r1 ` —r T C:21—"'— 	)jr1^ +C3}  

= 0  

onde , =  r' 
•• Radiação (o =  s ): 

41
(1)  = 6r=' — 13r+6 {  JV(E)  f , l

( 	e , 
-Vv(E)  ` 	]d1+ 

qti 	 J 13 r rVI, (ti)Jv(^) — :\
r
y(ti)Ja<(E)  

+li'u(E) 
 J 13 1 3r ( Jy(E)Araï(E)v(j),.(E)rv,. (E)

)dt} + CI J„(:)+  

+ C: tit (E) 4.12-2r 
r4  ,^r 

onde = [_^ .  

•• Matéria IIICoere[lte (o = O): 

, (1) _ ^ { J  1 T( ¡J,.(E) J  f•'(,1) 	1- 4  Iti`,^(E) 	d1. +CrJ.(E)+ v^ 	:1^„(E)J;.(E) — A7,(4)4(E)  

1'^J^(E) 	
^(^ d1 + +^:^r,.(E) 

J 
PIA) 
	

+ C 

	

J^(E} ,VU(E) — Jw(E}:^`r,(^)d1 
	:,^1 	̂)] }  

(7)  

(8)  

(15)  
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onde  = ^` F(a) = sr Ï(a) + ^sl(a), e T(a) = 	— ; a. 

Em relação aos resultados correspondentes da Relatividade Geral, observamos a existência de oscilações para o 

caso p = O. Entretanto. para os outros casos as características gerais são as mesmas. Em particular, as perturbações  

de densidade são nulas para o caso de inflação. 
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Um Cenário Cosmolôgico Anti-Big Bang  

F'l^vio Gimenes Alvarenga e Júlio César Fabris  
Departarncnto de Física. Universidade Federa! do Espí ri to Santo • UFES  

Au. Fernando Ferrari s/n . CEP 29060-900 Vitória - ES, Brasil  

Introdução  

Unta generalização do campo de maxwell escrito sob urna 3-forma, que preserva sua invariãncia conforme à seis  

dimensões. pode ser acoplada à gravitação nesta dimensão. A redução dimensional ao espaço físico revela u n t cen  
círio costnológico com gravitação ordinária e dois canipos escalares: um campo ,: originado cia métrica relativa ao  
es paço-interno e o outro deriva do campo conforme.  

As soluções cosmológicas, classificadas em função da  natureza da matéria acoplada. descrevem nm Universo  
Primordial infinito em sua origem e caracterizado por urna fase inicial de contração. Tal comportamento define  
uma Cosmologia Anti-Big Bang.  

Analisa-se no âmbito deste modelo a produção de entropia no Universo físico.  

O Modelo  

As equações de Einstein em presença de um campo conforme (3-forma F, t , A „t ,) podeis ser escritas à seis  
dimensões conto:  

1& 1N  — -li :tfN R. = 8aGTA,N + FAt rt, n , 1'N^` A ' — ^9ArNF,t„t,,t , Fa"t"t' 	 (I )  

A métrica hexadimensional descrevendo um Universo físico homogéneo e isotrópico assume a foros  

ds -  = 9AfNde u dz N 	 M, N = o. 1...., 5. 	 (2)  

900 = + 1  

9AIN = 	9.j = — a(i)=( 1 + kr - ) — te*.i1 (ij = 1.2.3)  
9ab = —u(t)Ó a b 	 (a.b = 4.5)  

Esta métrica nos permite definir a geometria do espaç o- tempo em termos de gnrr  e e = ¢2 , o campo ele gravitação  
e o campo escalar associado às dimensões internas, respectivamente.  

O tensor momento-energia TA/N deverá conter as pressões p c p' relativas aos espaços físico e interno:  

T00 = c(t) 

TtrN = 	T J = —p(t )9ii 	(i, j = 1, 2.3)  
iab = —p'(t)9ab (a. b = 4.5)  

A definição de Foab = 	como a única componente não-nula do campo de ntaxwcll generalizado determina  
uen sistema  dr. equações acopladas para a, e e tlr:  

a" 	n'= 	 e" 	n' r e 	I te' 	I  
3--9 = -2rG(3e+3p+2p')a s --+3--+— --.4  a 	a- 	 e 	a ti 	2 I,- 	2  . 	(4)  



f  

As linhas indicam as derivadas em relação à coordenada repararnetrizada O (dl = a3d0).  

,! 	 , 111 	
1 a _ 4112  

= 27G(c + p — 2p')a
6 
  — 	+ 42 	

(6). 
a 	a' 	 a u 	2  

u"+A`u = 47G(c -3p+2p')a6 u 	 (6)  

‘11 1  = 1  u  (7)  
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Soluções Cosmológicas 

As equações de movimento podem ser agora resolvidas de acordo com a forma da matéria acoplada, através de  
equações de estado barotrópicas p = crc e p` = o'e. Uma classe de soluções analíticas pode ser obtida para os casos  
rt = a' = 0; a = 1, a' = 0; a = i, a' = 0 e a = a' = 1. Neste paper analisaremos os dois últimos casos:  

a) Fluido de Radiação (p = , p' = 0)  

( ao 	tanr' 
aO  l ) = 	 (8)  

(9)  

O estudo assintótico da solução (8) exibe mais claramente o comportamento do fator de escala relativo ao espaço-

físico. O fator de escala a evolui inicialmente segundo  

a oct -° ' r= 	 t 	—0)  

revelando um Universo que começa infinito, mas com uma rápida fase inicial de contração. Para tempos maiores a  

evolução do Universo modifica-se para  

a oc t +o.ss 	 t-- c+o(0 —ar)  

de modo tal que o Universo passa a expandir-se à urna taxa próxima a descrita pelo Modelo Padrão. Portanto. o  
Universo possui distância própia inicial infinita entre quaiquer pontos do espaço-tempo, contraind o-se rapidamente  
at é que seu fat or de escala atinja  um  valor  mínimo diferente  de zero, a partir do qual o Universo evolui em expansão.  

Essa forma de evolução cosmológica determina um cenário Anti-Big Bang.  

0 campo escalar u associado ao espaço-interno evolui de modo a compactificar as dimensões internas.  

se 10 1 — tan 2 1/6 e  

u(0) = uoscnO  

b) Matéria Rígida  (P=C,p' = c)  

ca° u` = Al = etc.  

a(0) = 	
no 
	tan- 

10
— 

seriA0 	2  
(10)  

u(0) = u°senAO  

L ( 16a:11 + /1 - tio"  ) r/? 
S = 

13-A 	2u0 2 

Urna análise cia solução para o raio do Universo (10) revela uma forte dependência do parâmetro de massa M.  

Esse parâmetro constante está associado ao produto da massa total do Universo pelo volume espacial.  

Para estudar tal dependência é conveniente adotar os valores A = 1 e uo = I para as constantes de integração.  

Como a massa é sempre positiva, pode-se estimar que todas as soluções fisicamemte aceitáveis correspondem a  

Som!  ^±, 
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A evolução assintática da solução (10) é descrita por  

aa t  3._11 2)  

aatt^+'^^^^  

(t -0)  

(t —  c )  

Observa-se uni Universo com fase inicial de contração apenas para s < 	Para s = ! o fator de escala a(t)  é 
inicialmente constante. Para s > 4- o Universo expande continuamente desde a sua origem.  

Visto que o parâmetro M está diretamente relacionado ao valor de s, a quantidade de materia é responsável  
por notáveis modificações na natureza das soluções cosmológicas. Para valores de M não suficientemente grandes.  

o c enário Anti-Big Bang é preservado, entretanto, quando seu valor é suficiente para quebrar o acoplamento  

gravitaçào+campo conforme, o cenário Big Rang prevalece.  

Problema da Entropia  

Estima-se a produção de entropia no Universo segundo este modelo, considerando a entropia total do espaço-

tempo bexadiiriensional constante. A entropia do espaç o-externo tridimensional pode ser escrita como  

rlSs = — (c 	

+ pi) V3 dy2 	
(12)  

T V2  

onde ë = ú é a densidade de matéria i seis dimensões, enquanto U = a 3  e V.) = ¢= = u são respectivanr.•nte  w 
volumes dos espaços físico e interno. Ao considerarmos o Universo dominado pela radiação poderemos estabelecer  
as relações de  conservação ca 4  = etc e ar = etc. Esta última define para o Universo uma origem fria (o Universo  
infinito em t = 0) e uma temperatura máxima (associada ao momento em que o fator de escala u atinge seu valor  
mínimo).  Sob estas considerações a entropia total ;t trás dimensões não é constante. mas siar determinada por  

Corno II  é zero no origem do Universo (0 = 0) e é praticamente zero hoje (0 — a), a entropia produzida no Universo  
físico e extremamente grande para pequena dimensão interna observada hoje.  
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Cosmic spinning string and causal 
protecting capsules 

Mario Novello, Martha Christina Motta da Silva 
Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brasil 

Received october, 1994 

0 problema da causalidade (do qual a geometria de Giidel [1] é o paradigma) tem sido tratado, na literatura 

cientifica, à luz de duas atitudes: 

I. Geometrias apresentando curvas tipo tempo fechadas (CTC's) são fisicamente inadequadas — G'l'C's estariam 

relacionadas a violações da condição fraca de energia 12] 

2. Geometrias com CTC's mantidas em urna forma que preserve o máximo da Física tradicional, conforme 

trabalhos de Gibbons e Russell [3], Novikov [4], Morris. Thorne e Yurtsever [5]. 

A posição (1) foi criticada por Jensen e Soleng [6], que apresentaram uma solução na qual a existência ou não de 

CTC's não está relacionada às condições de energia. Baseados nisso, apresentamos um modelo teórico, independente, 

das condições de energia. que pode apresentar CTC's ou não. Introduzimos, nesse ponto, o conceito de Cápsulas de 

Proteção Causal [71. Procuramos, portanto, obter soluções das equações de Einstein com constante cosmológica que 

sejam extensões analíticas (mediante o emprego das condições de Darmois-Lichnerowicz de junção de métricas [81) 

de uma geometria com CTC's (Gõdel nesse caso), de modo a eliminar a sua ocorrência. Ambos os modelos obtidos 

têm simetria cilíndrica. 

•O primeiro modelo obtido tem a solução de Gõdel unida analiticamente a uma geometria exterior denominada 

"Gõdel-generalizada, já que recai em Gõdel para um caso especial. Esta solução externa tem fluxo de calor nulo e 

o modelo possui vorticidade constante. A existência ou não de CTC's depende da escolha do raio de junção e dos 

valores da pressão anisotrópica e da constante cosmológica. 

0 segundo modelo tem três regiões: Gõdel (com vorticidade constante), solução de "string" girante generalizada 

(com fluxo de calor não nulo e vorticidade variando com a coordenada radial entre os valores de Gõdel e zero) e 

Minkowski com defeito topológico (apresentando um "deficit" angular e vorticidade nula). A existência ou não de 

CTC's no modelo depende da novamente da escolha dos dois raios de junção e do tipo de matéria existente na 

região intermediária. 

Ambas as soluções acima são independentes das condições de energia no sentido em que soluções com CTC's 

não implicam em violação destas condições. Temos, portanto. que soluções apresentando CTC's não precisam 

ser necessariamente descartadas de modelos fisicamente razoáveis, desde que elas estejam "encapsuladas" (logo 

inacessíveis) dentro de outras soluções sem problemas de causalidade. Este conceito de cápsulas de proteção causal 

seria então uma alternativa às duas visões mencionadas anteriormente em relação à questão da causalidade. 
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Deser and Laurent (1968) explored an alternative linear theory for spin-two field using a 

nonlocal divergence-free projection operator on the matter energy-momentum tensor. Here, 

we extend this theory by including non-linearity of the gravitational field. We show that 

such extended model is indistinguishable from General Relativity. as far as the four standard 

tests of gravity are concerned. 

Any theory that aims to he competitive as a possible description of gravitational interaction should provide an 

explanation at least as good as General Relativity (GR.) does for the so-called four traditional tests. 

We have presented a non-local theory[1] of gravity which was based on an ancient idea of Deser and Laurent. 

(DL)[2]. 

The main appeal of DL model was related to the possibility of dealing with a consistent closed field theory 

without recurrence into the traditional geometrical scheme, which deals with the summation of an infinite series as 

it has been shown by many authors (see, for instance. Feynniann [3]). 

Although DL model has been successful to describe some properties of the motion of a material particle in a 

gravitational field it contains a fatal drawback that appears when gravitational waves are present. The reason for 

this is precisely related to the linearity of DL model, that treats gravity as transparent to gravitons. So, in order 

to solve such difficulty and in the same vein to keep its good properties it seems that a very natural way should be 

the construction of a theory that incorporates both features: 

• non locality: 

• non linearity. 

Following the procedure outlined in DL paper we take as the true equations of motion for the gravitational field 

the non-local for: 

G¿" — 	 rr lü" ). 	 (I) 

Deser-Laurent model corresponds to the case in which the adirnensional constant. n takes the value zero. Here 

we will set n = 1. G¿" is the linear Fierz-Pauli expression for the spin-two field and 1' represents the corresponding 

Gupta [4] energy-momentum tensor. which is quadratic in the gravitational variable ó„". A hat above a tensor. 

as it appears in the above equation, represents the result of the application of the operator P o p that projects any 

tensor on the divergenceless space. 

This is worth considering that our model is compatible with observations, as far as the four standard tests of 

gravitational processes are concerned. 
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A Teoria da Relatividade Geral de Einstein pressupõe urna estrutura de espaço tempo descrita por urna variedade 

semi-riemannian quadridimensional. Assim a interação gravitacional, segundo Einstein, é descrita por um tensor 

simétrico de segunda ordem clássico, o tensor métrico. Isto a torna fundamentalmente distinta das outras 3 interações 

elementares observadas -na natureza. A interação forte, a fraca e a eletromagnética são , todas, teorias locais de 

calibre, quãnticas, descritas por campos vetoriais. 

A despeito de seu grande sucesso experimental e teórico, a Relatividade Geral é urna  teoria clmissica. e como tal. 

acredita-se, trata-se apenas de uma forma limite e aproximada de  urna  descrição mais fundamental, quântica. Mas 

não existe uma teoria quântica para a gravitação. 

Por outro lado, a Relatividade Geral é uma teoria coar implementação global de causalidade, configurada na 
adoção de urna variedade semiriemanniana, que corresponde a urna geometria de espaçotempo estruturada sobre 

superficies caracteristicas. A adoção de estruturas geométricas de espaçotempo mais fundamentais, definidas sobre 

congruencies de curvas bicaracteriísticas e que correspondem a uma implementação local (ponto a ponto) da causal-

idade, pode gerar um formalismo onde o campo gravitacional é expresso em termos de um campo vetorial. corno 

nas demais interações elementares. O carater tensorial da gravitação adviria da estrutura da -  métrica, definida por 

um produto tensorial deste campo vetorial. Mas nestas teorias não existe singularidade. A Relatividade Geral é 

reobtida como uma teoria efetiva de valores médias definidos sobre superfiicies características. 

Busca-se, neste trabalho, re-escrever as equações de Einstein no contexto destas novas estruturas de espaçotempo, 

encontrar suas soluções com simetria esférica, mostrar que elas não tem singularidades, e obter, então, a solução de 

Schwarzschild corno  uma média definida sobre as superfiicies características. 

0 que se pretende, em síntese, é extender para a gravitação o que se fez para as equações de  Maxwell. Neste 

caso, o grupo de simetria é o grupo de Poincare e a variedade é o espaçotempo de Minkowski, que corresponde a uma 

impa ementação global, da causalidade através de sua estrutura de cones de luz. Trata-se de uma implementação 

global porque se exige apenas que os objetos físicos permaneçam em seus respectivos cones de luz; o espaçotempo 
acessiv el a um objeto físico é formado por uma foliação desses cones de luz. Mostra-se que uma implementação 
local da causalidade requer uma estrutura de espaçotempo reais complexa, definida em termos de'  congruencies das 

geratrizes dos co nes de luz. As equações de Maxwell neste contexto tem funções de Green que: 

1. são lineais (definidas ao longo de uma linha) 

2. são conformemente invariantes 

3. não tem singularidades 

4. reproduzem as soluções usuais, com suas singularidades, corno soluções efetivas. 
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Life discuss, in the context of theories involving a massless scalar field non-minimally coupled 
to Einstein gravity, the classical equivalence of ARÓ 2  theories and Bekenstein's theorems. 

1. Introduction 

In the early seventies, Bekenstein [1] demonstrated two theorems which embody a technique of generating exam 
solutions of Einstein's equations: using conformal transformations, he showed that one can generate solutions for a 
conforrnally coupled scalar field case from a minimally coupled one. 

On the other hand, a scalar nonminimal coupled theory can be represented by a minimal coupled one in the so 
called Einstein frame [2, 3). As in the case of the solution generating technique above, conformal transformations 
play a crucial role in the method of finding the equivalent minimally coupled theory from the nonminimally coupled 
one. This second technique is particularly useful in the context of the cosmological inflationary models where we 
can analyze the dynamical behavior of the scalar field from the potential term without the inconvenient presence 
of the extra curvature terms [4, 5]. 

Our aim here is to point out that despite some authors [6] combine these two techniques to extend Bekenstein's 
results. based on the fact that they both use the same conformal transformation and apparently lead to the same 
results, the classical equivalence emerges only in the context of the represetation technique. 

2. Bekenstein's Theorems 

Originally in his theorems, Bekenstein has taken into account scalar field as well as electromagnetic fields. 
However, we are only interested in the scalar field case. so that the theorems are enunciated as follows 

Theorem 1. If g,,,, and á  form a solution of Einstein's equations for a spacetime containing an ordinary scalar 
field ¢. then g,,,, = S2 -2já,,, and 0 = a - t tanh4, is the corresponding solution for a conformal scalar field ç', where 
S2' t = cosh Aú. 

Theorem 2. If g, and 0 form an Einstein-conformal solution then j,,,, = A'<<'=g,,, and Ti; = a - :!t. - t form a 
second solution. 

Clearly the conditions imposed by the second theorem imply that 0 -2  = —(sink Ad)=. So. we can not consider 
g,,,, = í2 -2g,,,, as conformal transformations anymore. 

3. Minimally Coupled Representation 

Let us consider nonminimal interaction of a scalar field ó with gravity given by the action 

.-[9ao, á] = 
J 

d 4 x -t¡ 	+ r'6„4v + 	- Ì%(c9) . 	 (I) 
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where k = 8rG in natural units and A is a dimensionless coupling constant (7).  

We now perform the following conformal transformation in the action (1)  

?v^ _ ( 1  + kA6 2 )9n„  

with the condition  
(I+kA(5 2 )>0.  

After some algebraic manipulations we obtain  

S(g00, á] = J d4 z 	+7.2 (0)9" ° (6 0 45 1. — 1'(01  

where R is the curvature scalar with respect to go',  

I__(ó)  = 1 + a( l + 0A)0 2  
(1 +akó=) 2  

11 (0) _ (I+
1-1 

 Ak62 ) 2  
I3y a redefinition of the scalar field as  

(1' = J doT(ô).   

we find the desired minimally coupled action in the Einstein frame 	

l 

	

S(go p, (Id = J d 	I 	+ f^' v  )„(1)„ — V(4))] 
 

It is important to notice that theories with different coupling constants A wi I generate different theories in the  

Einstein frame, so that the dynamical behavior of the theory will depend on A even in the Einstein frame.  

The advantage of this process resides in the fact that instead of dealing with a nonminimally coupled theory,  

where direct coupling of the scalar field with background curvature does not allow us from making simple arguments  

using the potential. we can study a minimal coupled theory and analyze its dynamical behavior from the potential.  

However, the dynamical dependence on the coupling constant remains in the Einstein frame.  

4. The Classical Equivalence  

Let us take into account. action (1) and suppose that.: i-) 	is massless and ii-) there is no potential term  

(V(d) = 0 ).  
Again, we perform the transformation (2) along with the field redefinition (7). but. now considering them as a  

change of variables. We also suppose that the condition (3) holds.  
We point out that the boundary conditions on the new field (I) are determined from those on the old one 0.  

Hence, we arrive to the following action in the Einstein frame 

	

S(gng , 411 = 	(! fi r 	I 	+ 

v (Du 

(l, y^ 

The new feature is that, independently of the coupling constant. A, all actions are equivalent to the same action  

in the Einstein frame. In other words, whatever the value of the coupling constant. A we have, the same classical  

theory will be described [8].  

5. Conclusion  

In the case of the solution generating technique, considering theorem 1, we can map solutions from the minimally  

coupled case into solutions of the nonmininially coupled case or. correspondingly from the representation technique  

point of view, we can map solutions of the theory in the Einstein frame into solutions of the equivalent theory in the  

physical frame. Hence, if the object of interest is to find new solutions of Einstein's equations, the two techniques,  

in principle, lead to the same results.  
But, if we take into account theorem 2, there is no such correspondence. i.e., there is no equivalent minimally  

coupled theory in the Einstein frame because the transformation performed is not a conformal one.  

and  
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(8)  

(9)  
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So. in addition to the fact that the solution generating technique deals with solutions and the representation  

technique deals with the theory itself, the former do not necessarily obeys the important condition (2) (cf. theorem  

2) which is fundamental Io the classical equivalence.  

From what we have seen, the conclusion is that the classical equivalence appears only in the context of the  

representation technique and it means more than a mapping between conformally related solutions. 
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Espaços de Finsler são variedades onde define-se como mt;tricra  

[!s = F(x`, da''),  

onde F é positiva, homogénea de grau  um  cm dx' e convexa em dxi. Espaços Riemannianos são casos particulares  

onde F = Jgij(rk) dx'dx). Define-se como tensor métrico  

r 	
1 °^'F^^(x.k,xk ) 	

d.5' = r 	r' dx k )dx i drj, 	 (2) 
 iail 

onde .r' = dr'/dl c a implicação segue-se da homogeneidade de F. As equações das geodésicas podeis ser dadas de  

forma similar ao caso Riemanniano:  

d2 -r i i [!r1  dxk 	; 	I ;h O.?hj 	a^fhk 	̂7gjk 
[!s'- +7^k  ds ds = 0; i'jk 	1 `f ^ axk 

+ 
()xj — 

 8Lh 	 (,; )  

Dentre os processos  de  derivação covariante possíveis. tonos a derivada gamma:  

ô X 'd 
= 

X' 
bt 	d^ + r

-  -L1:4  I`ik. = ï;k — g' h  dy^ yP k xr;  (4)  

(Ì.t' 	, i 	h 	i - ik í 	i (NJ ,: 	(^gkh ,i 	01111j^
r  ) 

!J 

vi 	x' -^
rj 

+ 1 hj.Y • l ' h^ - g 	7hkj -  	i; r ' hi + 	I lt 	t)xi I  kt 
 • 
 •  

A relação entre os processos (4) e (5) é dada naturalmente por  6.t'/hl = -t' dxi/dt. A equação do desvio geodésico  

r dada então por: 

24i 
	i 	j .h F k = 	

i 	81'.'„ 	01'J 1, °GI 	(?f^ k 

6.s^' 
+ lj jirkr x 	= u,  	= 	i t 	i)rh 19,4 arh  

onde Cr  = 1/2 (7 1.0  rix k ).  

Sob unia transformação de ponto infinitesimal (dr = coast..)  

(ÌlTA:  VGt 	i ,.r„ 	.; ,.,,r 

vL t  C71h 	+ r^rnkl jh ^ r'rnh I j k 	(h)  

CÏv i  
r = x+ + u'(xt)[!r; • x^ = 7:' +  ( h)  dr  

().C h  

um campo escalar S(x'. x 1 ) se transforma corno 5(r 1 , I.) = 5(r', Xi). ou  

S(x'..i'.) = S(x',.r) + OS 
.)= 	+ (7_5 (^u i^dr + Q(dr)7 . 

ilri 	c7ii c^rj 

(5)  

(7)  

(8)  



r  =  1//r2 + r1 2
+ -^ 

tan 0 = r.= + y2/.7
tan w= J/r 
t =  t. 
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Logo. a função métrica F será invariante sob a transformação se  

1` F = aim 
t 	 4er--0 

F(r', r') -- F(x',  i') OF 	OF í`}c1 1  
r1  = — 	v' + 0. (9)  

r!r [1.: ' 	c̀ iJ 	Úr 1  

A equação acima é equivalente às equações de Killing í',•.gi J (r k ,?) = O. Definindo-se simetria  

invariancia sob SO(3), tenros que a função métrica F 2(44 = 	 y), onde  

esférica corno  

    

R = Jr2 + r2  (02  +sin OW2 ) t 2  

tan o = Jr• 2  + r 2 (112  + sin O02 t) /  t 

tan /3 = r JO2 + sin OW2 /  r' 

tan ¡ = r•O/r•sin O'  

invariante sob o grupo será dada por F2 (r'. i•.') = C(r•. t, R, r.i,,i). Impondo ainda o requerimento de hontogeneidad ,  

sobre F. tenros que a forma geral da métrica Finsleriana quadri-diurensional esfericamente simétrica 1 1  dada por  

= R"Q(r•,t. u. t.i) 

ou. alternativanrente,  

[9i2r/dU2  

= gt I dr 2  + f122r2 (d02  + sin a  Od 2 ) + 1/44(1(+

j
+2 + sin''Od  2dr+g•. 4 r• Jd0 2̂ +sin2 Odt dt+ y1 4 drdtJ 	 (l2)  

onde q ;1  = g;i(r•. I.  n, 3). No  e que só é possível fazer 929 = 0. 1114 = 0 para valores fixos de o e 3. 

Afine de propor equações de campo  cm  espaços de Finsler. extendenros uma  analogia entre as teorias gravita-

cionais de Newton e Einstein, conforme apontada por Pirani. Na primeira teoria, se subtrairmos as equações de  

movimento de duas particuias inlinitesicnalurente próximas, submetidas a um campo gravitaciorlal dado por Atra  

potencial ó.  
d2 xi 	; !Jo 	( 1 = r ' 	06 1 ; • c^'c^ 

—rI J 	 + 	— r 1 	r J 	 
d12 	°J.) 	dt'= 	dr -' 	— 1 C)r^ — E ¡ r)a:' i)x i  

(l0)  

obtemos que o vetor  

e que a equação de  

separação deve  obedecer a equação diferencial  

2; 	_, = 	• = 
rlt 2 

+ II¿F^ 	0 , 	11^ 	rt`J 0i 0xk  

Laplace. V 2 o = q' 1  02 o/Ox'OxJ = 0, válida no vácuo. implica que 11'; = 0. Na teoria de  

(13)  

Einstein.  a mestria situação representada pela equação do desvio geodésico, e o tensor de desvio. pelas equações  

de Einstein para o vácuo. também deve ser sere traço  

D`e II t^t 	• 	c 	•r 	 1 DS•s+. =0. FI A.=Bl rr ee: R1r=R1r,=0 

Ern espaços de Finsler, propomos corro equação de campo para o vácuo que o tensor de desvio seja também sent  

traço:  

	

-t 1144 k  = 0, 	Iljt  = Ii J t ^ .t .1' 	11 = 0. 	 (15)  

Se definirmos uru tensor tipo-Iticci. liar = li1 podemos escrever H = Iiltilit e logo obter !1 = 0 	li  J t = Bi t = 0  

se  a métrica for S euranrriana, mas tal implicação min r rrrdadeira no caso geral Finsleriatio.  

^ 	 =0. 	 (14)  

Afim de obter-se uma solução não-Riemanniana. perturbaremos ern primeira ordem a solução de Sehware,cbild  

dal  = gdr•2  + ra d12 2  — Irdt 2 . df? = JdO2  + sin'' Od, . 	 (16)  
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onde g(r.t,n,Q)=go(r,t)+. (gt(r,1)0+ g2(r,t)$j. h(r.t. a,(3)=ho(r, t)+e [h i (r,t)a+h2(r,Oftgn= 1/ho. ho =  

1--2,n/r e tornaremos a = rdÇl/dt, I3 = dr/dt. Obtemos então (via computação algébrica) uma equação diferencial  

linear de segunda ordem de 636 termos que conseguimos dividir num sistema de equações uma..vez que as funções  

g; e h; independein de d.r . Esse sistema tem como solução geral g i  = g2 = 0 ,  hi = (2m -- r)/r 2 , h2 = h 2 (r), sendo  

que podemos ainda escolher r, t tal que h2(r) _  O.  Logo nosso exemplo de solução nào-Riemanniana é dado por  

ds'- _
(I 2m/r) + 

r'- dS2 2  l i 	
2;7t► 

 I (1 + d ) dt =̂ . 	 (l7)  

As consegiiéncias físicas trazidas por esta métrica, conforme descritas pelos Testes Clássicos da Relatividade geral.  

são tais que o avanço do perihelio de Mercúrio e o raio médio de sua órbita sofrem uma correção de (1 + :I3/.1).  

onde B e .4 silo constantes do movimento, correspondentes à energia c momento angular do sistema (para \lerciirio.  

B = 1. .4 = 9 x 103 Km, em unidades geométricas).  

ó;rr► : 2  ¡ 	B) 	 1 Jyap — 

 _ 	I— E .4 ' < ► >_  < u>  — 	1—_ fl  j.  (I8)  

Podemos utilizar o erro observacional para limitar o valor da correção Finsleriana em I s 1=1 c: 1< 94.5 Km ot ►  

I  E l< 3.15 x 10 -4 s. A solução não-Riemanniana acima não apresenta correções adicionais ao comportamento da  

luz. conforme descrito nos Testes Clássicos.  
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Conjunto Mínimo Fechado de Observáveis na  
Teoria de Perturbações Cosmológicas  
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Tem sido unta prática comum (desde o trabalho original de Lifshitz em 1963) iniciar o estudo de perturbaçòes  

na teoria da Relatividade Geral de Einstein considerando variações de quantidades não-observáveis. conto f+!l,,,,.  
A principal desvantagem deste método é a mistura de verdadeiras perturbações com transformações arbitrárias  

infinitesimais de coordenadas. Este é o chamado problema de gauge da teoria de perturbação. Unia solução para  
esta diftculade foi encontrada por vários autores (J.Bardecn. 1980: B.J.T.Jones, 1976; S.W.11awking. 1966. D.W.  
Olson. 1976. J.C.Hwang e E.T.Vishiniac. 1976; R.Klian e %V.11.Press. 1983: R.Brandenberger. Mukhattov e Feldntatn.  
1992) procurando por combinações independentes de gauge que poderiam ser escritas em termos do tensor métrico  

e suas derivadas. O próximo passo seria então fornecer a cinamica destes objetos através das equações de Einstein.  
que seriam então utilizadas para descrever quantidades fisicamente interessantes.  

Aqui seguiremos o caminho inverso. mais simples e direto. Isto é, escolheremos desde o inicio como base da nossa  

análise um certo conjunto de objetos independentes de gauge fisicamente observáveis. A dinamica destes objetos  
será fornecida pelas equações Quasi-Mlaxwellianas da gravitação. Além disto, qualquer quantidade dependente de  
gauge com a qual usualmente lidamos — por exemplo, as perturbações na expansão O ou na densidade de energia  
p — podem ser obtidas a partir deste conjunto. através da equação de conservação de energia e da equação de  
Ravchaudhuri.  

^I métrica de fundo é Friedman-Robertson-Walker escrita cm coordenadas gaussianas: rfs 2  - dt + 
g;1 dr' dr7  , g;7  = —.4(t) 2  -yij(zk) . Nesta métrica, o tensor de Weyl IVá o u„ e suas partes elétrica EF,„ e magnética  
II,,,, são nulas: são. portanto, objetos independentes ele gauge (vide Stewart, 1974).  

Seguindo Lifshitz, expandiremos todas as quantidades perturbadas na base de harmônicos. Nos  restringiremos  
ao caso de harmonicos escalares Q(rk), Q = 0. isto é, não consideraremos as contribuições rotacionais nem de ondas  

gravitacionais às perturbações' . Desta forma, qualquer objeto poderá ser escrito como  

F(z`') = E .71 "' ) (t)Q(1" ) (r ') .  
, 7i  

Para não sobrecarregar a notação, daqui por diante omitiremos o somatório e o indice (m). Usaremos as seguintes  

definições: Q ;  := Q. ;  e Q;1  :^ Q ,;1  , onde o escalar Q obedece à equação v 2 Q = mQ, com símbolo p' denotando  
o La laciano tridimensional. O operador  sem traço 	é definido como  p 	 p 	 S Q^^ 	 Qt7 :=  

Desta forma, expandimos as perturbações na parte elétrica do tensor de Weyl, na 4-aceleração, no shear e lia  
expansão:  

SE;f 	E(t)Q,:,(zk),  ba; = kl)(t)Qi(zk),  óe•;3  L--.2:(t)Qii(z k ), 60 _ H(t)Q(r R ).  

Consideraremos que o fluido perturbado obedece à meseta equação de estado antes e depois da perturbação: p=  
A p; hasta então escrevermos a perturbação tia densidade de energia na base de harmônicos: Sp  F.  .V(t)Q(r k ). Ad-
mitindo um fluido onde a pressão anisotrópica fj seja proporcional ao shear  escrevemos hflii =_ C `_:(t)Qii(r k ).  
Admitiremos ainda que a perturbação não provoca fluxo de energia.  

I  Note  que isto impli ca  a inexistência de perturbações na parte magnética do tensor de Wryi.  
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Agora. podemos perturbar as equações Quasi-Maxwellianas e substituir as expansões na base dos harmónicos.  
Admitindo que (1 + A) # O. obtemos um sistema dinâmico fechado para as variáveis E e  

_— E —^^` ,.+rn tl+ 

(e+
//, 	

— z
l
f^ E--¡

4
t;'+ 	

2
(l+a) 	

1 p +^1 	r ^e `^+ ^ ^ 

onde  
2 	( 	3K 	, 

onde  E é a 3-curvatura do espaço-tempo de fundo. Se (1 + a) = 0, torna-se necessária a existência de um fluxo de  

energia q, _ q(t) Q;(i k ). As equações Quasi-Maxwellianas fornecem, então:  

N= 
Irl

r!  4 + Oq+ N = 14., (I—
:31~•1

.`".. 
A 2 	 3A 2 	rn  JJ 

r 	 ¡ 
(E--Er+ - (E---)=— I  q, ., [ 1 — ^rl 

(E 1`^`)=—^`—O q, 

que também formam um sistema diuãmico fechado, t uas para as variáveis  N.  q, E e E.  

Esta abordagem permite uma formulação hamiltoniana das perturbações. Apesar de E e não serem variáveis  

canonicamente conjugadas, as novas variáveis= P := :l(e) E e Q := I,'  o são ,  e obedecem à dinâmica fornecida pela  

Ilamiltoniana abaixo no caso E _ 0:  

1 ( 	?rna 	r 	3K\\  ,., 	1 + a l 	,  
2A 	(I + A)p:1= 	Ilr 	 4  

Esta Hamiltoniana é do tipo ?-1 = — 	P2  + ,̂ w=  Q'-  — inn oscilador invertido — se. para A < — l ou A >  0 

tivermos  

nit, para —1 < A < O. tivermos  

3!. 	1 + A p.4 2  
1  — /Pi  < 	A 	2r11  

Isto indica a instabilidade do universo de Friedman-Robertson-Walker sob perturbações de um fluido sem pressão  

anisotrópica 	= 0) e sem fluxo de energia.  

311 	I + A  p: 12 
 

1 — — >  
I1! 

 
A 	21 1!  

• 7 Note que a variável Q apreecitada a seguir não tem relação a!g 	a c 	hanuónico Q(rk).  
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Using the theory of Jordan matrices we discuss the algebraic classification of second order 

symmetric tensors (Ricci tensor) on five-dimensional (5-D) Lorentzian manifolds.. extend-

ing previous results on this issue. We show that a symmetric two-tensor R can be classified 

in four Segre types and their twenty-two degeneracies. Using real half-null pentad bases for 

the tangent space T,(A!) to :V at p we derive a set of canonical forms for N q b, generalizing 

the canonical forms for a symmetric two-tensor on 3-13 and 4-I) space.-times manifolds. 

Introduction 

The algebraic classification of the Ricci part. So, of the Iiienunan tensor in 4-I) space-times (Segre clac ilìcat ion) 

has been discussed by several authors (1] and is of interest in understanding some purely geometrical features of 

space-times (2] - [4], in classifying and interpreting matter field distributions (5] - [10], in determining limits of 

note-vacuum space-times (1 l], and as part of the procedure for checking the local equivalence of space-tittles (12]. 

Kaiuza-Klein-type theories in five and more dimensions is of interest in at least. two contexts. In gauge theories 

they have been used as a way to unify the fundamental interactions in physics. From a technical viewpoint. on the 

other hand, they have been employed as a tool for obtaining exact solutions in four dimensions [13]. 

In this work we briefly discuss the algebraic classification of second order symmetric tensors defined on 5-I) 

Lorentzian manifolds M. extending previous results on this subject. 114. 15]. For a detailed account of our results 

see ref. (16]. 

Classification and Canonical Forms 

In this work M is a real 5-D manifold endowed with a Lorentzian metric g of signature (— + + + +).  

denotes the tangent vector space to M at a point p E AI. and any tensorial lower case latin indices range from tl  to 
•1. 

Let Rqb be the covariant components of a second order symmetric tensor R 	p E .1l. Given R„b we may tt5e• 

the metric tensor to have the mixed form R°b  of R at 7 r,(M). In this form the symmetric two-tensor Ii may lw 

looked upon as a real linear operator R : 7,(Af) — T,(Af ). If one thinks of R as a matrix R. one can form s late 

• INTERNET: 7 AN1LO'1tzDFTE.UPRW. BR 

INTERNET: RfiBOUCASOCAT.C8PP.B11 

I  INTER-uET: TEIXEIRAOCAT.CBPP.SR  
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the eigenvalue problem 

Rab  lib  =Aó¿V b , 

where A is scalar and V b  are the components of a generic eigenvector V E Tp (,il ). The fact that we have Eab  rather 
than gab on the right hand side of equation (0.1) makes apparent that we have cast the non-standard eigenvalue 
problem involving the hyperbolic (real) metric Rab V b  = A gab lib into the standard form (0.1) well known in linear 
algebra textbooks. However, Ra y  is no longer symmetric in general and the eigenvalue problem (0.1) gives rise to 

the Jordan block diagonal matrices. 

When all eigenvalues of R are real similarity transformations exist under which Rab  takes at p either one of the 
following Jordan canonical forms [1G]: 

A, 1 0 0 0 A l  1 o O 0 A, U 0 0 0 
0 A i  1 0 0 0 A, 0 ü 0 0 A 2  0 0 0 
0 o A, a o 0 o A, u 0' 0 0 A3 0 0 
0 o o A: 0 0 0 0 A-, 0 0 0 0 A4 0 
0 ü 0 ü Aa 0 0 o U A4 0 0 0 0 A5 
(a) Segre type [311] 	 (b) Segre type [2111] 	(c) Scgre type [1,1111] 

or one of the possible block-degenerated Jordan matrices. Ilere Al, - - • . A, E R. The Segre type is a list of digits 

inside square brackets, where each digit refers to the multiplicity of the corresponding eigenvalue. which clearly 

is equal to the dimension of the corresponding Jordan block. The comma in type [1.1111] is used to separate 

eigenvalues associated to timelike and spacelike cigenvectors. We remark that the Lorentzian character of the 

metric g on :1•'1, together with the symmetry of Ra b, rule out the Segre types [5], [41]. [32] and [221] and degeneracy 

thereof (see ref. [16] for details). 

When Rah  complex eigenvalues one can show [16) that it. is necessarily diagonalizable over the complex field and 

possesses three real eigenvalues, i.e.. only the Segre type [_ I I I] and its specializations arc permitted. 

As far as the canonical forms are concerned. although the most general decomposition for the Ricci tensor in 

5-D is given by 

Rob  = 2 P ll(a  nib )  -t-p2la'y + pa r a rb +P•t Ua!!b+ fi,: a :b + pG rn a mb 

+2 P7 1(azbl + 2 Ps l(aJb) + 2 p'. .  lta =b1 + '2 pm  rrttnró) + 2 pill/(.Jo 

+2)912 rll( a .b) + 2  P13 rtaJb) + l p1A r(n=b) + 1 P15 y(a=bt • 

with m 	Pis E P., it is possible to show [16] that. semi-null pentad bases with non-zero inner product 

la ►7ra =ra l, a= ya Ja = 	= I 

can he introduced at a point p E A•1, such that the possible Segre types and the corresponding canonical forms for 

a second order symmetric tensor R at p E M are given by 

Segre type 	 Canonical form 

[1.1111] Rab = 2 Pi lt  a rrib) + P2 (la lb + rn a  iilb ) + Pa Xal7 b + P4 !MN  + P5 =a =b 

[2111] Rab = 2 PL /Ia m b )  ' a lb + p3=nrt, + P.7 !!a!!b + P5 =a =b 

[31l] Rab = 2 p, l(a iTi b)  + 2l0arbt + pi  rn rb + P4 ya!!b + p5 =a=b . 

[z R111)  Rab = 2  PI 1(a rr1b1 + P: (lilt, — tilarnb) + P3 r a 2eb + P4 Jallb + Ps =a=b n 

(0.4) 

( 0 . 5 ) 

(0.6) 

(0.ï) 

and the twenty-two degeneracies thereof. Here pi , • • , ps E C? and p•:  # O  in (0.7). 
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Distribuição Angular de Múons 
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Utilizando urn aparato experimental composto de detectores tipo -streamer . obtemos o 
fluxo diferencial de nrtions próximo ao nível do mar entre os singelos zenitais 0 °  - 30° 

I. Itntru duGão 

lltions da radiação cósmica produzidos na atmosfera terrestre são facilmente detectáveis e podem  ser usados como 

li ma fonte de informação a respeito da direção de chegada e composição dos raios cómicos primários. Utilizando 

um módulo de trajetografia composto de detectores tipo "streanmer"[1]. detcrininaulos a distribuição angular de 

nrtions próximo ao nível do mar (937 g/cm 2 ). Para tais medida~ torna-se irnlrortante uni sistema experimental ttuo• 

possua como unia de suas principais características a possibilidade dr. observação visual de trajetórias de partículas. 

O registro da trajetória possibilita de unia forma direta a determinação da distribuição angular de raios cósmicos. 

sendo esta informação necessária na transformação de taxas  do  cont.agent en: intensidades e na identificação de 

intentos de tnúons individuais, eventos de chuveiros atmosféricos densos. clétrons altamente energéticos. etc. Os 

detectores tipo "streamer". operando em regime saturado coin auto-apagamento [2]. fornecem uma ótima medida 

de densidade de partículas, além de uma excelente resolução angular. 

2. Aparato Experimental e Medidas 

O aparato experimental  consiste de 5 planos horizontais de área ti 1111 2  cada, sobrepostos a unta distancia 

50cr11 um do outro. Cada plano contém 96 tubos -streamer" dr. secção transversal  Ixlcm"- . cuja tensão de trabalho 

é 4590V. 0 detector utiliza uma  mistura Cerniria dc gases consistindo dc Ar/iC 4 II1nCO2 na proporção 2.ã/9.5/<8. 

respectivamente. A informação necessária para obtenção das coordenadas (x,L) de cada plano onde há a  passagem 

 de partícula através do detector. indispensável para a reconstrução rias trajetórias, é obi ida através da leitura digital 

de sinais induzidos ern fitas metálicas colocadas externamente e ortogonalmente  sobre cada plano. A discriminação 

dos sinais é feita por cartóes de leitura LeCroy 4200. onde o limiar de discriminação do sinal do fio apodo é 20tn 1'/50 

0 e limiar de formatação 4OOns. Os dados dos eventos registrados pelo aparato são decodificados  e interpretados 

para a reconstrução das trajetórias das partículas. Tais dados são obtidos originalmente através das coordenada.; 

x e V. sendo por este motivo que os traços são reconstruidos ene dois planos independentes. ZX e ZY. sendo Z 

a coordenada vertical do telescópio (fig.1). A reconstrução dos eventos e feita por ura programa de computador 

desenvolvido pelo nosso grupo [3]. cujo algoritmo verifica o paralelismo  de todas as retas entre quaisquer  dois ponto- 

cm planos diferentes. 

O fluxo estimado de partículas ao nível do mar  é da ordem de 500/nt 2s. Isto representa urna alta taxa de eventos 

a serem detectados e a inviabilidade (devido a enorme capacidade de armazenamento requerida) de operação do 

telescópio por um tempo prolongado, necessário na observação de anisotropias [4). Entretanto, o alto fluxo de 

partículas permite a verificação da distribuição angular em poucos dias. aléntl de fornecer dados suficientes para a 
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Figura 1: Cópia da Lela gráfica gerada pelo programa de reconstrução de trajetórias.  
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Figura 2: Ilistograma dos iugulos zenitais de múons a 937 g/cen a .  

estatística de desempenho do detector. Para limitar o fluxo dc eventos no telescópio. introduzimos nnt tempo tnortn  

une representa o dobro do tempo eni que o experimento fica  em  aquisição. Os dados foram cnlhiclrs durantee 20  

dias ininterruptos. Neste período selecionamos e reconstruímos :i1000 eventos dc intions individuais. equivalendo  

a unta taxa de eventos de 65/h, permitindo obter a distribuição diferencial de t u úons (fig.2).  

3. Conclusão  

Montamos e calibramos um telescópio de moons composto dr. detectores tipo "streamer -  dr secção transver-

sal lxlcm?. Testamos e monitoramos seus 800 canais digitais de cartões de leitura, onde veriftcantos a tnellior  

relação entre a largura dos clusters e eficiência de detecção. Colocamos o telescópio ene funcionamento por 20 diai ,  

ininterruptos e selecionamos cerca de 31000 eventos de unions que satisfizeram as condicocs dr. "t rigger  

A distribuição experimental angular diferencial de tnúons é influenciada fortemente pela ge2o 11 -L et ria tio te•le .cópiu.  

Atualmente estarnos estudando  tal  efeito através do desenvolvimento tie expressões analíticas para a abertura de  

telescópios retangulares, o que nos permitirá obter a distribuição angular integral e o valor do expoente n na  

expressào I(e) = !U) cos" 0 [5), usualmente utilizada  em  distribuições deste tipo.  
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A oscilação entre os mesons 	— 	é urn dos dois exemplos de oscilação partícula-antipart.icula. 11111 fenómeno  

quântico, coin consequências macroscópicas, o outro sendo a oscilação li ° —  li °. Este fenómeno foi observado pela  

primeira vez no sistema B em 1987, pelos experimentos ARGUS. no DESY e UM 1 no  CERN.  

A origem de tal fenómeno pode ser traçada ao carécter quhintico dos estados físicos associados aos 13 °s. Os  

estados mensuráveis, com massa bem definida, são autoestados do operador CP, enquanto que os estados 13°. coin  

sabores de quarks hem definidos, existem como superposição quãntica,  

B°  = 13 1  + 132 	 = B t  — 132  

f  

onde B t  e B. são os autoestados físicos. Ao serem formados, por exemplo. na aniquilação e+e - , os ntésous 13 tern  

um  sabor bent definido, ou B °  ou 8°  uma mistura ele Bi e  B.  `o entanto, se 13 t  c B•, tiverem massas diferente  

irão decair com vidas médias diferentes, portanto a composição de um estado (não físico) B° irá modificar-se ao  

longo do tempo. Quando o méson decair, o fará com sabor bem definido. A probabilidade de  urn  méson 13 decair  

cotim seu sabor original e rendo oscilado para o anti-sabor é dada pelas expressões 

• PD_11(t) ^ 1 exp -  n` (l+cos '' )  

., (xt)  

= eCp -- - cos"  
Y r  

onde 6rn é a diferença de massa  rrtb i  — rn¡J ,
, r. = 	e r =  ^. 

A probabilidade integrada total do méson 13 0  decair como 13° é então  

1  (,..2F.) 2
^  

1' =  1  

1+ { [ )- 
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Ilã dois tipos de ntésons B neutros. dependendo do sabor do quark que acompanha o b, B?(dó) e o B;(.b). A  

diferença de massa entre os estados físicos podem ser calculadas teoricamente, a partir dos diagramas de transição  
(q h) -- (y b) e tent a forma. cm primeira aproximação,  

ruq - 	F oe1m1eí f ( 	J r1QCD ann [  1"18 1  r9  I .  Ga- 	rrrïv 
 

onde q =d. s .  
( )= 	

+ 
	9_ 
	:i 

2(1 - 1 

	3 r'^Inr 
F 1' 	

1(1 	 r,) 	 r.)= 	2(1 -r) .  

tIQCD e: une fator de correção devido t QCO. tendo valor IIQ C•D _ 0.35 na aproximação do próximo termo logarit-

micamente dominante. B é uni parametro associado ao modelo de snr•o!us (coto valor I)  = 1.0 ± 0.2 em  simulações  

na rede). fp ISO ± ã0 MeV e 1'4  e 1 74  são os parâmetros de Kobav'ashi-Maskawa. A medida de ..Iin permite  

acesso aos paratnetros de 1' obayashi-Maskawa associados ao quark  top.  

Os experimentos com a colisão e+e -  a baixas energias (ARG US e CLEO). produzem apenas D,°. pelo decaitneuto  

do estado T . em contraste corn o LEI' onde no decaimento do  Z° são produzidos ambos sabores dos  B.  O valor  

experimental medido para a diferença de massa para o f3,t, polo experimento CLEO. £d = 0.69 ± 0.10 ti cotnpativel  

coin o valor medido por DELPHI, :d = 0.77 ± 0.1S(rstat) ± 0.09(•gst)  ou 

:lrrtd = [3.29  ± 0.79  ± 0.:191 10 -1  e V/c.  

O valor de r, é muito maior do que xd portanto o período  de  oscilação dos 13, é menor  do que para Bd e piais  

dificil de ser observado. O intervalo de valores para r•, compatíveis com o modelo padrão é 5 < x, < (-- 1(10).  

Na medida do valor de bmb mencionada acima. DELPHI  usou a estratégia de identificar o sabor do meson U  

em cada hemisfério e medir a distancia do decaimento ao vértice principal. Neste trabalho estamos usando ultra 

 estratégia diferente, medindo a dependéncia dos sabores decaindo, conto função da distancia entre os vértices de  

decaimento. ajustando os dados it convoluçüo das probabilidades de decaimento corn e sem oscilação.  

rosc(d) =  j d1dl'(1+1 ' -d) [P13_11 (I) 111_11( I' )+ 'P13_ (i)'Pii n(1')} . 
 

Este  método reduz o erro sistemático quando comparado com o método convencional e as  distancias a seront  

medidas tem  um  fator duas vezes maior. Este método é dependente da precisão na medida dos parâmetros  de. 

impacto das trajetórias carregadas e torna-se particularmente útil cont o novo detctor +le microvértices de  DELPHI.  

que mede todas as coordenadas dos parâmetros de impacto. quando aplicado àt medida de .r,. Os result ados  

preliminares obtidos até agora são bastante encora,jadores.  
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Identificação de partículas pela medida da  
perda de energia em detetores de silício  

Denison Souza-Santos, Ronald Cintra  Shellard  
Depto rir. Física - PUG-Rio  

Received october. 1994  

A perda de energia de urna partícula carregada, por ionização, ao atravessar a matéria, é forternente dependenre  

da sua velocidade. Se a velocidade da particula for muito maior do que a velocidade orbital dos eléi runs no material  

atravessado, a perda média de energia por ionização 6: dada pela equação de Bethe-líloch,  

(I L'' _ 	Z 1 [, n  , 
 —'laNA r;rne c - z 	'   
	2 ^ 

seind° os termos relevantes desta fórmula, a dependência ele a e ;..  

Esta dependência na velocidade da perda de energia por ionização tem sido usada para identificar part icula, coin  

massas diferentes.  nas regiões de nlornento entre algumas centenas de Mc  V/c` até cerca de 2 Gcl%/r.-, ene detetores  

destinados a medir a trajetória dc partículas. Tipicamente tem sido usadas para este fim canraras cio tipo TI'('  

(Time Projeelion Chambers) ou cãmaras de jatos. onde; os sensores cia ionização apanham um sinal proporcional  á 

quantidade de elétrons ionizados, consequentemente um sinal proporcional s perda de energia da part  ¡cu i a.  

O experimento DELPHI, tornando dados no anel de colisões LIT. no CERN, te rn  na sua parte central  irar  

detetor de alta resolução, para medir a passagem de partículas carregadas. A principal função deste detetor 4' a de  

discriminar os vértices primário e secundários. formados na reação. na região de central de colisão. permitindo a  

resolução entre vértices separados por dezenas de microns. Este detetor é formado por trés cantadas concêntricas de  

detetores de microliitas de silício. Cada detetor de silício tent a espessura de cerca de 300 microns. atravessadas pelas  

part ículas carregadas. O sinal colhido pelas fitas é proporcional à quantidade de elétrons liberados na ionização elos  

átomos de silicio. Normalmente, no uso deste detetor. a altura dos pulsos d usada apenas para calcular a posição  

relativa da trajetória. cm relação a duas fitas contíguas.  

Neste trabalho demonstramos que este detetor pode ser usado também no modo de identificação. pela discrim-

inação de pions, haons e prótons, na região de momento abaixo de 1 GeV/r.=. A motivação para este trabalhove'nl  

do semi  aspecto complementar identificação das partículas pela perda de energia na TPC de  DELPHI.  Por outro  

lado. no novo detetor planejado para a região frontal do experimento, composto apenas por detetores dr. silício~.  

este modo oferece a oportunidade iinica de identificação de partículas. A perda de energia por ionização tem 11111  

comportamento  estatístico, tendo caracteristicamente tinia distribuição de Landau em torno da perda media, de-

scrita pela equação dc Bethe-Bloch. Quando da leitura da perda ele energia na TP(: de DELPHI. são tomadas 196  

amostragens cia quantidade de elétrons ionizados, permitindo então a reconstrução cia perda média. ajustando-se 

 urna gaussiana s região de perda de energia mais provável. Ern contraste. no detetor de microvértice são tomadas  

apenas trés amostragens da perda de energia, exigindo uma tratamento mais criterioso dos dados.  

Para corrigir os dados e calibrá-los sio necessários vários passos:  



1). Souza-Santos, 	C. SheJinrcf 	 1.13  

1. Definirnos o pulso associado a urna trajetória  tomando o valor  do  pulso na fit a  corn  maior razão sinal/atido  

somado aos pulsos nas duas fitas adjacentes. 

2. As trajetórias são normalizadas para aquelas atravessando a placa normalmente  à superfície, multiplicando-se  

o pulso por  um  fator l/ cos(0), onde O é o ângulo formado pela trajetória corn a normal ao plano da placa de  

silício,  

:t. Para calibrar os ganhos da eletronica de cada amplificador. o detetor é subdividido nos módulos de cada placa  

amplificadora. O detetor de  microvért.ices está dividido cm 24 módulos em  cada unia das :3 a u nadas, cada  

módulo em 4 placas de silicio independentes e cada 128 fitas é lida por um amplificador. num total dr. 5 por  

placa. Para cada unia destas 1440 unidades fazemos um levantamento do espectro dr. Landau dos pulsos.  

Cada pulso físico é então renormalizado para tuna curva de Landau padrão.  

•1. Para encontrar a perda de energia média associada a uma determinada trajetória. coletamos os tres pulsos  

rettornnalizados e aplicamos rum algoritmo que ajusta unta distribuição de Landau mais provável à :';rie.  

extraindo. então. o valor médio da perda de energia.  

Neste algoritmo construimos a probabilidade:  

P(X)_11 NIA + (Xi —.1• ) —bd.  
1= 1  

onde 130 e ba  sio parâmetros que caracterizam a distribuição de. Landau de referencia. j, ,  é a (listrihuiçào  cl 

Landau. Xi são os valores dos pulsos coletados e X é a variãvel era relação à qual P maximizada. O valor  

máximo de. P é dado pela solução da equação:  

_0 
^=u fr.(13a* (Xi —.\')—ba)  

mid,.  f►  =  ^. r 

j,([A). (.1;—.l') —bit)  _  
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MICROSUL: A Cosmic Ray Muon Monitor 
Um Monitor de Raios Cósmicos 

kgiipc Microsul: Eduardo J. Pacheco (IAGUSP). Li ly Silva(CUPF) Ernst W. Hamburger (IFI'SP 
Hélio M. Portela(IFUFF)..José A. F. Pacheco (IAGUSP). Jorge Horvath (IAGUSP). Luis 
Galhardo (IAGUSP), Manoel T. F. da Cruz (IFUSP), Margaret, O. Silva (CHIT). Nihon 

A. Alves (CBPF). Olácio Dietzsch (IFUSP). Regina H. C. Nlalcionaclo(IFl l'F). 

Walter Velloso (IAGUSP). A. F. Assis (Cl3PF). C. A. M. Mesquita (C13PF). 
E.. M. Bubo (IFUSP). F. Salemnze (IFUSP). Laura M. R. Falco (IFI'SP). 

M. A. R. Guimarães (C13PF). ]Marco A. Schmidt. (IFIISP). 
Marcos Mansuet.o (IFUSP). S. A. Pereira (IFUSP) 
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1.Experintento Iblicrosnl 6 urn telescópio eletrônico de tuu ► tns de alta ouerl;ia 

\Inons produzidos por Raios Cósmicos prit n ãrios na alta atmosfera. 

Mede ilistrihuição angular dos unions rósnricos ao nível do solo. F icarã ligado p.•rtuancntetn eule. 

I:xperimnento inspirado em MICRO de I'rascat.i, Italia. 1087. (C.Battistoni et al. ,Nnovo C . :irrn•wwio 11C (1!i5 

17:► ) 

Em altas energias: direção do nanou = direção do R.C. 

Precisão na determinação da direção 	I° 

2.Monitor do fl uxo de unions de alta energia eta função da direção ►  e du troupe 

Os Raios Cósmicos Prirn ãrius são 	isotrópicos 

Anisotropias estreitas (= fontes discretas)  foram  relatadas por vários grupos nos anos 80. mas não foram confir-

madas em experimentos posteriores: somente tna, localizada na nebulosa do (:arangueijo. foi encontrada crn 1! 092. 

Inns com pouca intensidade, muito menor que relatada anteriormente [v. revisão "I'.('. 11'eckes . Space Sri. Rio. 

59(199'2)315]. 

MICRO (Frascati) procurou fontes discretas, mas não encontrou: estabeleceu limite superior 	IU''rm - ' 
Se houver anisotropia estreita intensa no hemisfério Sul. Mierosul deve identilicai-la. Além disso. vai medir a 

distribuição angular. o espectro de energia e a variação corn o tempo  dos  union ► s do E >10 GeV. 

3. Aparelho 

Seis pianos paralelos cada uni de  lnt x lm 

Dispostos ern ►  faces opostas de rim cubo Ima 

Cada plano contém 96 tubos de Icm x lcm x lOOctn 

Tres planos ent cada face do cubo (Ver fig. I). 

Partícula que atravessa os planos produz ionização 

Permite determinar coordenadas r; , y;  das interseções 

Seis pontos, uni em cada plano. determinam trajetória (Se Ião estiverem  em linha rota. invento o rejeitado). 



Equipe  M icrosril 

96 tubos de 1 x 1 x 100 cm 3 
 em cada plano esc. 1 : 100 

Iig.I. 

4. Muons Horizontais 

Absorção Atmosférica 	elét.rons e ont.ras I<irriculas. 	innons acima de ^- IU GeV podem penetraraiú o  

contador (Ver fig.2). 



DETETOR 1M2  

RAP)  OdSMICO 
PRiMliR10 

I'tg.2. 

146 	 XV Encontro Nacional de Partículas e Campos 

a 
14 - ti's80 k l!! 

TERRA 

A espessura da atmosfera verticalmente é 1 kg/cm', que absorve muons abaixo de — 2 GeV. 

Horizontalmente a espessura é 36 kg/cm 2  , E >75 GeV 

O fluxo de muons horizontais é » verticais para E > 1TcV (v.p.ex. P. Lipari, Astrop.Phys. 1 (1993)195). 

(Ver fig.3). 

Fig. 3. 

5. Local 

Copula de telescópio ótico desativado no lAGUSP 

Horizonte livro cm 360°. Altitude 780m. 

Infracstrutura instalada: ar condicionado, eletricidade, para raios, sistema de gases, etc. (Ver fig.4). 
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Fig. 4. 

6. Contadores  doados por INFN-Paclova 

Peças fabricadas teor fol.11i.Tecl., Itaha 

( 'outadores a gás. tipo 'streaincr' limitado (tubo larocci) 

Est ri n tira de plástico isolante (P C.Noril) 

Mistura $8% gás carbonico, 1% Argonio, 8% Isobutano 

Pressão atnlosfcrica. fluxo continuo 1vol/4511 	I/h 

:Inodo lio central 100 micra. tensão contínua 5000V. 

('atodo resistivo de carbono depositado sobre o plástico. Send°  resist iro. permite passagem de sinal por indução 

( "¡pickup") do interior para clet.rodo externo (faixa ou banda tnrtálica colada sobre plástico do contador). 

lonizaçao provoca multiplicação U strcail1Crs )localizada 

('arga local no tubo induz cargas cut bandas externas !16 batidas x . acima . e 96 bandas y abaixo de cada plano. 

liandas metálicas isoladas, 	acta x Itn cada. 

Sinais ela.: bandas 	5 tnV. duração 	GO us (a•,til.Tcccltio, '('esc de  Laurea. Padova. 1959; (;.larocci, Nucl. lust. 

Met. 217 (1983) 30: A.C.Fauth et al. Rev.Fis. Apl.lnstr. 7 (1992)31) (\'cr figs. 5 e G). 

Fig. 5. 
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Fig. 6. 

7.Moutagem dos contadores: 

Oito tubos cm cada peça 

Verificação da resistividade do catodo 

,Montagem das hasctas e dos apodos 

Colagens e teste dc vazamento 

(Foi produzido um video dc 11 minutos de duração cut que se mostra. em detalhe. a montagem cios contador , ”-: 

n video foi pensado para instrução de montadores de tubos no futuro). 

8. Condicionamento de Alta Tensão 

Fluxo de  pis  para eliminar oxigenio 

Mistura CO2. Ar (e isobutano) 

Eleva gradualmente A.'I'. até 11800 Volts 

Eni cada tensão, aguarda corrente diminuir 

Valor ideal abaixo dc 120 nA/m ou IinA/octotubo 

Aceitável até ;lrnA/octotuho. 

Efeito do isobutano sobre corrente média: diminue dc 0% a 20%, depois quase constante. (Ver 



Equipe :1licrosu! 
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9. Misturador de Gases  

Pulmão ntisturador corn palha de aço inox. Fluxômetro de massa corn controle atitunrítico. (Ver figs 8 e 9).  

No CBPF , rotametros calibrados  

10. Efeito do isobutano no gris do contador  

Nove octotubos. já condicionados em  Alta Tensão  durante vários dias. tiveram a proporção do isohutarto variada  

de 0 a 59% várias vezes durante algumas semanas. A tensão foi fixada em 4800V. e a figura mostra a corrente. em  

função do fluxo de isobutano e da data. A corrente é baixa. mie nanoatnpères. e Ilut.ua muito a cada instante -  Ato 

u n i fator dois. Os valores mostrados são médios. Para cada valor do fluxo de isoh n tano. observa-se unta redtiçao 

 da corrente ao longo do Ines. Além disso, há uma nítida diminuição da corrente quando o isobutano aumenta.  do 

I I1A a 0% até 	SuA a 59%, corno se espera para tuim gás apagador ("quenching ) (Ver fig. 1).  

A densidade da atmosfera p cm função da altitude = acima do nível do atar pode ser bent aproximada pela  

exponencial (T.K.Gaisser, Cosmic Rays and  Part ide Physics. Cambridge Univ.Pre s. 1990; P. Lipari. loc.cit..I093):  

p(.) = p01: - 01: / '  onde po = 1030g/cm 2. A = 1300m  

:\ 

 

altitude  do detetor tio IAG/USP =u = 780m, p(:n) = 0.904pu = 931g/cttt 2  

A espessura de ar atravessada pelo muon que incide em angulo ; coin a horizontal. cm g/cnt 2  . t dada por  

	

Ter 	/ 

	

tá(7) =pu A+:^,: 	,r•( ► ) 

onde fr = (i380ktn é o raio da 'Pcrra e  F(7) dá a variação angular:  

^ 	1 1  
^-' 	 J 	F - ^^r11 ='' 	{i  

n  

4I, 

 

()tide.  

ir)  
=  

T  

A variação angular de P(7) é muito acentuada, de ()todo que a espessura de atmosfera atravessada pelo 11111011  

função crítica de J. corno mostra a tabela abaixo e o gráfico  
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Plana Gráfico 9 

Fig. 7.  
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Fig. 8. 

Fig. 9. 



152 	 XV  Encontro Nacional de Partículas e Campos  

11. Espessura da atmosfera eift função do angulo de incidência dos muons  

0°  2°  4 °  6°  ti°  

1'(7)  270 139 88 65  5.3  

D(7) 35 18 11 8,4  6.9 kg/cm .-  

Ernin(7')  87 43 16 1 9  16 Ge V 
 

90 -  
80 -  
r0 -  

ENERGIA 60 -  
MINIMA 50 -  
MUON 40 -  
(GeV) 30 -  

20 •  

10 -  
0 •  

0 

 

2 	4 	8 	9  

ANGULO COM HORIZONTAL  

eiiu.le a liltima tiriba daí a energia tniuitua de mitous que atravessais a espessura D. calculada a partir da perda de  

energia de  unions  relativisticos ciii Nitrogenio liquido (\V.Lohinana cri al. C'ERN 85-03 Iteport,I985).  

A 0°  só podem chegar ao detetor muons que na alt a atmosfera tinham mais do que 87 GeV. A '^° o valor iniiiiturr  

,1  •13 (kV.  e  nssiiil por diante.  

A  medida da distribuição angular dos unions Ct portanto equivalente a nula medição do espectro  

integral  de energia no intervalo de 10 a 87 GeV.  

1&iatnos admitindo que os ntuons produzidos na alta atmosfera silo isotrópicos, assim como os raios cósuticos  

(11ie os produzem. Aaisotropias, se existirem, são pequenas.  

12. Estrutura Mecfiuica  

Fatsr• de  Projeto  

13. Eletr(itica  

('anões "front cnd -  LeCrov 4200 testados  

Sistema de Aquisição de Dados eia fase de projeto  

I•:Ieironica CAMAC, computador PC386 Descrição detalhada no trabalho que acompanha este: "Sistema au-

tnittatizado para teste.calibração aquisição de dados para eletronica "F R.ON'I'-END"em tubos de larocci". Equipe  

NIIC'ROSUL: E.  W.  Hamburger, E. Silva . et.al .  

14. Cfílculos espalhamento múltiplo. Monte Carlo  

Efeito  do Campo Mlagnético da 'Cerra:  

Em andamento.  

Teste de resolução angular: sombras elo Sol e da Lua.  

15. Nova doação do INFN/Padova  

Estamos recebendo ti  10 000 tubos dc Icm xlcin x 5n1  

Eletronica (cartões) associada e suporte titecanico.  

Provenientes dc experimento  N:V 

l: possível construir telescópio dc volume  —80 vezes maior on quatro telescópios vinte vezes maiores. 
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Busca de Mésons 77 
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Os dados experimentais da colaboração Brasil - Japão de ltaios Cósmicos (CBJ) mostram 
a ocorrencia da produção múltipla de mésons a eira interações hadrõnicas (IH). Entretanto. 
corno  estes mesons sio detectados através de seu decaimento em 7's. é possível que outros 
mésons que nào o r possam ser identificados. Este trabalho descreve os esforços feitos no 
sentido de identificar a produção de mésons il era) IH usando os dados da CBJ. 

A  CM  utiliza como detectores pilhas de materiais fotosensiveis (filmes de Raios-N e placas de emulsão nuclear) 

intercaladas com placas de chumbo. As Ill pollen) ocorrer na atmosfera (A-Jatos) ou ent alvo localizado (C-Jatos). 

Os A-faros são normalmente identificados no conjunto de detectores chamados de cãmara superior. e os ('-Jatos 

n:+ ++mara inferior (o alvo localizado. ulna placa de material rico em carbono, se localiza entre a  cantara  inferior e 

a superior). Os detectores estão arranjados de tal forma a permitir a identificação do vértice da III e a energia dos 

's resultantes desta interação. Conhecendo a energia dos ;'s e altura da III (posição do vértice) é possivel. através 

ela cinemática do decaimento 7r° — 7 - 1- 7.  identificar est.atisticarnente os pares de ;•'S provenientes de um tnéson 

re. O acoplamento estatístico consiste das seguintes etapas. Primeiro. usando a relação: 

1_' i  L•'_e R12 
II t 

(que relaciona a altura da interação H¡ com a energia dos 7's E1 e E2 produzidos, a distancia 11.12 entre os ; s 

e a massa dc repouso do méson 1 f e ,e E ro„ que decaiu nestes dois 7 's ), determina-se o valor dc 11r para todas 

as combinações binarias dos 7's, supondo que todos foram produzidos por r°'s. Como a altura da interação 11 é 

ronhecida t , seleciona-se os pares do 7's que apresentam valores de IIt compatíveis com ll . Em seguida o valor médio 

dos II r selecionados é calculado e o valor obtido é usado na expressão acima para se obter o valor de  M.  para todas 

t+s combinações binárias dos 7's trio  utilizados para a determinação da altura. Con) isso obtém-se a distribuição 

de M,_,. Os histogramas seguintes mostram as distribuições assira) obtidas usando-se os dados experimentais de 

A-Jatos  o C-Jatos. Nota-se que nas IH do tipo Mirim não aparece sinal dos ris, enquanto que nas do tipo Açtí 

surge um sinal. A CHJ, através de estudos da distribuição angular. momento transversal, massa invariante. etc. dos 

dados experimentais, verificou que as 111 podem ser classificadas em Ires tipos. Mirint. Açtí e Cuaçú. 

e \e,s C-Jatos íi é conhecida  corn boa t>reeas:+o, visto que u ulvo é localizado. 
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Sistema automatizado para teste, calibração 
e aquisição de . dados para eletrônica 

"front-end" em tubos de Iarocci 

M. P. Albuquerque. N.  Alves.  U. (Ïernicchiaro. M. Q. N  S. Silva. E. Silva 
í'entm Brasileiro de Pesquisas Físicas 

O. Dietzsch. F.. W Hamburger 
Instituto de Físera da l¡nee>ersidade de São Paulo 

L. Galhardo. J.  Horvalho. H:, J. Pacheco. .I. .4. F. Pacheco.  W Velloso 
Instituto .4stronórnico e (;eo/íaico - USP 

R. Maldonado. H. Portella 
Universidade Federal Fluminense 
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Dois tipos de cartões foram estudados: LeCroy e SGS-SLI). Apresentamos as características desses cartões e 

do funcionamento conjugado com os controladores S'TOS e STAS em barramento CAMAC. controlados por u rn 

 microcomputador através de interface GPIB. Para o gerenciamento dos sistemas foram desenvolvidos softwares em 

linguagem C. Para cada tipo de cartão (LeCroy e SGS-SLD Caen) desenvolvemos sistemas especiais que exercem as 

seguintes funções: ateste de funcionamento de cartões: b)calibração do limiar de corte: c)obtenção de curvas, para 

cada cartão, da eficiência em função de threshold e curvas de tensão de entrada em função de tensão de limiar para 

eficiência máxima. Para este fim utilizamos geradores de pulso e voltímetros programáveis por GPIB, desenvolvemos 

interfaces DAC e ADC e o software de controle e teste da simulação. Foram criados métodos de controle de aquisição 

e desenvolvimento de bibliotecas de funções de programação para futuros trabalhas no experimento. 
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Análise do Evento do Tipo Centauro 

S.L.C. Barroso, P.C. Beggio, A.O. de Carvalho, M.D.O Marques 
R. de Oliveira, F.R.A. Revollo, E.H. Shibuya 

Instituto de Física `Cleb Wataghin' 

Universidade Estadual de Campinas, Unicamp, Campinas - SP 

and 

C.R.A. Augusto, C.E. Navia, F.A. Pinto 
Instituto de Física, Universidade Federal Fluminense, Niterói-RJ 

Apresentamos alguns resultados de análise preliminar efetuada em evento com características 
diferentes dos eventos de Produção Múltipla de Mésons. 

Durante a exposição da câmara de Emulsões 16 (CE-16), pela Colabora ção Brasil-Japão de Raios Cósmicos, foi 

detectado um particular tipo de Interação Nuclear que, após várias remedições e análises constatou-se características 

diferentes de.outras interações normalmente detectadas. 

A câmara de emulsões em questão ficou exposta à Radiação Cósmica durante 370 dias e continha 7,8 cm de placas 

de chumbo. alternadas com filmes de Ft-X tipos N e 100 em sua estrutura superior (câmara superior), enquanto que 

na parte inferior (câmara inferior) foram utilizados 15,0 cm de chumbo alternados com 15 filmes de R-X tipo N e 

100. . 

Algumas características que diferem essa interação nuclear (denominada Centauro V) das interações normais 

(resultado da Produão Múltipla de Mésons) são a seguir apresentadas: 

a) Presença de grande número de chuveiros eletromagnéticos (63%) originados por hádrons (diferentes de 7°). 

Os critérios utilizados para identificar chuveiros eletromagnéticos originados por hádrons foram: 

a.1 - chuveiros detectados só na câmara inferior; 

a.2 - chuveiros com curvas de transição com 2 máximos; 

a.3 - chuveiros iniciados após 4 cm de chumbo na câmara superior e 

a.9 - chuveiros detectados na câmara superior e que continuam na câmara inferior. 

Nas interações normais o número de chuveiros originados por hádrons é ménor do-que 30%. 

b) Distribuição de energia fraciona!, que corresponde ao parâmetro x de Feymman, concentrada numa numa 

região diferente das interações normais, [1). 	- 

c) Expoente do espectro de energia fracionária. integral (de chuveiros originados por gamas e hádrons juntos) 

diferente das interações normais. Os valores encontrados foram: 

QCen :ouro v 	1.33  ± 0.17 

l3tnt. Normais = 1.06 ± 0.09 

calculados pelo método de máxima verosimilhança. 

d) Alto valor de momento linear transversal dos hádrons (W ) ) indicando possível mecanismo de Produção 

Múltipla de Partículas diferentes de Mésons, que são as partículas predominantemente produzidas nas Interações 

normais. 0 valor determinado, por máxima verosimilhança, foi: 
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p;' )  = 267 f 43 

Conclusão 

O evento classificado corno do tipo Centauro apresentou várias características tine o excluem da categoria de 

eventos de Produção Múltipla de Mésons (eventos normais). A análise indicou também que esse evento é compatível 

coin a formação e decaimento isotrópico de estado intermediário. • 

Referência 

(1] - Re-analysis of Exotic event - S.L.C. Barroso et al . VIII Int. Symposium on Very Iligh Energy Cosmic-Ray 

Interactions - Julho/1994 - Tóquio-Japão. 
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Detector for Measurements of Cosmic Ray Tev 
Electrons Based on their Synchrotron 

Radiation in Geomagnetic Field 

:1.t1.Gtt5cv, I.\11.ti11tLrtin, C. I.Ptlgachcra. A . T'urtcEli .1r. 
!lriicanip. Il G'lt. Cornpina+, SP. llrn,i! 

1.Introrlttctiuti 

The primary cosmic electrons appear to be small part of the total cosmic ray Ilux. 	1%. 13uí, its spectrum 

[Alerts important astrophysical processes in the sources of particles, their lifetime. properties of the interstellar 

media where electrons propagate on the way to the Earth. During the lifetime the electrons fill in the storage 

region. The interstellar media of the region contains magnetic fields. Interstellar matter of a small density and 

radiation fields of star light and blackbody photons. Passing this space electrons loss the energy by ionization. 
rev ere  Compton scattering on star light and blackbody photons and emitting of synchrotron radiation photon:, in 

magnetic fir Ids. The scale of the electron energy losses in the Galactic Disk is shown in Fig.l. 

The electron energy losses in the Galactic Disk. Fig.2. The high energy side of primary electron spectrum. 

The electron spectral shape is changed by propagation that. described by two models: Leaky Box and Diffusion 

Models. The Leaky Box model suggests the regions of origin and storage of electrons are the same: the electrons 

are moving in the space freely, without diffusion, only interacting with the media and leaking out from the storage 

region. The equation for Leaky Box model is 

rl(rV(E) • cl1 /(1!)/d/J+ N(E)/71 = 11 L•''' 	 (1) 

mlEfdt. T1. . !i E'-energy losses. leakage lifetime and a production spectrum. The solution of equation for high 
energy electrons: 

:V (E)tlE = li is -' /1)(-7 + I )d 	 (2) 

:1 Leaky Box model is criticized because it suggests hontogenic space distribution of electrons at. a storage region. 

just as for all galaxies, seen by observers on the edges. have the intensity of radio emission (generated by synchrotron 

radiation of relativistic electrons) decreasing with the distance from the galaxy plane. 

Ginzburg ct al.(1990) work out the Diffusion Model with a stationary diffusion equation: 

d(:V( fs)•d!:' /d[)/dE+ Div (D•yr•r,d(N(F_))) + N(E)/TL = K 	 (:S) 
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Here D= Do VAc -  a diffusion coefficient depending on an electron energy E and on a distance of galactic plane z.  

The modern values of /1=0.4 - 0.6, h = 0.3.7 = 2.2 ± 0.2. The solution of the equation is:  

N(E) 	E-04- "/ 2 +° • 5) , r: < 107'eV N(E) 	E` 17 + 1) . E > IOTcV 	 (4)  

Thus, the exponent of electron spectrum near the Earth is f = :3.0±0.2, 1-  = 3.2 ± 0.2 for Diffusion and Leaky-Box  

Models. The primary electron spectrum is measured with a good statistic accuracy in the range of 30 - hundreds  

GeV (Taira et. al. 1993: Gusev A.A. et aI, 1981; Golden et al, 1984: Tang, 1984. Fig.2) but it is not enough to  

distinguish between two Models.  

• Diffusing, the particles go the distance of A = ^ •  D(E)dE/bE 2 . With DI, 	10 21'. crn 2 /sec electrons at l TeV  

have A 450 pc. and could not arrive to the Earth from other galaxies or Metagaiaxy. they are born in our Galaxy.  

The lifetime of electrons due to the energy losses is r = I/bE. here E in GeV. thus at E=1 TeV r = 3 - 10 5  

years. During this time near the Earth's vicinity at a distances less than 450 pc 5-15 Supernova (SN) flashed up  

(Nishimura et al. 1980) that could be the sources of the particles. When the range of electrons has the same scale  

as a distance from the source, peculiarities of the spectrum connected with the particular sources could appear.  

Thus, measurements of' the electron spectrum at several TeV promise an excellent. astrophysical information.  

At several TeV energy range an exposure factor of 3 • I O ° rn -',sr• - .sec is needed to get 100 electron events at more  

2-3 TeV (see Fig.2). 'thus we must measure one year with an instrument of 100 rn'sr. Traditional spectrometers  

with the lead-scintillat.or shower calorimeter (see Fig.3) of such enormous geometrical factor are too heavy. about 30  

ton, to he launched with a balloon or satellite. Taira et. al. (1993) use the emulsion camera with a geometry factor  

0.1rtr='sr and during 11 flights from 1968 up to now (25 years!) have only an exposure factor 588848 rn 2 sr• 	c. -  

i ig.a The electron spectrometer used on "IINTERCOSMOS-17 -  satellite. Fig.4 The illustration of the method.  

2.The detection of synchrotron radiation photons emitted by electron in geomagnetic field  

Below we discuss characteristics of a device based on a detection of synchrotron radiation of an electron. moving  

in geomagnetic field (Prilutsky. 1972). The proposed detector is of 2x2 square teeters size and consists of 400  

Us' crystals of [Ox1Ox1S cm'. The set of crystals is shielded by an anticoincidence plastic scitu,illator to reject  

charged particles. The weight of detector is 3 tons and planned to be installed ou board russian heavy satellite  

ENEBGIA providing exposure time of several years. The main feature of this method is a sharp increase of  

sensitive area of detector with an increase of particle energy in comparison with the propriate area of detector.  

Spectrum of synchrotron photons is described by:  

= :4.5ti • I0' 1 13 1  - 1 f 	1► rl/a( ►1)dr! 
.^  

(5)  

Isere 1' = E,/Eer;t• Ecrit = 6.67 • 10` 2 131E 2  (E,. F, r; , -  MeV. E - electron energy in TeV), B1- projection of  

geomagnetic induction vector on a vector of electron velocity. The mean energy of synchrotron photons depends  

on E and Bj: E-. = 0.019.131E2 . AI cV, the electron energy in •I -eV. For B=0.3-0.5 Gauss. typical value of magnetic  
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field for altitudes 100 - 1000 kin, and E more than several Tel'. photons have energy from hundreds of kcV to several 

Mel'. The photons are emitted in an extremely narrow cone around electron velocity direction. Mean length between 

photon emission points on the electron trajectory is 1 = 1.5 • I03 B, Trr. The registration of 3, 4, 5 or more photons 

(each one registered by separate Csi crystal) simultaneously in points, belonging to a strait line permits to attribute 
this special picture to a high energy electron, coming near (or cross) the detector. Fig.4 illustrates calculation 

procedure of detector sensitive area. Vector B belongs to the detector plane. Effective (sensitive) detector area is 

defined by the most remote crossing point of detector plane by electron (i,,, ar ). from which u, photons can still 

be placed in the propriate area of detector (2 2 7n 2 ); n,=3. 4, 5 or more, depending on selection criterion. The 

distance from such a crossing point to the detector, x„,,, r , depends on the trajectory of electrons. The effective 

geometrical factor 11( E) is calculated by numerically integration of z,, 1. along the line been its detector plane and 

perpendicular to the line that. is created by registered photons. Also an integration along solid angle is made. For 

E• 1 TeV and n, >3 effective geometrical factor is equal the physical geometry factor with solid angle I steradian. 

At E  •••5 and 20 '1áV S-2 sharply increases 10 and 50 times physical geometry factor. 
The estimation of the electron flux of discrete sources at 5-25 TeV using the solution of diffusion equation 

(l3erezinsky et al. 1990) was made. 

dN/dt — d(N(E) • dE/dt)/dET Ditr(D • gr•rrrl(N(E))) = 6(1 -- to)6(r — r•a)6(z — :o).1oL' 	 (6) 

Air•. t, E) = AE - 1  • (I — E1] 	• c.rp(—. • 4. 2  — r•'/4. )/47r • a • li 	 (7) 

here to. ro. zo, Sri, Ao - moment of SN burst, distant; SN front Solar System and Galactic plane. exporieni and 

intensity of electron spectrum from given SN; h=lkpc - Galo size, k = r/211. The electron count rate of the dew° 

from 11 SN recently burst. in the Solar vicinity with main contribution from Vela permits to feel the  of 

electron spectra at E=20-25 TeV. 

I?. 'feV 6 7 10 15 20 25 
N. 1/year 1030 760 325 110 35 5 
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Performance de Detectores "Streamer"  

em Medidas de EAS  

r1. L^.L'.F3iral..1.,A.Chinellato, r1.C.Fa.utii. E.Ketnp. M.:1.LeiSui de Oliveira, 
H.Nogima., R.C.Rigitano. L.G. dos Santos, 	 \.1lcttgoti Silva.  

M.C.Sottzr•t Jr., r1.'I.'ttrtc:lli Jr.  

irtstilutr, de Física •Glcb I['ntaghirt .  tin iur.rsidade Estadual dc Crtrnpiria.s (UnicarripJ 
 

I. Introdução  

Os grandes experimentos de raios cósmicos são comumente compostos por virias estações detectores it  base  

de cintilaclores phisticos para a detecção dc chuveiros atmosféricos extensos (ou EAS, extensive air shower). Mais  

recentemente, eles estao sendo também integrados por detect ores de "tracking - . por meio dos quais possível ttin  

maior refinamento pela análise de traços de múons constituintes dos chuveiros. Os múons possuem a interessante  

earacteríst.ic.a de preservarem a direção da partícula primária, e a sues identificação é feita através da implementação  

de camadas ahsorvcdoras dc elétrons e positrons.  

A correlação de traços de elétrons de alta energia com a direção do chuveiro é também bastante estreita (cerca de  

100 mrad). Isto possibilita a comparação das direções obtidas do tomai>o de voo da frente de partículas de chuveiros  

coam as dos traços de tais elétrons. `o presente trabalho apresentamos r es ultados preliminares desta comparação.  

realizadas no ambito do experimento EASCAMl' [I].  

2. 0 Sistema de Aquisição  

Foram usados para este trabalho quatro detectores tipo piramide contendo  cada tisna material cintilador plástico  

NE102 e fotomult.iplicadoras Philips XP2010. Este  conjunto  serviu para a clet.ermninaçao da direção de chegada cia  

frente do chuveiro através do método do tempo de võo. A parte de "tracking" foi realizada por um módulo de  

cinco planos de tubos '`streamers" de célula ixI cm 2  (Figura i). Cada piano possui urna área sensível de 96x17  

cm= e sào distribuídos esquidistantemente na altura total de dois metros. Sobre a parte superior do módulo foi  

colocada uma piramide idêntica is outras com o propósito de obter uma curva de calibração do número di' partículas  

(registradas no módulo) em função dos canais de ADC [2]. P ropositalmente não foi colocado material absorvedor  

sobre os detectores para não materializar fót.ons do chuveiro e detectar os elétrons mais  energéticos [3]. O "trigger -

para  a aquisicão de dados do módulo "streamer" (Figura 2) permite  tanto o registro de eventos de unions isolados  

M.  dado pela coincidencia de tres planos. como os de EAS, que é dado pela coincidcncia das quatro piramides. A  

leitura de carga eia piramide sobre o módulo está submetida a este mesmo "trigger".  

3. Análise dos Resultados  

- Na  análise dos dados devemos destacar uns aspecto fundamental: quanto mais energético o chuveiro e quanto  

mais próximo do seu centro, maior é a densidade de partículas. Neste caso a resposta da direção pelo método de  

tempo de voo produz o seu melhor desempenho, urna  vez que fica menos susceptivel its flutuações do mintero de  
particulas na frente do chuveiro. Mas, ern contrapartida contprotncte a reconstrução de eventos por "tracking" cont  

uma enorme quantidade de pontos, o que possibilita um mintero muito grande de traços falsos. por vézes saturando  

coinplet.atttente o detector.  
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A medida que se reduz a densidade de partículas as Outuaçoes da frente do chuveiro produzem maior efeito na 

resposta do tempo de vôo. e o sistema de "tracking" por sua vez obtém melhores resultados. 

Analisamos 15963 eventos adquiridos entre 01/06/94 a 25/07/91. Na Figura 3 e 4 temos os gráficos da diferença 

do Angulo zenital e azimutal respect ivameute. Embora a'correlação seja notada pelos picos próximos de zero. nao 

foi ainda possível determinar onde ela é melhor ou pior. 

4. Conclusão 

possível a correlação de dados entre . o sistema de "tracking "  e o método de tempo de voo como observamos 

nos picos das distribuições dos ângulos zenitais e azimutais. Na sequência deste trabalho procurar-se-.í definir uma 

região con u rm  (cm  número de partículas) onde os dois métodos funcionem em conjunto. Haverá também outras 

duas regiões: urna superior à região comum, onde a reconstrução por tempo de vóo seja mais confiável que_ a de 

"tracking": e outra inferior, onde o 'tracking' forneça resultados corn qualidade melhor que o de tempo de vôo. 

Assim teremos os dois métodos funcionando de forma complementar e unia melhor determinação da direção de 

chegada para o experimento. 

Agradecimentos - Agradecemos o suporte financeiro da Fapesp e do CNPq. 
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Análise de um Evento Multi-Halo  

N.  

Cent ro Brasileiro de Pesquisas Físicas  

R. H. C. Maldonado, H. M. Portella  
Universidade Federal Fluminense, UFF  

Introdução  

Urna característica interessante observada nas experiências que utilizam câmaras de emulsão nuclear e chumbo  

expostas cm altitudes de  montanha  t a existencia de eventos com "halo" na região de energia > 1000 Te V. A  

Colaboração Brasil-Japão de Raios Cósmicos, CBJ. já publicou resultados de seis eventos com "halo "  (1.2). A  

colaboração Pamir observou vários eventos com "halo" e vários "multi-halo que apresentara grande alinhamento  

Futre seus const.ituirites ( 3).  

No CI.3PF foi feita  urna  análise sistemática de 50 blocos da càmara número 24 da 013.1. observando-se um evento  

coin características de "rnulli-halo". O evento é constituído de dois "halos" na região central (500 e 50!) e vários  

chuveiros que se espalham numa área de 11 cm x 18 cm. Os resultados preliminares desta análise são apresentados  

nest e trabalho.  

2. Medida do raio dos halos  

Nos  filmes  de raios X tipo N foram feitas medidas da opacidade D(r,t) para várias distancias laterais r e nas  

várias profundidades t. da cãmara. Para isso usou-se o fotomicrodensitòntetro com fenda '200 pm x 200 pin. A  

partir dai, obteve-se a densidade de elétrons p(r,t) usando-se as curvas características dos filmes de raios X. As  

curvas da densidade p (elétrons/cm'-) para várias distâncias r do centro do halo nas diferentes  profundidades  t.  

foram  construídas separadamente e os resultados são apresentados nas figuras A e 13.  

 

143oi  
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Define-se o raio do halo como a distância lateral (na profundidade onde o chuveiro atinge o máximo) onde a  

densidade de elétrons atinge o valor de 10 6  elétrons/cai'. Os resultados obtidos para este evento foram: 8500 =  

3•3mm; x501 = 3.8mm.  
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3. Medida da Energia 

3.1 Energia do Halo 

O iiúniero de elétrons na profundidade  I. :MO.  foi obtido integrand o-se a densidade de elétrons. p(r.I). ern 

relação a r. Construiu-se a curva de transição do número de elétrons. N e (I). em diferentes profundidades  I.  para a 

paris elos "halos" 500 e 501. Integrou-se o número de elétrons em relação a t . e obteve-se o comprimento  total do 

traço. Z.Z500 = 3.15 x 10 7  e 2501 = 1.70 x 10 7  

A energia contida no halo. E. foi obtida através da relação Ehato = r.Z. onde . = 7.4111eV, Os resultados 

ralculados para cada halo são E500 = 233.3TeV e Esoi = 132.51eV• 

3.2 Energia dos Chuveiros Individuais 

:1 busca dos chuveiros está sendo feita tios filmes de raios X tipo N. tanto na parte dos  "halos.. .  usando o 

riiicroscópio. quanto na parte externa aos mesmos. O método rotineiro de medida de energia está sendo aplicado 

iisaudo-se um fotómetro simples adaptado num microscópio triocular, com fenda dc 230 pm. A curva dc transição 

I) x f é construída e a partir da opacidade máxima determina-se a energia através da curva de calibração. lïiit 

alguns  chuveiros, devido ao seu tamanho. utilizou-se a abertura da fenda de 475 pin e 935 pm. 

Neste evento foram identificados 157 chuveiros. dos quais 29 estão situados na região do "halo" 500. 21 na região 

'lo 'halo" 501 e 107 na parte externa aos "halos".  Dessas medidas preliminares estima-se que a energia dos chuveiros 

individuais seja da ordem de 1000 TeV. 

4. Conclusão 

At raves do estudo de famílias de alta energia como a deste evento detetados em cãmara de emulsão. pode-se obter 

informações sobre fenómenos de raios cósmicos cm  região fora do domínio alcançado pelos presentes aceleradores e 

ctue iein sido estudado somente através de experiências de chuveiros atmosféricos extensos, EAS. A análise deste 

:vento "inulti-halo" permitirá obter informações para a interpretação de fenomenos que ocorrem nesta faixa de 

energia. 
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13. Barton (INFN-Nápolis. Itália), U. Alexandreas, D. Bastieri, G. Busetto, S. Centro, 
M. Cresti. M. i\latiriotti. M. Nicoletto, L. Pcruzzo. A. Pesci, R. Pugno, 

A. Saggion, G. Sartori (INFN-Pádua, Itália), F. Bedeschi. E. Bertolucci, C. Bigongiari. 
G. Mare lli . E. Cocca, C. Marsella, A. Menzione, C. Sbarra, U.A. Smith,, . 

F. Zetti (INFN-Pisa. Itália), F. Liello (INFLA- Trieste, Itália) , D.J. O'Connor. 
R. Paoletti, A. Scribano (Università di Siesta ;  Itália) , A.R.P. Biral. 

.1.A. Chinella.to ;  11. Tatnttra, A.Turtclli Jr (Universidade Estadual de Campinas. Brasil) 

Received October, 1994 

t. Iutroduçtio 

:1 colaboração CLUE (Cerenkov Light Ultraviolet Experience) propõe-se a estudar chuveiros extensos através 

da detecção da luz Cerenkov produzida durante o desenvolvimento desses chuveiros. O detector do  CLUE'  consiste 

ritt câmaras MWPC contendo gás TMAE, sensíveis à região espectral do ultravioleta médio (1900 - '2400 A). Sendo 

desse modo insensível à radiação de fundo do céu noturno c com  um limiar de energia próximo ao de detectores 

Cerenkov convencionais, se espera que o CLUE (atualmente coin dois módulos instalados na ilha de La Palma, no 

arquipélago das ilhas Canárias) tenha um ciclo de operação e um taxa de dados maior. 

Devido à características intrínsicas da luz Cerenkov emitida por chuveiros atmosféricos (como seu carácter 

altamente direcional) temos o CLUE  corno  um experimento adequado a procura de fontes, como por exemplo 

através de técnicas ale on/off Esse trabalho tem como objetivo unia discussão, através de simulações de imagens na 

folociimara do CLUE produzidas por cascatas eletromagnéticas, das capacidades e das características particulares 

do experimento cru questão. 

2. Estudo da  imagem obtida em muna fotocansara de experimentos Cerenkov 

Através da técnica de detecção de chuveiros por sua luz Cerenkov, os fót.ons Cerenkov incidentes sobre uni 

espelho sao refletidos em direção a um detector colocado no seu foco. Poréns, independente do ponto onde o fotón 

ati nja o espelho, esse fóton será refletido a uni determinado ponto do detector de modo que a posição deste ponto 

seja função da direção (ângulos zenital e azimutal) que esse fóton faz com o eixo do espelho (fig 1). 

Mesmo porém considerando o caso de espelhos esféricos, como e o caso do CLUE, pode-se afirmar que, para 

fotwns  coin  pequenos ângulos zenitais de incidência, a distância entre o ponto onde o fóton atinge a fotocil.rnara e o 

centro da mesma é linearmente proporcional ao ãngulo zenital de incidência (fig '2). 

Isso nos leva a nina característica comum a todos os experimentos Cerenkov: em experimentos Cerenkov. a 

extensão do detector fotosensível determina um ângulo zenital rntíximo (ângulo coin o eixo ótico do espelho) que o 

fóton pode ter para ser observado. 

A. mcnzioneet nll:huc1. snstntm, Methods  Phys.  Res.  A263, 255 (1988) 
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3. Avaliação da imagem obtida pela fotocÊtrara  

Esse ângulo zenital máximo, no caso do CLUE (raio do espelho = distância focal = 90 cm; comprimento  
da fotocãniara = 22 cm) tem uni valor de O, nar  4 graus. Esse fato acaba por não apenas excluir urna  certa  
porcentagem dos fótons Cerenkov incidentes de serem detectados, mas também inviabilizar  urna  estimativa da  
distância entre o centro do chuveiro e o espelho através de uma única imagem de fotocámara (fig  a). 

M  

a.r. ̂ • w wra./+r la...+l  a■ •••• wr,ww •■ •••••, l• ■•■■ f ^  4  I  

Figura 3: Distr. angular ucreus distância radial:  a)  sem restrições: b) onde 8 <  

Con' relação a análise de algumas características individuais do chuveiro incidente através da  imagem na fo-

tocãmara, vemos que no tocante ao CLUE, dificilmente poderemos dispor de características semelhantes ao a.nwidth,  

concebido pelo grupo de Whipple cm imagens obtidas usando fótons Cerenkov no vísivel 2  

No caso de Cerenkov no visível, os fótons que atingem a fotocámara são produzidos nas vizinhanças do maxinio  

do chuveiro na atmosfera (cerca dc 8 km de altura). Desse modo, apenas fótons que obedecerem a um estreito  

critério de ângulos azimutais coin relação ao eixo elo espelho conseguirão ser refletidos e atingir a fotocãniara  

(proporcionando a tradicional "elipse" observada).  

Com relação ao CLUE porém, devido à atenuação constante dos fótons Cerenkov ultravioleta na atmosfera  

(onde o oxigénio é o principal absorvedor) 3 , serão registrados na fotocámara principalmente fótons produzidos nas  

vizinhanças do espelho (nos últimos 500 metros). Desse modo. poderão ser registrados pela fotocãniara fótons cone  

distribuição azimutal muito mais larga, resultando assim cm uma imagem na fotocãniara menos definida (fig 4).  

2 T.C. Weeks et all, The Astrophysical Journal 342, 379 (1989)  

1 A.R.P. Biral, J.A. Chinellato, A. Turtelli Jr.,Atas do Ai Encont ro  Nacional de I'articutas e Campos, 207 (1990)  
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Figura 4: a) imagem Ccrenkov no visível; b) para o CLUE (simulação). 

4. Conclusões 

Esse estudo mostra que somente pelo cruzamento de diversas imagens produzidas em um array de espelhos 

será possível a estimativa das características de um chuveiro tais como a energia e a posição de seu centro. So-

mente depois se poderá pensar em um maneira de conseguir um tão desejado critério de separação entre chuveiros 

eletromagnéticos e chuveiros hadrónicos. 

Foi verificado também que, através de simulações de chuveiros eletromagnéticos verticais, em uma configuração 

de array  onde a distância entre os diversos módulos fosse da ordem de 20 metros, o CLUE se mostraria sensível a 

primários com energia entre 5 e 10 TeV. De qualquer forma, estudos on/off de fontes y poderiam ser levados a cabo 

com apenas um módulo. O limiar de detecção, nesse caso, cairia para próximo de 1 TeV. 
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Phenomenological 2D-x 2  Analysis of AGS  
Pion Interferometry Data  

Sandra S. Padula'  
Instituto de Física Teórica /UNESP  

Rua Pamplona 145, 01405-900, Sio Paulo, SP. Brasil  

We here investigate the resolving power of multi-dimensional interferometry by considering two dynamical scenar-

ios that predict similar correlation functions, even though the underlying decoupling geometries differ considerably.  

Preliminary E802 7r -  7r-  correlation data[l]-(3) on central Si -I-  Au reactions at 14.6 AGeV/c are considered for  

illustrating the method. We use the non-ideal inside-outside cascade model of Refs. [4, 5]. In one scenario long  

lived resonances are neglected while in the other the resonance fractions as taken from the Lund model[6). At  

the AGS energy range there is only some fragmentary data[ï] indicating that resonance production could be sup-

pressed. whereas the Lund model predicts similar resonance yields as at higher SPS energies (i.e., f (rr -  /t./) = 0.16.  

f(7r /K) = f(ir /(n+ u')) = 0.09, where f(rr - /r) is the fraction of the observed a - 's arising from the decay of a  

resonance of type r).  

Under idealized conditions the correlation function, C,(k, k2), of two identical pions probes the decoupling or  

freeze-out space-time distribution of pions. p(r), through C2(k t , k 2) = 1 + Alp(k i  - k_,)12 , where h is the so-called  

chaoticity parameter. In the analysis discussed here we assume implicitly that a = 1 because, as we have extensively  

emphasized in 14, 5], fits to data treating a as a free parameter distort the geometrical scales in a further uncontrolled  

way.  

In actual high energy reactions, however. final state interactions, correlations between coordinate and momentum  

variables and resonance production may distort this ideal Bose-Einstein interference pattern (see e.g. [4, 51). The  

correlation function in this more general case can be expressed as[4)  

k 2 ) = 7(q) I I + 
^^( G k

k 

 ) ^AEk I , k's) 	
( ) 1  

where T(q) = (q c /q)/(ePI 4  - 1) is the Gamow factor that distorts the pattern due to Coulomb effects, with q, =  

2.rnrn and q = (-(k1 - k 2 ) 2 ) 112 . The complex amplitude, G(ki, k2), the single-particle probability P 1 (k) cc G(k, k).  

the parameterizations and kinematical cuts adopted when fitting to the correlation data arc discussed in detail  

elsewhere[4, 5, 8, 11].  

To assess the statistical significance of the differences between the fits obtained assuming resonance and non-

resonance dynamics, we compute the x 2  goodness of ft on a two-dimensional grid in the (iT,VL) plane, binned  

with trig T  s bqL = 0.01 GeV/c. In our preliminary analysis reported in Ref.[8], we compared the square of the  

difference between the theoretical and experimental correlation functions and found an unexpected ridge of high  

variance along the qT  = q L  diagonal. However. Zajc[9] pointed out that this feature could have been an artifact of  

statistical fluctuations in ratios of random variables, and suggested that the following x 2  variable  

x z ( i J)  _ 	[A(t,l) - Nti -t Cen(r^ j)B(i,j)1 - 	 (2)  
- {[ofl(i,J)]2  + [.^vt. - 'Grh(i.!)^^(= , 1)1 2 }  

•Partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)  
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should be used instead. In eq. (2), Jet is a normalization factor which is chosen to minimize the average ,V'-  and 

depends on the range in the gT,gL  plane under analysis. The indices i, j refer to the the corresponding gT.gr. 

bins. in each of which the experimental correlation function is given by C„p (i, j) = .Arx x Bft;,1j : ,Cerp(i, j) = 

	

J ) 	( 	-2 

	

Cerp(i, j) (  at i oA(, ,
J) 	+ 44:14 í t ) The data for the 	 A 	and denominator B(i.A±LIB(i. j) 

were obtained from R. Morse[3] with an understanding that the data in this form are preliminary and subject to 

further final analysis. 

The goal of the present interferotnetry analysis is to extract the rms transverse radius, R.T.  at decoupling 

and the rms decoupling proper time interval, Ar. Minimizatioin of the average x 2  is performed by exploring the 

parameter space of RT and Ar and computing the (x z ). averaging over a 30x30 grid in the relative momentum 

region q p, q L  < 0.3 GeV/c. In the vicinity of the minimum. R.T., Arc,. we determine the parameters of the quadratic 

surface 

It (xT i A r))=L min +a(RT — R.To)`+ [3(r]r — Jrp)" 

Recall that the average x• =  over N bins is a random variable with unit mean and rms width a = 2/i7 if the x(i, j) 

are normal random variables with zero mean and unit runs width. For large 1V, the distribution of the mean ,y'- per 

bins is P(x 2 ) oc exp[—(x 2  — 1) 2 /2Q =á ]. For the Al = 000 grid under consideration, a „ 0.047. 

The most direct. measure of the goodness of the fit in this case is tt a  = I(in, i„) — 1 	the number of standard 

deviations from unity of the average A' 2  per degree of freedom. For a detailed discussion see Ref.[I 1] The results of 

this statistical analysis are as follows: for the non-resonance case. with Garnow correct(' E802 data. we found that. 

ITT°  = (4.6± 0.9) fin. ,ro = (3.4 ± 0.7) fm/c, corresponding to (x,;, i„) = 1.098 and n a  = 2.1. For the full Lund 

resonance fraction, however. RT0  = (3.1+ 1.3) fm, Ann  = (I.6± 1.0) fnr/c. with (yT, i„) = 1.104 and ti a  = 2.2. 

The lego plots of the Ganiow corrected data and the theoretical correlation functions with and without res-

onances. corresponding to the optimized geometrical parameters, are shown in Figure 1 for the restricted range 

0.005 < qT, qL < 0.125 GeV/c. Part a) shows the 2-D data in the above range. Part. (d) shows the correspond-

ing experimental errors. In part (b) t he hest fit. (with R'r = 4.0 fin and :fir = 3.4 fm/c over the wider domain 

gT •(1L < 0.3 GeV/c) assuming no resonance production is shown. In part (c) the best fit with Lund resonance 

fractions (RT = 3.1 fm and A  = 1.0 fun/c again over the wider range) is shown. Finally the .. 2 (i, j) for the 

non-resonance scenario is shown in (e), whereas that corresponding to the full resonance fit is shown in part (f). 

Similar large fluctuations close to the edge of small qT and large qL is seen in both cases. However, the overall trend 

suggests that the no resonance fit is closer to the data in the region of small q even though the global x= is about 

the same for both fits. 

The average x 2  per degree of freedom, or equivalently the number of its standard deviations from unity, depends 

on the range of q under analysis. We have tested this by varying the range of the analysis to restricted gT, qL 

domains, ranging from a 1 x 1 grid corresponding to 0.005 < qT, of < 0.015 GeV/c, to 2 x 2, etc. For each n x n 
grid. N = n2  is the number of degrees of freedom and the standard deviation is expected to be a. = >T/n. 14 'e 

obscrved[1 1) a strong dependence of the number of standard deviations from unity as a function of the range of 

the analysis. We find that the optimal fit including Lund resonances is much worse than the fit without long 

lived resonance distortions when the analysis is restricted to the domain qL, qT < Q,,, ar  100 MeV/c. where the 

correlation function deviates significantly from unity. 

We conclude that. multi-dimensional analysis has high resolving power in the domain of physical interest, and 

if these data are confirmed, the present analysis would rule out long lived resonance production models in this 

energy range. However, we note that recent preliminary analysis in ref. [10) seems to give systematically lower 

correlation function values in the small mu, domain, in which case the resonance or an alternate long lived source 

geometry would be needed. In any case, the results show that 2-D x 2  analysis can be used to improve considerably 

the resolving power of interferometry by amplifying in a quantitative way the differences between the data and 

calculations. In general, the analysis could be sharpened considerably by independent measurements of long lived 

(• 1 ) 
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resonance abundances to reduce that source of interferometric distortions. 

This work was developed in collaboration with Miklos Gyulassy, Columbia University, N.Y., U.S.A. 
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(b)  

No—res R =4.6, -r =3.4  

(c)  

Full—res R=3.1,T=1.6  

(a)  

E802 Data  

Figure 1. C(gT ■ gL) is shown as a function g7•.gt for negative pions produced in central Si+Au reactions[1]. The preliminary  

E802 data corrected for acceptance and Coulomb effects are shown in part (a), with corresponding errors in (d). Parts  

(h) and (c) show theoretical correlation functions filtered with the E802 acceptance for cases without and with resonance  

production, respectively. The corresponding distribution of 70r•gL) are respectively shown in parts (e) and (f).  
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The Gcll-Mann-Okubo mass formula has been widely used as a phenomenological tool in 
particle physics but the underlying ba s is for it has not been known. This paper reveals its 
basis and generalizes the formula to S'U(n)(n = 

The Cell-Mann-Okuho mass formula 

M = :110 +;11 t }'-
+M2 (I(I +1)--

1
-i ) ( 1 ) 

where M0. r11t and M2 are suitable constants, ! is the isospin, and V is the ltypercharge, has been widely used as a 

relation among the masses of baryon states belonging either to an octet or to a decuplet. This is a phenomenological 

formula "with no clear physical reasons for the assumptions on which it is based" t 1 . As we will show shortly the 

mason behind the above mass formula is the general formula for the mass of a baryon 

...► , i = h v r (n + l) + hv2(rn + 1) + hv3(k + l ). 	 (2) 

found by De Souza, M.E. ( -'3 . 4) . In the above formula n. m and k are the integers 0,1,2,3,4,etc., and hv; are the 

	

quark masses taken as m u  = md = 0.31Gev, to = 0.5Gev, 	= 1.7Gev, mb = 5Gev and m e  = 174±17Gev. 

For the decuplet. of SU3(u,d,$) Eq. (1) becomes 

;11 = M0  + r11 r  } 	 _ (:3) 

where } is the Irypercharge. The relation among the masses of baryons of the decuplet of SU3(u,d,$) is given by 

	

— :11 a  = :il_ - 	= M n _ — Mi. 
	 (4) 

According to Eq. (2) and to the considerations given by references 2, 3 and 4. r111,•, Ada. 111_ and Mn _ are given 

by 

:1 .1 ,0 = :Ì'1A  = 0.:3 1 (ri+rrr+2)+0.5(k+ I) (5) 

Ma = í1'1h =Ú.:31(r++rrr +k+3)+ ni t  1 (6) 

:ti-1_ = 0.31(n+ 1)+0.5(rn+k -+- 2) (7) 

:11n = 0.5(n+rn+ k+ 3) + rrr,I (8) 

where I = 0, I and rn.„ is the pion mass. It represents an intrinsic pion oscillation in the effective potential formed 

from the strong and superstrong interactions. The equality of the first two terms of Eq. (4) is given by 

0.31(n+ 1) + 0 .5(rn+ k + 2) +0.:31(rr+rrr+ k +:3) = 

2(0.:31(n+ rTr+ 2) 4: 015(k+ I)) 	 (9) 

which is satisfied for any n, and in = k. Actually, instead of we may have either .] or N. For example, 
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• n=0, k = 7n =0, 1.12-0.93= 1.31 - 1.12=0.19; 

• r7=0, k=rn= 1. 1.93-1.55=2.31-1.93=0.38: 

• n 	1. k-rn = 0, 1.43-1.24= L62- 1.43=0.19; 

• n= 1, k=rrr= 1.2.24-1.86=2.62=2.24=0.38; 

• = 2. k = 	= 0, 1.74- L55= 1.93- 1.74=0.19: 

• n=3. k=rrt=0.2.05- I.86=2.24-2.05= 0.1íJ; 

• ... ad infiuit.unr 

The equality of the first term with the third term of Eq. (4) yields 

0.:31(n +77r + 2) + 0.5(k+ 1)-0.31( ►7+3n+ k+ 3) = 

OM" + r7 	k+ :3) -- 0.:31(7+l) -0.5(777 +k+2) 	 (lll) 

which is satisfied for a ny r7. in. k. Again. instead of J we  may have N. F or example. 

• n= rn=k=0. 1.12-0.9:3= 1.5- 1.31=0.19: 

• n = 0, 737+k = 1. 1.43- 1.24 =2.0- 1.81 = 0.19: 

• n = k =O.rn= 2. 1.74- 1.55=2.5-2.31=0.19: 

• ... ad infinitum 

Finally. equaling the second and third terms of Eq,  (4) one obtains 

0.5(r3+r7 + k+ :3) + 0.:31(r3 +r7 +2)+11.5(k+ I) = 

2(0.31(n+ I)+0.=,(7n+ 1•+2)) 

which is satisfied if n = rn for any value of k. As examples one finds 

• n= ► n = k=0 , 1.31 - 1.12= 1.5- 1.:31 =0.19; 

• r7=rn= 0.k=1.1.81-1.62=2-1.81=0.19: 

• r7=7n= I. k= 0.2.12- 1.74=2.5-2.12=0.38; 

• ... ad infinitum 

For an octet of SU3(u,d,$) one obtains 

3R1,á  + :1•fs - 2AIA' - :1fá 
	 (12) 

which in terms of Eq. (2) becomes 

2(0.31(n+ rn+2) + 0.5(k+ 1)) = 

0.31(77+7n+ k+3) - 0.31(77+1)-0.3071+ k+ 2). 	 (13) 

This equation is satisfied if k = in for any n. For example, one has 
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• n =rn =k=0,2x1.12=0.93+1.31;  

• n= 1, rn= k=0, 2x1.43= 1.24+1.62;  

• n =2,m = k = 0, 2x1.74= 1.55+1.93;  

- • ns 3,m= k= 0,2x2.05= 1.86 +2.24;  

• 17=0 , 771= k= 1,2x1.93= 1.55+2.31:  

• rr = k =7n = 1, 2x2.24 =  1.86 +2.62:  

... ad infinitum. 

. 	Let us now try to relate the constants M0 and Af t  to the quark masses. Let. us consider, for example, the  

decuplet of SU3(tt,d,$). In terms of the hypercharge the masses of the particles are described by  

Mn- = :11n  — '1:11 ^: 

,1l= = .11o —  MI:   

= 	:11q:  

 = 	:1'10+ :11 i . 

As we calculated above from the masses of E, E and one finds that rn = k(any pi) and from the masses of 

and `_: one has n = m(any k). Therefore, in terms of }' the masses of E, E and 	are given by 

11f„,n,(}') = 0.31(n+ in+ 2)+0.5(7n+1)-0.19(m+I)Y 	 (18)  

and the mass of fr is the above formula with n = m, that: is, 

Mn-(}') = (1.12-0.19Y)(n+1). 	 (19)  

It is easy to observe that the composite baryons which contain pion oscillations and whose energies are given by 

E = En,rn + a do not obey the Ge)i-Mann-Okubo mass formula. 

From the SU(4) multiplets of baryons made of u, d, s. and r quarks and considering Eq. (2) one obtains, for 

example, 

11^nccc  — 
 M=cc  = !i1_cc  :1'ir r  = Ms,  —  Ma :  

ATWeco — :19n cr  = Aln„ — .11n, = r1'!n  — :lln  

and 

2 M=rc = lNncec + :1Ì^ r 	 ( 22 )  

or more generally, one obtains 

M4i4141 — 	 474441 	= MQ34141 —  11l q74241 = A19 .4'Vi —  :i lq2 4242  ( 23)  

and  

('20)  

(21)  

2 -414141q3 	= 	 A'1414242  (2'l)  
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in which we can consider SU(6). that is, q; may be u. d. c. s b, and t. In the case of considering ti and d. we may  

have the combinations ud, uu, and dd for q;q;. We also may have  

M4ti 4^4^ — 11 4„,434s 	= 	¡11Q1c ,41 - 1L^4i9:4; ( 25 )  

One comes right off to the conclusion that the above formulas look like chemical reactions, such as, for example,  

the reaction  

21VnOH = :Va2O + H2O. 	 (26)  

Concluding on realizes that the Gell-Mann-Okubo mass formula is a natural consequence of the pairwise inter-

acting harmonic potential among quarks, which has its origin in the strong and superstrong interactions. .  
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The most recent detailed data on the unpolarized nucleon structure functions allow a precise 

determination of higher twist contributions. Quark-quark correlations induced by colour 

forces are expected to be a natural explanation for such effects; indeed. a quark-diquark 

picture of the nucleon, previously introduced in the description of several exclusive processes 

at. intermediate Q 2  values, is found to model the proton higher twist data with great accuracy. 

The resulting parameters are consistent with the diquark properties suggested by other 

experiniental.and theoretical analyses. 

Recent data from Deep Inelastic Scattering (DIS) experiments at CER.N and SLAG have provided precise 

information on the unpolarized proton structure_ function FAr. Q=') and have allowed a quantitative estimate of 

higher twist terms [l). 

Higher twist contributions to DIS are expected to originate from quark and gluon correlations; we model t.heni 

here with a quark-diquark picture of the nucleon which effectively takes into account quark-quark correlations. This 

model has been previously introduced and succesfully applied to many physical processes (2), mainly at moderate 

Q 2  values, precisely the region where the higher twist effects have been observed (Q 2  up to 10 - 20 GeV2 ). 

The diquark contributions to DIS have been studied in several papers, mainly taking into account only 

scalar tliquarks. A most general analysis of spin 0 and spin I diquark contributions to DIS has been performed 

iu [:i], allowing for a vector diquark anomalous Magnetic moment and for scalar-vector and vector-scalar diquark 

transitions. 

het us assume the nucleon to be a quark-diquark state. When probing the nucleon with the virtual photon 

in D15 we have then three kinds of contributions: the scattering off the single quark, the elastic scattering off the 

diquark, and the inelastic diquark contribution. 

The expression of the structure functions F. in the. quark-diquark Parton model, is then given in general by: 

F(•Q')— E¡.-(v)+ [-^ F,(s) +E Ftl'} + E¡r(gs} 

SLS 	
g, 

+ E F(''t+ rl:(s_L't'+EI:'t'-Ç) 	 (I)  

41
, 	S t: 	 h t  

where (q) denotes the single quark contribution. (5) and (V) the scalar and vector diquark, and (q..) ((q ti,)) the 

contribution of the quark inside the scalar (vector) diquark. We have also allowed for elastic diquark contributions 

with a scalar-vector (5 — V) or vector- scalar (V -- 5) transition. 
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Considering only the unpolarized structure function F2(x, Q'), the single quark contributions is the usual one,  

! :(9)(z: Q l  ) =  F, Q x g(r ,  Q
2

)  (2)  

where. the quark density number q(x,Q 2 ) evolves according to perturbative QCD. The elastic diquark contributions  

have been computed in [3] and for F2 they read:  

F;s ) ( z ,Q-') = e5S(x)xDS  

!?4 yt ( z .Q`)= ^e¡:V(r)x
{l \l +m^x } D1 

^^\ 
	1 

— 	
y 

D: + Yrrr,v vx l l+ 	
v 	

j D3 {? 
tr1Nx 	 2 ► n,^^x 	J  

ii 
+ 2 D¡ + 

L
D:; 

2 ► 	1 ^ 

r1,` x 	111111  

F•; s _ t ^ 1 ( x ,Q^^) = ^ esS(r.)r.'- rn,vvp'7.  

F.^1
^ 	 1 
_5)( .r ,Q ? ) = —e s l•'(x)r. ='rnNvD•1.  

(i  

where Dc is the scalar diquark form factor, D1,2.3  are vector form factors, and DT is the transition form factor (3].  

S(x) and V(x) arc, the scalar and vector diquark density numbers.  

The inelastic diquark contributions are given by:  

r(qs•v) 
	c ? 	rgS.1 '(x, Q " )1 I 	D`— q g,,• 	 S y'  

for scalar and vector diquark respectively.  

From Eqs.(2)-(4) one can obtain the full contribution of the quark-diquark nucleon model to F2. The terms  

proportional to diquark form factors model higher twists in I)IN. Explicitely they are given by:  

	

HT 	 1 
F ., = E 4.5.(z)20.1 + E  ci V(x)a 	1 + v  

s 	 1 :i 	

j 	

rr1 N x 

	

x D1 -- rnv D' + 2711n• vx ( I + 	v  , 
/  D31 + 

	

r 	
N r 	 \ 	2 ► n,tix 

+ 2  LDi + 2rrl D'
J  +

1 E  ,s.5(r.)x' ►► iNVDT ,y x 	 s  
+ 67  ch V(r.)x= ► n N vD-j. — E c^  rgs (z. Q 2 )Ds  

— ^ 

 V 	 y  ^ 

e 2 	Q - )D¡,  
q,.  

Depending on the form factors, one may obtain contributions decreasing like 1/Q 2  or higher powers. which might.  

be important in the lowest Q 2  range of data. The protons flavour and spin .wave function in the quark-diquark  

model is:  

)P,5'2. — ±1/2 >= f l1 { siuf2[flr{}^ 1 u 7  — 2Vúu)`l^  

^ VL^(^iu)di — ^l̂(u d ) tl} l 	.l cos f2 ti5t„d) rf} ^• 

(3)  

(4) 

(5)  

(G )  
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where t[nd l  stays  for a (ud) vector diquark with S=  = fl, u^ is a u•quark with S;  = T1/2 and so on. The  

probabilities of finding a vector or scalar diquark in the proton are sin e  S2 and cos t  Q respectively. Eq.(7) fixes the  

normalization of the distribution functions:  

S(x) = cos 2  Stfs(x)•  
_ 1  

li 	, sin  

2 
V(„e,f(^:) = 	

3 
s i naSZft•1aai (r)  

^ 
u,(r) = cos- S2f„(r.)  

(I Az) = cos 9̀ S2fd 5.(r)  
.I 	. ^  

u na.,(x) 	= 	,
; 

sin- S2f„,,taa1(J') 

I 	., 	¡ i1 ti, 	(x) = r1 v 	(x) = — sin -  ^f„ , 	4r) (`dl 	.. "Ind) 	,1 	 ^ {adl  

where all f
,s 
 are normalized as f'u  fox = I.  

Eqs. (5)-(7) then give, for a proton.  

( 
F HT  )r  ; — cos t  S [fs(r) -- ['tf„ , (r• Q22 )  

+ fd ç (x,Q 2 ))]xDc + SI 
 sin •'  Q[fvt . 0 (x)  

f( 
 +:tlft 11 (x),J(  [ (i  + 	} Di  - D. 

l 	rn,,• r 	 iil,ti' x  

+ lrrr ,ti ax ` 1+ 	i 
} 

D31+'1 LUI  + •  • D -' 1 r \ 	Yrri,^^x 	 lrri,^•x 	l  

— 

 

—
2

1

7 
 sin ^ S2[16f„ 	(r. ,Q')+^^f„ 	(J• •Q-̂ )lLDi 
 v<••1  

+ Î ^ [
co 2   S2 f s( r. )+ 

n 
 sin'  S2 ft  ,( . d) 

( z)] T' rri  N  v D:¡. 

• 

The distribution functions are parametriied as:  

= :1' x.°`( i — J:) /` , S  

Zrt^f.,d.r1 (1 — 	.1{r,40r i 
;i,•)  _ 	+, 	J: ('{a .dl

ç(i —J:) °t
■ ,dl5  

,,. ,  

= 	,,, 	J: 	tia:d..i ( I — T.) ^ ^"fa;e.rl u v  (.;d,•  

( 9 )  

The form factors are the most simple in agreement with the asymptotic conditions:  

Ds = hs  , 	1J 1  - rr 	Zc 1):; Ds = ( 1  + 1,7)1 1  

1)3 = Q 1^? , Dv = D1, Dr = Q Dt 	 (10)  
rrt ti 	t 	 IAN  

where is the vector diquark anomalous magnetic moment.  

Using the MINUIT program we could fit the higher twist contributions. with great accuracy. The parameters  

are consistent with other applications of the diquark• model. The scalar diquarks •are more abundant and point like:  

(7)  

(8)  
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than vector ones. Also the average z. carried by diquarks is smaller for scalar than for vector. The momentum 

fraction of diquarks is about 0.24 [41. 

References  

I. M. Virchaux and A. Milsztajn, Phys. Lett B274 (1992) 221. 

2. For a Review on I)iquarks see, e.g., M. Anselmino. S. Ekelin, S. Frcdriksson, U.B. Lichtenberg and E. Predazzi, 

Rev. Mod. !'hys. 65 (1993) 1199. 

3. M. Anselmino. F. Caruso, E. Leader and J. Soares, Z. Phys. C48 (1990) 689. 

4. For further details see M. Anselmino, F. Caruso, J.R.T. de Mello Neto. A. Penna Firme and .1. Soares preprint 

CBPF-NF-024-94 and A. Penna Firme, Da conlribuiçdo dos diquarks à descrição de efeitos de `higher twist" 

obsertrados no espaiharnento profundamente inelástico, 'Thesis. CBPF (1994), and all the references within. 



XV  Encontro Nacional de Partículas e Campos 	 181  
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Neste  trabalho apresentam-se os resultados do cálculo da contribuição dos diquarks às fun-
ções de estrutura do próton no cspallramento profundamente inelástico neutrino-próton  

(vp — vX). com troca de corrente neutra, no caso em que o feixe e o alvo não são po-
larizados. 
A partir dos vértices arais gerais possíveis para o acoplamento Z°-diquark calculam-se as 

 contribuições dos diquarks escalares, vetoriais e das transições entre diquarks (processos do 
tipo escalar .-- vetor) às funções de estrutura do próton.  

A seção de choque.do processo up — vX. em primeira ordem das amplitudes de espalhamento, é dada  por  [1]:  

' d2rr_,v 	1 	GF 2  Q - :11¿ 	
2 

Ler od(u)6i%otï 
dSld E' — 2mp \ 27r ) 	.+ :11z )  E  

Onde rnp , GF , :117., L oo e lV°d são, respectivamente, a massa do próton. a constante de Fermi. a massa (lo Z,°,  
o tensor leptônico e o tensor hadrônico. Estes tensores são definidos por (4]:  

L,¡ï(v) = k ° k; + ^°  ^ ;^ — gook.k + iEo97 +^^•^k b 	 ( 2 )  

	

PaP9 	leo^ï7óP1 g á 	4ogÓ 	pogo +Pr7q° 	PogB -' Piigá  

2rtr 
W„,,3- -9u9wt + 

rn -, 

—OA  — 	2nt 	1473+ 
trt' 

 41'4  + 	
2 ► rr-' 	

41`s + t 	2rn=' 	
W4 	(.S) 

P 	 v 	 v 	v 	 p 	 p  

k. k p e q são. respectivamente, os quadri-momenta inicial c final do neutrino, o momentum do próton e o momentum 
 transferido. Apenas os termos propocionais à 1V1 , W2  e 1V3 contribuem ã eq.(1) (7.4]. A expressão da seção de  

choque fica (4].  

ll rf'acn _ G} ¡  X117  1
2 

E - [2W) sen 2 (0/ 2) + 4V ., co (0/2) — W3 I; + 
E' sen2 (B/2)1. 	(4) 

dildE' ' 2s 2  AI2 + Q2 J 	 rut,  

No modelo a parlous, desprezando-se o momentum de Ferrari dos constituintes. o tensor hadrônico é dado por  

1 	1  t,1"0(iv)= 
22mp  va L rr1(x..S; s) }'Va9(1.1' :s) , 	• (5)  

onde rt} (X, S; s) é a densidade de par-tons do tipo j, com spin s e quadri-momentum k = xp , no interior do nucleon  
de momentum p e spin S . 1403(j, j'; s) é o tensor que descreve a interação entre o Z° e o diquark.  

A seguir vamos apresentar os resultados obtidos para W o,(j, j') no caso cios diquarks escalares, vetoriais e das  

transições .  
A contribuição do diquark escalar é do mesmo tipo da encontrada no espallrarrrerrt.o ep — e X (I], ou sela:  

(I)  
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W2(s)  ^ — S(x)xDS 

 l•W 1  - o 	 (6)  

(7)  

onde S(x) é a densidade de diquarks escalares com momentum k =  P.  Ds(Q'- ) é o fator de  forma do diquark, o  
qual descreve sua estrutura interna e ep sua carga elétrica (em unidades da carga do próton).  

 caso dos diquarks vetoriais a corrente V — A é dada por [2]:  

VP W iep [1% 'tt,r + .1't+' n l (_,F (at  )  c!R (a _ )  

onde.  

1'vtw := bt(2k + 	— b 2 (k + 	gr1+ b3 kv tJ" + ó4 (2k + g) t'(k + qrk A  

r1 eJ' r  :_ 
[ u! (2k + q)° — a2g o ]c ° nvr — a3q.,(2k + q).“-"°4 (2k + q)t' 	 (Io)  

k ti o momentum do diquark, q o momentum  transferido e os I's são os vetores de polarização dos diquarks vetoriais,  

os .1'.s suas helicidades. Os fatores de forma a;  e b; ,  i = o. 1.2, 3 são constantes reais para não violar a simetria  

CPT [2]. Como vamos tratar do c aso não polarizado. tetros que o tensor partõnico será dado por:  

E I  I''¡'v (  l'. 1% )  . E  1
.•t'• 1 ,•v  

a^ 	 )1,.a2  

Logo:  

lVFav ( l•', 1;  )_ 	 + e= y^t'r 	:1'tt^r  1;avd +:1tTv B  x 	c •, t 	a•^ 	c : 	a r 	a v[ 	 ][ 	 ] 	' ^ t,ta { 	} t^^{ 	) 	̂ ,;^( !) .r{ 1 } 	(12)  
A2 	 a, 

Sabemos ainda que [2]:  

E eµ(k, A)c v (k. a) — —q N v +  

A 
	 ttt- 

Substituindo (12) cm (11) e efetuando a contração dos tensores obtemos o  

funções de estrutura, as quais são:  
tensor hadrõnico em termos das  

IV¡ t^ 	, 	1 	b; 	b' 	, 	,11 	t  

^= cn1% ( x) 	
r 

--- + 3 + at  + n^ ^`^ 
r

+ f 1u" + b; + b ^
J 
 ^ r^ 4x ^rrt a =  

4ru- 	2 	2 	 1:- ► t! 	
t 	̂

 2rr t 	r!  

\ 

+
[_i_ (( -- t. 

 rrat, 	
+ 3bt)b4 — b:tb•t j+(2b.^ •  

^ ^ 	
, CP X2 
	

r 	
., 

+ + 44).C 2 ► tt },x ' ^ Q z" + 
1 	

lb¡ + a_>  (4

¡ 	̀ 	¡ 	
tn 

+ { — b t + ^l jb^+( —br+ Z; h. i)  

(8)  

(9)  

(14)  
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+ .}(_2rrr F a_^a3  + mp b i b4  + -1rrt^;a3x'- )x'^J Q =  

 

+ 2rnp ( 24 + 3b?)x 2  

 

(15)  

1V^ t) =0 

 

(16)  

onde V'(x) e a densidade de diquarks vetoriais com momentum k = .rp e Q 2  - —q =' , onde q é o quadri-momentum  

transferido. Estes resultados foram obtidos com o auxilio do :1laplc (versão V.2).  

Os diquarks não contribuem it 11'3  porque ao efetuarmos a sorna sobre todos os estados de polarização as  

contribuições antissim7étricas se anulam, e esta função content somente termos deste tipo.  

Por Ultimo, apresentarmos a contribuição dos processos onde ocorrem transições dos diquarks, às funçõ es de  

estrutura do próton. A corrente para esta interação r, dada por [2]:  

71y-t. )^ 
- ei) f Jt^Ìl^^ li2klkuTII3{„6,yeÌA03 l tr"  

T'tv_s1 = ¡ 	 ^^ ^  

-! ^} 1tly7y + g"( k  + g)Yl^^ +rl)y - ^t:fcn¡3,r.rl ^^  ^ 

Os g s são reais pelo tmesrno argumento que os a s e os b :s o são. Obtemos para as funções de estrutura.  

i1ft1} 	ar(r) .rrut, Igi +¡r;^l"'(rrrr ' ^ ^'
}J 

._, 
1") = Dr(x)n

t 
P [_!  _ {Yu + 9_ trrr '' -I- Q—t I^ - y:^rrrFr 2 + g•¡rrr^^Q" -2y1.g2rnF  

1•V. t 1 1  = 0. .t  (2l)  

onde  para  T = S - V,  D•r = 5(r. c para  T = V - 5, Ur = V : As funções 	I'V t4 -Ç)  são nulas pelo I 	 ) 	1 	 ^ )• A 	f 	1 ^^ 	:! 	 3 	 1  

mesmo motivo que  1•Y3 t  ). 
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Massless perturbative QCI) forbids, at leading order. the exclusive annihilation of proton-

antiproton into some charmonium states, which, however, have been observed in the pp  
channel, indicating the significance of higher orcltcr and non perturbative effects in the few  

GeV energy region. The most well known cases are those of the 'So  ( ►1 c ) and the t P1. We  

consider here the I D_ state, whose coupling to pp in equally forbidden in pQCD, and study  

several possible non perturbative contributions. it turns out that the observation of the  

pp — t D2 process would be very intriguing indeed.  

Let us consider the I  D2 state created in pp annihilations. choosing the :-axis as the proton direction in the pp  

centre of mass frame. Quantum numbers only allow the 1 02  state to be created with the spin third component.  

= EI [I]; such charmonium state is then purely polarized and its spin density matrix has only one non zero  

component.  

Poo ( I  D2) = I • 	 (1)  

This peculiar property reflects into the decay angular distributions of the I D2. One radiative decay which is  
expected to be observed with a large branching ratio is  

ID_e — tPt1.  (2)  

which is dominated by an electric dipole transition. The angular distribution of the photon. as it emerges in the  
rest frame of the I  D2, is then simply given by [2)  

W7(0) = 
8
-(5 - 3cos 2  0) 	 (3) 

where O  is the photon polar angle and an integration has been perforated over the azimuthal angle.  

The observation of such an angular distribution in pp exclusive annihilations should then be a clear signal of the  

formation and decay of the 'D2 state. The expected mass of the 'D2  state is .11 n  = (3788 ± 7) Mel' [3].  

As charmonium states with Jr  = O  cannot decay into p73 according to massless pQCD. we examine several  

possible non perturbative contributions. Mass corrections to 'forbidden' chanuonium decays have been considered  

in R.ef. [4] for rt e , \• co -- pp. Following the same procedure and notations as in Ref. {4] we have computed the  

helicity amplitudes for the decay I D2 — pp.  

From the knowledge of the decay helicity amplitudes one obtains the decay rate.  

One can get an estimate of the branching ratio /3R(I D2 --- pp) by taking the ratio of I'( a  D2 — pp) and  

I'{t Dz 	gg). According to the different choices adopted in Ref. [4] one obtains  

BR(' D2 , p13) ti IU -^  _ 10 —I2 . 	 (•I)  
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Eq. (4) dearly shows how mass corrections could not account for the eventual observation of the ' D•, - pp decay 
with a branching ratio similar to that measured for other charmonium decays into pp 10_ 4 ). 

One can similarly show that also two quark correlations could not explain a branching ratio for the ID? — pp 
decay of the order of 10 -4 ; a vector diquark component of the proton allows the decay, by allowing ]felicity flips at 
the gluon-vector diquark coupling [5], but, once more, the numerical values turn out to be too small. One finds. 
with little dependence on the choice of the distribution amplitudes, 

BR( D•,  - pp) •-- 10 - '. (5) 

As a further possible explanation [6.7]. the presence of a 2' 4' gluehall with a mass close to 3.8 GeV. does not 
look much natural and realistic. 

Let us consider finally the instanton induced mechanism proposed in Ref. [8] for the rt e  — pp decay: we know 
that its contribution decreases very rapidly with increasing Q= and. indeed, already for the decay of r1,, with a mass 

3.6 GeV. is much smaller than for the r1, [8]. Considering the still higher mass of the 1 D?, M D  _ 3.8 GeV. we 
cannot, expect this non perturbative contribution to be large enough to produce a branching ratio for the process 
I D2 - pfi similar to those observed for the other charmonium states. 

We have thus seen how several possible non perturbative effects cannot contribute significantly to the t D2 
coupling to pfi: on the other hand we know that leading order pQCI) predicts no coupling at all, whereas higher 
order corrections are difficult to evaluate and have never been computed. A similar situation occurs with the rk. 
with the difference that for such particle one Wright expect a significant gluonic contribution (6.7]. Therefore. the 
eventual observation of a BR(t D2 -- pfi) I0 -1 . analogous to the values observed for all other charmonium states 
which can couple to pp, would pose an intriguing challenge to t he theory. 

The t D2 state could be looked for in the mass region .11 _ 3788 Mel' [3]. In fact the 1  D2 created in pfi 
annihilation is in a pure spin state with J;  = 0 and its decay into t  Pi  r. dominated by an El transition. has the 
simple angular distribution given in Eq. (3). Actually, even if other mult.ipole amplitudes contribute to this decay, 
their relative weights can be evaluated by looking at the angular distribution of the subsequent decay of the I P i 

 [q]. 
An interested reader can find more information in Ref. [1] or contact "guiduskatMafex.chpf.br  
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Investigamos algumas conseeluéncias da existência de leptons excitados de spin e . preditos  
por modelos compostos cm  colisões c7. Examinamos  a potencialidade da próxima geração  
ele aceleradores lineares com feixes polarizados ele fornecer informações  sobre o spin e acopla-
meut.o destas partículas.  

Neste  trabalho. procuramos possíveis desvios do  Modelo Padrão nas reações e;7 — e7 quando um férmion  

excitado de spin ; ou :; é trocado conto nina contribuição adicional it  QED.  Em particular. concentramos nossa  

atenção na  possibilidade de distinguir o spin de tais estados e a natureza eiuiral de seu acoplamento  através do uso  

de feixes polarizados.  

A  dinâmica a nível preõnico não é especificada pelos modelos  que pre,ve;mn a existência de tais ressonâncias [ l]  

e port anto. nos ativemos a Lagrangianas efetivas para descrever o acoplamento dos estados excitados aos fértnions  

usuais e hósons vetoriais. Considerarmos uni acoplamento  tipo momento magnético entre o férmion excitado de  

spin ! (Uni r ,), o férmion no estado fundamental  (e') e o fóton, descrito pela Lagrangiana efetiva  

	

, 	r; Etl^ _ 
—^i

/- ?ra„ (:1 -t- H7 s )a': hJe„ + h.c. . 

	

cff 	'l :1  
(I)  

Para  o acoplamento do férmion excitado de spin  (m1;7_,), adotamos  a I.agratrgiana efetiva de mais baixa ordem  

invariante de gauge que descreve seu  acoplamento  com os férnrions usuais e o fóton [2]  

t» 	e 
c  /2 = r1 

^ •ri ,v (G !J7 + 	s)d, 1',a„ + Ir . c . , 	 (2)  

onde !' e,„ e; o tensor elo ca m po eletromagnético. r 	= [7i„7„1, e A e; a escala de composição.  

Os limites experimentais mais restritivos para a existência destes férnrions provènn das medidas de 	— 2).  
momento magnético r u nõmtalo dos elétrons e talons [:5.4]. Estes' limites podem no entanto ser evitados se con-

siderarmnos apenas acoplatnentos quirais. Nestes casos, as contribuições dos estados excitados de spim4 e  spin  

hora o momento magnético anômalo serão proporcionais a nhr(nrr/11l 1 /.2(3 / 2 0 2 . °ri de,  M u/  2(3/2)  é a massa dos  
estados excitados e I = c, 1:. Para preservar a invariância de  CP.  as constantes .4. .... D São consideradas reais. Os  

acoplamentos que nós consideramos :esqui são  urna  generalização de outros geralttrente usados em trabalhos correlatos  

[5 ].  

A existencia de férnrions excitados corn massa abaixo do limite cinematico S.C. A1 1 /90/.) <   pode ser  

facilmente estabelecida através do pico de 13reit.-Wigner que aparece na distribuição da massa invariante do par  
elétron-fóton mesmo para casos não polarizados conforme apresentado na Fig.  I.  
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Figura I: Distribuição da mas-
sa invariante do pa r elétron-
fóton para f = 500 GeV.  
Estados excitados dc spin  

são indicados pelo histograma  

cheio. os de spin pelo pontil-
hado e o background (A = oo)  
é indicado pela linha contínua.  

u 	tan 	211) 	3111  

M (GeV)  

A natureza quiral do acoplamento (LB ou RH) pode ser identificada polarizand o-se apenas o feixe de elétrons.  

mantendo-se o laser c o feixe de pósitrons, sobre o qual o l aser incide. sem polarização. Nestas condições. o feixe dr.  

fótons se manterá não polarizado e a seção de choque assume a forma  

(lap,u = dune(I + P.Àr.o) . 	 (3)  

onde do- R.0  é a seção de nhoque para elétrons iniciais com polarização longitudinal P, e fótons não polarizados. dcuri 

 a seção dr. choque não polarizada e Ap u o fator de assimetria dado por  

da+u  — da_ 0  
der +n + rla_ o 

Figura 2: Grdfico de .4po e Aot_ em funcho da massa do ealnelu excitado. assumindo rira grau dc polarização  

dc 90% e :1 = I Tel; para I ff - spirr^ (cheio). 1111-spin! (traços). idl-spin? (pontos). R11-spin (traços-pontos).  

Note-se  o abrupto corte que ocorre ao se atingir o limite cinematieo imposto pela distribuição de energia do  

laser-backscatteritig. parti f = 500 GeV  

Como se pode ver na Fig. 2, a medida de Ap,0 distingue claramente o acoplamento de mão esquerda (LH) do  

de mão direita (li.11). Esta medida de assimetria. no entanto, não é capaz dr. distinguir o spin da ressonancia.  

O spin do estado excitado pode ser determinado polarizando-se apenas o feixe de púsitrons sobre o qual incide o  

laser não polarizado. Nesta situação. obtem-se una feixe de fótons coar  polarização circular til e a seção de choque  

sei torna  

dartb = dcu0( I + ■E2tlutJ) •  

onde tlnF r. o fator de assimetria dado por  

dap }  — da u _  
deu+  + elcu_  

A medida desta assimetria, conforme pode ser visto na Fig. 2 distingue os estados LII-spin e RH-spin: dos  

estados R.II-spin ; e LH-spin. Como a quiralidade da partícula terá sido, a esta altura, determinado perlar metida  

de p  0,  obtem-se (leste modo a determinação de seu spin.  

aexr 

rl ► ^.o =  (4) 
 

-d„ e, = 
 

(5)  

(6)  
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Alem da determinação do spin e quiralidade do estado excitado, a polarização dos feixes iniciais tarnbén ►  pode 

proporcionar um aumento considerivei na seção de choque para un ►  dado spin e acoplamento. Este aunrwnto na soão 

de. choque se torna importante ao se desejar ajustar os parâmetros do acelerador para urna produção abundante 

de tais estados, urna vez que ele tenha sitio descoberto e sua massa, spin e acoplamento determinado. Outra razão 

para se desejar tal aumento na seção de choque para um particular spin e acoplamento é a de aumentar a região de 

descoberta no plano A x Al se nenhuma ressonância for encontrada com os feixes não polarizados. 
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With the purpose of testing the results of QCD calculations on the structure of the for-

ward elastic scat.ering cross-section, we analyse the coulombic-nuclear interference ocurring  

at. small values of the momentum transfer. We enphasize the influence of the hadronic struc-

l ures on the determination of the Coulomb phase and consequently on the t-dependence of  

the strong interaction slope parameter.  

Soft, hadron-hadron scattering at. high energies presents features which are the same for every pair of interacting  

Itadrotts : a forward peak in the differential elastic cross-section, and a total cross-section which rises slowly with  

the energy. This universal behaviour says that. the underlying dynamics determining the elastic amplitude rests on  

fundamental properties of the strong interaction; actually it is due to the peculiar structure of the physical vacuum  

of QCI). The differential elastic cross-section can be parametrized in the form [I]  

der = 'a 	r[1.H01+ , r+dr 2 lr 	 (1)• 
dl 	di !-D  

At very small values of the momentum transfer t (notice that the physical values of t. are negative) the first term in  

the exponent dominates. and the shape of the differential cross-section looks as almost linear in a log scale. With  

the definition of the logarithmic slope at. any t.  

we have as a parametrization for B(1)  

d 	

^t l 
B( ► ) - i 

(
ln 

 duct 

	

 J 	, 

r3(l) = 13(0)-201+ 301 2  .  

(2)  

( 3l)  

In the experimental observations of elastic scattering, the slope 13(0) has been measured in several instances. The  

coefficient c, which tells how the slope bends, has not been off e r! coenLtinre.d, and the reliability of the determinations  

is not. always satisfactory. The measurements are difficult, as they require good accuracy at very small angles, and  

a very good extraction of the effects of the interference between the strong and the Coulomb interactions.  

The Model of the Stochastic Vacuum applied to high-energy scattering [2] describes the values of the total cross-

section cT(s) and of the slope parameter of the elastic differential cross-section. which are the basic characteristic  

quantities of hadronic elastic processes at very low momentum transfers,. in terms of non-perturbative properties  

of the QCI) vacuum . The ingredients are the value of the gluon condensate (0Ig' FF10) and the characteristic  

correlation length a. According to this model, experimental determination of parameters in elastic and total cross-

setions at high energies provide essential information on these fundamental QCI.) properties. The model predicts  
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correctly the observed relation between crT (s) and B(0) at all energies. For the parameter e  of the bending slope  

the model predicts values of about  

c 	B(0) 0.5 a 20 . 	 (4)  

Thus the determination of shape of the forward peak gives direct, information on the correlation length a. The  

experimental information obtained at ISR energies (I) are in agreement with eq (4). However, in the more recent  

CERN experiments at =541 GeV at very low t M=0.00075 — 0.12 GeV 2 ) the reported value for the parameter c  

is compatible with zero. We wish to call attention for a difficulty in the analysis of the data, due to the interpretation  

of the Coulomb-strong interference at such low t values.  

The strong amplitude leading to the parametrization in eq (I) is of the form  

Is(f) —
4  

	G (t) c}It
ttot+cr+ ^ra=1t 	

( 5 )  

where  
_ 	. fs(0) 

p 
Ira  fs(0)  

and Gr,(t) is the proton form factor  

:1='  
C^r (q-^) _ q` 	 } -  . 	:1' = 0.71 	. 	 (6)  

The total (strong plus coulombic) differential elastic cross -section for pp scattering is written  

do =Ifs -I- 
 

cf r 

where. the Coulomb amplitude is  

fc = 2oá ^ rl 	 (ti)  

and p is the Coulomb phase. In general, 0 is 
 

considered as numerically small. however, taking into account. the  

proton form factor, the expression for p is written [3] 

45( q2) = 
	
dq

,
"̂ In r—̂' <1 1 -, [C '^(y) f (^ 0) ) ] + i'(r! - ) .  

Where  

., 

	

	2
^ -i 	̂ 

	

f 	:1 -  

	

v(v) = ,^• 	[ ^̂  In 71 	— I] . 
f^  

If we now consider the form of the amplitude (5) with a positive value of c , we see that the integral in the  

expression for the phase Q diverges. lit these circumstances, the parametrization of the amplitude with a power  

series in t in the exponent becomes unacceptable. The determination of the value for the parameter c using data at  

very low values of t, where the Coulomb interaction is important, becomes meaningless as soon as c takes positive  

% .alnes. Thus to evaluate anything beyond the first term 13(0) we need an explicit form for the t, dependence of the  

amplitude, generated through sonic model, and this form must. be such that the integration in eq (9) be defined. In  

the fittings of experimental data made at ISR. energies (f : 20 GeV ). the Coulomb interference region was not  

really important in the analysis, but this is not the case with the new f = 541 GeV data.  
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produção soft de multi partículas é uma característica dontivante na maioria dos eventos en; colisões hadrônicas  

a altas energia. Processos corn  muitas partículas no estado final são intrinsicarnent.e complicados, desde que muitas  

variáveis são envolvidas. Mesmo assim. seria possível utilizar a Lagrartgiana da QCD para estudar estes processos  

soft. Entretanto. uma característica destes processos r; que não envolve grandes momentos transferidos e sendo  

assim. a constante de acoplamento forte o, é muito grande para que a teoria de perturbação possa ser usada.  

Consequentemente, procedimentos não perturbativos devem ser adotados. Então, atualmente, a melhor coisa a se  

fazer cru descrever a física hadrônica soft é construir modelos que incorporam todas as idéias teóricas acessíveis.  

motivadas tanto pelos estudos não-perturbativos ela QCD quanto pelas propriedades gerais da matriz -S (dualidade  

c unitariedade).  

lima  abordagem não perturbativa altamente estudada consiste  en; expansões cru A' - ^ ,  onde 2V pode ser tanto  

n número de cor N, ou o número de sabores Ni. Este tipo dr. expansão fornece ulna classificação topológica de  

diagramas.  

Uni modelo que tern obtido grande sucesso na produção de part.iculas leves é o Quark Gluon String•Model  

(QGS M ). Este modelo usa a idéia de strings de Pomeron rluark-gluon para descrever a produção múltipla de hádrons  

com baixo Pr a altas energias. O que sc pretende com este modelo é. poder descrever o espectro das partículas, isto é.  

obter a secção de choque inclusiva dos hádrons ( rr i " ) ent termos das funções de estrutura e funções de fragmentação  

dos quarks  vestidos;  distribuições de multiplicidade c rapidez; explicar o crescimento observado experimentalmente  

na região central do espectro, com o aumento da energia.  

Na abordagem baseada na expansio 1/Ni. o polo  de  Ponteranchuk é descrito por gráficos do tipo cilíndrico e  

os iteggeons secundários por gráficos planares.  

(a) Gráficos planares: o processo de interação envolve a aniquilação dos quarks de valência dos hádrons que  

colidem e t una configuração do tipo tubo de cor  (um  string qy) aparece. :1 quebra deste string leva a criação  

dos hádrons brancos. 

(h) Gráficos cilíndricos: os hádrons iniciais trocam vários glúons, em  inn  estado singlet.o de cor e os quarks de  

valência dos hádrons. que estão num estado branco, são ligados a string quark - glúon. Quando quarks são  

emitidos, estes strings  são quebrados e resultam cm chuveiros de hádrons.  

Os parámnetros da trajetória do Ponteron, o p(0) e o ¡,(0) são determinados pela dinãmica do gltíon e interações  

entre os quarks, ou seja, pela contribuição de todos os diagramas. Corno a soma de todos estes gráficos não pode  

ser resolvida teoricamente, então escolhemos os parâmetros co rn  base tua análise dos dados experimentais.  

r1 contribuição mais simples e dominante para amplitude de espalhamento elástico que ir ão desaparece cm  

energias assintóticas é de urn Cínico Pomeron, que  tem  a topologia de  um  cilindro. Figura 1.  

Um corte através dr. um Pomeron resulta em dois canais de hádrons, correspondentes as duas intersecções através  

da superfície elo cilindro. Estes  canais são es ticados entre qv dos lfá dronis iniciais para formarem singletos de cor.  



e  

Figura 1. lima única troca de Poitieron e sua topologia cilíndrica.  
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Dentro de cada diagrama, as frações do  momento levados pelos constituintes nas extremidades de  um  canal são  

determinadas pelas funções de distribuições e a produção de partículas num dado canal é dada pelas funções de  

fragmentação. Em essência, fazemos uso da estrutura partõnica dos Irádrons e tratamos cada diagrama como uni  

processo de dois passos:  

1. Separação de cor na colisão:  

2. Fraginentação de objetos coloridos que resulta na produção de canais ltadrónicos.  

Basicamente, o modelo necessita apenas dr. dois ingrediente:  

1. Funções de distribuição de momento:  

2. Funções de fragmentação.  

O espectro inclusivo de partículas secundárias determinado pela convolução da distribuição de nrontcuto de  

diquarks, quarks de valencia e quarks do mar nas partículas incidentes e as funções para fragmentação deste  

diquarks e quarks em hádrons secundários. As distribuições de momento dos diquarks e quarks dependem do  

número n de Pomerons cortados no diagrama  em  questão. No  caso de um alvo de nucleon, o espectro inclusivo de  

hádron secundário 1, tem a forma:  

.r 	rict 
aide!  clr ' 	u'n4an'(r.) + i'nt 1 ç^D ) (1 ) + t'n2f ^D t ( 1 ). 

f1=t  
(1)  

onde as funções rph„(x) determitratn as contribuições dos diagramas corn n Pomerons cortados e u'„ = a„/ ^`^ t  a„  

é a probabilidade de cortar precisamente u Pomerons. Os últimos dois termos levam em conta as contribuições dos  

processos de dissociação difrativa. No caso ele produção de hádrons.contendo quarks a e b, estas contribuições são  

desprezíveis.  

No caso de interações ,r+p ternos então a expressão  

92h(1:)= fq(z+.Tt)f4('1'_,n)+ f  (1:^. . T1)fŷ (x_ , n).-f-Y(rr-1)fh (r+ .r!)f'(x_,v,)•• 
	 (2)  

! ( 	

[ 1 r ,r = 	 t 
 + x='] 	1'). 	 ('I)  

As quantidades fqq , fq , f, e f, correspondem as contribuições dos diquarks. quarks e autiquarks de valência e  

quarks do mar, enquanto que as contribuições da partícula incidente e do alvo dependem das variáveis r +  e .r_  

respectivamente.  
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Assim sendo, as seções de choque para produção  de  n chuveiros de Potneron, an , são determinadas de acordo com  

as regras de Abramovskii-Gribov-Kancheli pelas contribuições da parte imaginária da amplitude de espalhamento  

elástico proveniente de gráficos contendo k Pomerons. Então ,  tia aproximação quasi-eikonal, a seção de choque  a„ 

e a probabilidade de processos cora n Pomerons cortados tem a forma  

co  

triri = an /  E  a„  

it-  t _. 
— 

	k 
a„ = f̂^ ( 1  <: -` ) 

z. ^ kd•?  
^• =o 

(4)  

(5)  

onde  

(6)  

(7)  

(8)  

Os valores dos parâmetros apresentados para descrever a totalidade dos dados  são:  

	

= 0.139. 	r.ir, =  

	

71.1. = l.Uï(:fel' -='. 	H* = 	.  (.'r„ = 1.65  

Finalmente, as funções f que aparecem na descrição da expressão da seção de choque tem a forma, no caso do  

espectro em colisões 7r+p,  

f4 uj
t  

^( x.t. nG+ 	t) (1Xt. 
 + 

¡h (r+, it)  = 	 u„(rt, rt)(  ;h{r+brt  )drt. 	 (12)  

A forma das funções u(E, rr) é determinada rio modelo de quar•k - gluou.'trings pelo comportamento assintót.ico  

de Reggc na região z — O e x -- 1 e para valores intcrntediãrios de .r por meio de nina simples interpolação.  

Uma motivação para este tipo de estudo e a incapacidade da QCU cm descrever estes processos encontra-se na  

nit•ida discrepância que Itã atos dados experimentais a respeito cão leading  particle  effect. Para pequeno .r?F h á uma  

certa concordância com a teoria e os dados experimentais. mas para grande  .r?F. a discordância é brutal. I1: claro 

cite para processos, onde os hádrons incidentes contêm os sabores  de  quarks iguais aos da partícula formadas, a  

seção de choque tem um comportamento mais suave na queda. comparado a processos onde os hádrons incidentes  

não possuem quarks semelhantes. A figura que demonstra este efeito esta mostrada abaixo.  

Sendo assim, mostraremos os resultados apresentados em Angra para núrsons D+. utilizando o Quark Gluon  

String  Model  para achar as seções de choque desejadas.  



194  

1  

o  

p E769  
• WA82  
• combined doto  
-- QCD  
- -  PYTHIA 	.^ •  

7 - 
	 (b)  

o wA82  D' 
✓ PYTH1A D'  
s NILO  

0 	0+ 	07 	03  

. . "Q ^^. .•.Q#—:•. 
fe 	 •. 
e 

Q 

n 

e 
.. 	_.  

06 .  09 	06 	07 	06 	Of  

it 

16 7 -  

l i 
0

- 

7 
 

1 -  
0.1 	02 	0.3 	0.4 O^S .  

• 

• 

• 

• ne  l  

a.(0)90  

SECAO DE CHOQUE  .INCLUSIVA mini" 17'+' 	 SECAO DE CHOQUE INCLUSIVA t010910'  

v09 

-8 0. 7  

0.6  
05  

04  

•  
•  

•  
0.3  • 

0a  

0.+  • •oZ  ■ 
0.00  
006  
0.07  a.(0)0  
0 06  

0.05  

00.  

003  

0.1 	0.7 	0.2 	0 • 	0.5  

^ s 	 ; 

F.G. Garcia e  C .O.  Escobar  

O 0.2 	0.4 	0.6  

. 	 Feynmon —x  
A ^ 	t 2eadr .. aOQe... 

	

1 	1  
O' c f-cudl•b) 

i Cr (nole°1°('•`a1  
pk.p. lRe.v. Afters  4 2 (fg 99) 91  L -Ets  

^b„^ 	 (o) 
b. ^ 

. 	̂ • 

o WA82 0 ' 	 ^, • 
PYTHIA 

« 
0' 	 ^  --e-}—•*^ 

• NTLO c 	 I e • f,  
e  

e *+ .+•  
e ' +  

7e 1 

	 e  

e 	0+ 	02 	05 	04 	05 	06 	0.7 	06 	Of  

M 

08  

1f  3 N O.+mirsims Opes. -  i.trnnisn •  (NJ  0'. 1 ► 1 D •.  

441 .L2t.ters 9 305 (1953) `í0L-`( o6  



XV  Encontro Nacional de Partículas e Campos 	 195  
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We compute the rates for pseudoscalar meson production through two-photon and two-

potneron scattering, at energies that, will be available at. RIIIC and LIIC. Light mesons will  

mostly be produced by porneron fusion at. large rates. the two processes are comparable for  

charmed mesons, while electromagnetic production will be dominant for bottom mesons.  

We discuss the possibility of observing the reaction PP — o  

Relativistic heavy-ion colliders arc planned and considered in Brookhaven (RIIIC) and at CERN (LIIC-'). with  

the main interest in the search of a quark-gluon plasma in central nuclear reactions. In addition to this important  

feature of heavy-ion colliders, peripheral collisions may he extrentclly useful to study hadronic resonances with  

.1 pc.' = 0-+,0++ 2-+ 2++ . , and here we will compute resonance production through yy fusion. and douhle-

pomeron exchange. Although pomeron-pomeron scattering is not important for heavy final states. we shall see that  

it is dominant for light resonances. and will produce such amount. of mesons that will allow the study of decays  

with very small branching ratios.  

The rate of ressonance production through photon fusion in heavy-ion collisions is determined through the  

equivalent photon or Weizsãcker-Williams approximation. and the total cross section ZZ — T,Zyy -- ZZR can he  

written as  

(I)  

where dL/dr is the photon luminosity and à(ti) is the cross section of the subprocess 77 — R. The differential  

luminosity can be obtained through standard methods, and was determined according to a conservative prescription  

discussed by Cahn and Jackson ill. The resulting cross sections for a series of resonances are shown in the following  

table [x]. In this table the columns with the cross sections for photon and potneron scattering at RIIIC and LIIC  

Meson 1{11 10,7  Ii•H10pp LIIC„ LIIC;pp  
ru 7.1 124 40 :186 

t1 1.5 92 I7 351 

q' 1.1 99 22 125  
rl c  0.32 x10 - ' 0.11 0.5 0.8 

14 0.36 x10 -3  0.83 x10 -2  0.1 0.1111  

rib 0.13 x10 -7  0.41 x10_' 
 

0.37 x10 -3  0.8 x10 -6 
 

are identified by the indices yy and PP respectively, and the values are in nub.  We assumed collisions of 23Ni at  

R.I[IC (J = 0.2TeV/nucleon), and 206 Pb at. LAIC (f = 6.3Teliinucleon). 
 These machines will operate with  

luminosities Cuitrc _ 10 27crn -7 s - t  and CL,ttc  1026crn -2 s 1 ,  

The pomerou distribution in a nucleus can be obtained folding the pomeron 
 

distribution function in a nucleon  

with the elastic nuclear form factor [3], and is given by  

 I
e -1f't'(r ) _  ( 3À doQ ) 2  

 r ̂ rtr''} er  ^ 

r! !,  
?(ti) = 	dT —R( • ). J 	d,-  

(2)  
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where A is the atomic mass. Qn is the quark-pomeron coupling, 33 = 3.93Ge1 -2 . The factor s' 2 ` in Eq.(2). where s' 

denotes the invariant mass of the subprocess with which the pomeron participates, comes from the Itegge behavior 

of the pomeron, whose trajectory is given by op(l) = f + c + a' pl, with e = 0.085. In Eq.(2) Qo 60 \1eV 

determines the width of the nuclear gaussian form factor used to obtain the Porneron distribution. 

To compute the subprocess cross section in the case of double-pomeron scattering. we use the phenomenological 

fact. that the pomeron couples to quarks like a isoscalar photon [4], and treat the pomeron-quark coupling according 

to a prescription of I)onnachie and Landshoff [5]. Our results for the double diffractive resonance production are 

displayed in the table shown previously [2]. We verify that light resonances in peripheral heavy ion collisions will 

be basically produced by double-pomeron scattering. The rate of meson production decrease with the increase of 

the meson mass. with the pomeron and photon initiated processes becoming of the same magnitude for charmed 

mesons. The stain reason for this behavior lies in the fast decrease of the pomeron-quark coupling for "off-shell` 

quarks. 

To show how large is the meson production in these peripheral reactions we will discuss about the observation 

of the elusive a meson. Although several experiments claim about. the presence of a resonance (a) in the region 

of 600 - 700 ï11eV [6]. the existence of such a meson is quite controversial. The CT partial widths into electroweak 

interacting particles are very small when compared with the hadronic one. and the hope to discover this particle 

may be connected with the possibility of observing the resonance in these other channels. The cross section for 

photon-photon production of a mesons at ItlIIc(LIIC) is equal to 0.30(5.3) rub, while the double pomeron rate for 

a production at is 28(110) tub. These values correspond to 8.7 x 10' and 3.4 x 10 10  events/year at. 

R IIIL and LIIC respectively, assuming 100% efficiency. The number of a mesons decaying into two photons will be 

a very small fraction of all the mesons produced. For a (if/  a-meson with 650:llel% the linear a-model predicts a 

hadronic width as large as its mass. 1' a  Inc . Therefore. most. of the re's will decay into two pions, only 310 and 

1.3 x 10 1  mesons (respectively at I{.1110 and LIIC') will decay into two photons, and these values assume one year of 

operation with full efficiency for detecting the photons, and tagging the intact ions ill the peripheral collision. The 

chances are clearly better for LIIC. Therefore, the a meson can be produced in the reaction PP — a --- ;I . and 

we verified that the background does not spoil this signal [2]. 

In conclusion ;  we computed the rates for light resonance production in relativistic peripheral heavy ion collisions. 

The processes considered were double photon or double pomeron fusion. The pomeron-pomeron scattering. in the 

case of light resonances, give cross sections au least. one order of magnitude larger than the electromagnetic one. 

These rates are of the saute order for charmed mesons, and the photon-photon production dominates for bottom 

mesons. In particular, these machines operating in the heavy ion mode, will be able to shed light on the existence 

of a a meson with a mass near 650 MO!, observing it in the reaction PP — a — 77, as long as the efficiency for 

separating the peripheral collision is not too low. 
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Partindo  da equação dc evolução temporal dc um  sistema dc  trés famílias de neutrinos na 
presença da matéria, derivamos urna solução analítica !rara as amplitudes de probabilidade 
de transição entre sabores. Casos particulares da solução, mixing entre duas famílias a 
densidade de matéria constante e oscilações entre trés famílias no vácuo, são obtidos a 
partir da solução geral. 

1. Introdnçi o  

O efeito da matéria na propagação de neutrinos tem sido estudado como proposta de solução ao problema do  

neutrino solar. Em regime não adiabat.ic°°. na maioria dos trabalhos, a probabilidade de transição é calculada 

utilizando-se a fórmula de Landau-Zcner [l]. lima interessante análise no contexto de duas famílias é apresentada  

por Palash B. Pal [22]. Em trabalho recente [31 apresentamos urna proposta alternativa para o . cálculo das transições  

ene regime utão adiabático por utilização do método dos operadores exponenciais ordenados de Feynman e do método 

da rase estacionária. A extensão para o caso de trés famílias e analisada nas referéncias [4] e [5]. Neste trabalho 

abordamos o caso da evolução do sistema a densidade de matéria constante. O caso do vácuo e o conhecido caso 

de mixing entre duas famílias sendo obtidos a partir da solução geral. 

2. Oscilações no contexto de trés famílias  

Partindo da equação dc evolução temporal para une sistema de trés neutrinos  conforme referéncia [5]. 

^ elr `i(t) = (U11/ 2 /./ -1  +:t)r•f(r) 
 

onde:  

vf = Uf;v , ; f =e ,  pi. r: i= 1,2,3:U = e:J:p[i2071,-]er.p[i2 i7',ylcrp[iLT2]  

6 . u: e tb sendo os ângulos de mixing, .1 sendo a matriz dr. interação com a matéria. e as  matrizes T; sendo definidas  

a partir das matrizes de Gell-Mana a ;  por .Ai = 27;. definindo uru novo espinor +ír(1) dado por: 

v¡ (r) = exp[i211'7;1erp[i267'5]cr.pi[—i  /(.43'flt + .48T6,-)dA]Vr(r)  

sendo A3 e r18 os coeficientes da expansão da harniltortiana do sistema c ► ri matrizes 71. a equação de evolução em 

funcão das componentes de 41 para um neutrino criado corno eletrônico em l o  = 0 pode ser resolvida efetuando-se 

transformações de Laplace sobre as mesmas. resolvendo para rV;(p) e efetuand o-se as antitransformaçàes. A solução 

para 11/(t) é obtida•em função das raízes .I t  ã2 e A3 do polinômio caracteristico do sistema Q(p). Apresentamos a  

seguir o resultado obtido para a componente eletrônica 

 \\ } 
v,(t) = exp [—i (.40+  23 + 

2f ) 

ti (cos 2 6D) Í + cos © siri 4D13)  

->- exp [i ( A8 — :1o) t] (cos ósinçri D31 + D33sin 26)  
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onde. definindo 	= 	1^ = A3  + "»` e F(t) : 

FM= 
exp L(at — a 1(al — ^3)^ 

+e4n 
[(A2— 1 )(A2 — a^)1 

} cxP 
 i(at — aA(a2 — a3)1  

Os coelicielltes Dij serão  

Dl I = F" (() -- i(.g3 + 13)F'(1) — :1313F(1); I)l:S = .t( F'(1) — i:13F(t))  

D31 = e4 J exp[—IElA ) D1 I(A)dA; f):t.i = I i- LC..t J exp[- 1 13a1D13( 1)da 

3. Attâlise tloti resultados  

,1 partir da solução obtida e da forma explicita das raízes (lo poliliouiuioQ(p) unta análise nunnirica (lesta soluçìto  

Ioda ser efet.(lada. A obt.cnção de quantidades como angulos dr. tuixing na Inat.éria ó, w P  as corretas condições  

de ressonancia não podendo no entanto ser efetuadas diretamente. Ein algumas situações particulares Ito entanto.  

(onde o polinômio Q(p) pode ser fatorado), tal análise pode ser efetuada algehricatncute. Assim ocorre no caso  

do vácuo e uo caso em que t' = á = 0 onde os conhecidos resultados de mixin.g entre duas famílias ("r  .Ll,)  ti,io 

reco gerados.  
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Embora o Mode lo Padrão (MP) das interações eletrofracas descreva cone grande sucesso os fenómenos de origem 

elet rofraca, ele não explica algumas questões. tais coin° o numero de gerações fermionicas, hem Corno o mecanismo 

para a geração de massa aos fértnions e hósons de gauge. Alrnt disso, o M  I' não apresenta urna estrutura limito 

elegante para descrever fenomenologia, pois conténs tt)uitos parame'ros livres. Corar isto. foram propostos extensões 

a este modelo, como a teoria grande unificada (UlJ'I'). o .57'(•1) eos modelos compostos. Nestes modelos. existem 

ranrpos bosónicos que mediam as transições entre léptons e quarks. os chamados Ieptoquarks. 

As procuras diretas dos sinais dos leptoquarks escalares vier aceleradores estabeleceram limites inferiores para 

as  suas massas. Nas experiencias realizadas iro Large Elect,ron-Positron (LEP) do CERN, o limite é de :11LQ > 

.Ia - 73 C;ev ,  dependendo do tipo dr. ieptoquark. Neste artigo vamos estudar os vinculos vindos das contribuições 

das correções radiativas da física do Z ao leptoquark escalar singleto. coin acoplamento "right".  Calculamos os 

para metros S. T e ti e as  correções radiativas cm um loop para o Vértice Z — rc. 

A lagrangiana mais geral que exibe a sitnet.ria SU(3)c ®SU ('')t, ® Li(  I )s• . coin  as conservações dos números 

barionico (B) e lept.õnico (L), da carga e cor, é dada por 

C = flttrtiitetrSs + (1.)".51) 1 130 51  -- A1¡,gS1 1 .5t (I) 

C0111 

.itt• 
(i1F, + ie LQ' %r, -:- icQ' 	)Si 	 (2) 

Ctv 

onde nn e C R  denotam os campos singlet.os tio quark e do lépt on.  respectivamente , j` = (Jr  denota o campo 

conjugado de carga e Q' é a unidade de carga elétrica. Por simplicidade, os indices de cor e fauriliaforam suprimidos. 

A parte que contribui para as correções oblíquas é originada exclusivamente do segundo termo em (1). Fazendo) 

os cálculos, obtemos S = 7' = U = O. Como o resultado obtido estai dentro dos  limites experimentais permitidos para 

o MI'. nós não conseguimos impor vinculos restritivos para a massa do leptoquark através das correções oblíquas. 

O próximo passo consiste em calcular as correções de  vértice para o processo Z — e . O leptoquark dá origens 

ìss contribuições não universais para  pi  e KJ ,  parametrizados por 

Pn 4i = FLq ( A.l ¡ ) 

(r ! 
(3) 
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_
2stivQf

(1+ ĵ^ )F'LQ(:1 ^1¿)  

!'¿QRlz 	= 	91tt^
^C  rrt;;yitCo(0, ,11^,0.,Iff,rrrü.rn„) 

1 
 

[(2 — D) G00(0. r11j, 0, ,i1 1 Q . 1e;, ru;, )  

+,lfZt';1;,,(0, :1l¡. 0, r11j  Q , rrt;.:, 1tú)J 
 

+2 su^ Q'Co0 (0,?1•Iz. O. rn :: . 11¿ (2 , :ti1rQ ) + y ¿ 131 (0.rn,2,,;llfQ )  
c ty  

onde nós usamos a regularização dimensional (D = 4 – r) Kara calcularmos as integrais dos loops.  

(4)  

11 1• ( ^6•C11ü  e' 

C12 são os coeficientes de Passarino-Veltman e 	1N = uf nf , onde os acoplamentos axial e vetorial de corrente  

neutra são dados por af = 13 e vf = 1 ¡ – 2Q'stir:. Antes  de prosseguirmos corn o fit.ting dos dados do LEP. r emos  

que calcular as correções para o vértice eletromagnético, cola o intuito de verificar se o leptoquark modifica a carga  

elétrica no acoplamento.  

Para calcular o vértice 7 --- r.E. basta fazermos rlf; — 11 -%yt = elti — — Q ' 	Q ?  — Qy - Nós obtemos que  

no limite q 2  — 0, a contribuição do leptoquark para este vértice é anela, o que significa que a carga elétrica não  

alterada corn  a inclusào do leptoquark na teoria.  

'fendo em vista que a contribuição do  vértice 7 —  et-7  é aula. podemos rios concentrar nas expressões (a) e (.1).  

que podem dar vínculos para a constante de acoplamento gire e a massa do leptoquark, já que tanto Ap„„„ (orna  

estão relacionados corn  as assimetrias no pico  do Z.  

Nós analisamos o caso em que o leptoquark se acopla com a terceira geração de férmions. portanto corn a  

contribuição do quark top nos loops. Impondo que o acoplamento férmioA-leptoquark seja do tipo eletromagnético  

(f11ft = ,̂ ), nós obtemos o limite inferior :11LQ > 350 GeV. com  90 % C.L. para o top  corn  a massa m 1  = IN GeV  

e o lliggs com  Ali/  = 250 GeV. Verifica-se portanto Rue as correções radiativas deram vínculos reais restritivos do  

que a procura direta dos leptoquarks nos aceleradores.  
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Denominamos correções oblíquas as correções de auto-energia dos propagadores dos bósons de gauge. Essas  

correções podem fornecer-nos vínculos para novos acoplamientus que eventualinent.e caracterizem unia Nova Física  

além do Modelo Padrão. Urna  maneira de parametrizar os possíveis desvios em relação ao Modelo Padrão  é 

através dos paramet.ros S,T e U [1]. que podem ser associados coin  os observáveis físicos Ar, ..1p, Ak e .1n.  

Assine, comparando os dados experimentais coro as predições do Modelo Padrão, podemos impor vínculos para a  

contribuição da Nova Física.  

Um modo de estudarmos os efeitos dr novos acoplamentos aléru do Modelo Padrão é a utilização de teorias  

efetivas. onde construímos operadores de dimensão 4 invariantes por SU(2)j O U(1)y e por CP. Essas teorias  

podem ser realizadas de forma linear ou não-linear no que diz respeito i transformações dos campos considerados.  

Nesse trabalho utilizamos o formalismo de realizações não-lineares e nos restringirmos ao setor bosonico da teoria  

elctrofraca. Denominamos as lagrangianas construídas dessa forma de lagrangianas quirais.  

Calculamos S, T e U para os operadores efetivos descritos eirr [2] e detalharemos o cálculo para o caso de C.;  

CS = rtfTr(l' i ,L;, )Tr(7'1•'")7 -r('l'V°)  

onde  

T = (ir3 (i t  

V, = (U„U)t! t  

lJ„U = 0„1.1  

c•om a.4 definições  

44'„ = ^  

2i  

fj„ = --1.1„  r 3  . 
2i  

que produz os vértices W+1V - ZZ e ZZZZ coin as respectivas regras de Feynmai  

i 8c  2(9u„110° +rluvq¡3°)  

¡gm  

12854,  
8( 11 "Y l1 °4.1  + g"Oy°.9  + y ,+dr¡") .  
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Estamos interessados na obtenção de vínculos para estes novos acoplamentos. Como estes são acoplamentos  

quárticos, ainda não é possível testá-los diretamente a nível de árvore. Temos então que olhar para uma ordem  

atínia a  fim de podermos calcular os efeitos destes novos acoplamentos no Modelo Padrão. Olhamos então para as  

correções radiativas  dos propagadores do LV e do Z, que a priori geram os vínculos pretendidos.  

Assim, escrevemos explicitamente a contribuição de cada loop  

_ • %, (Z)  
Zl. 

— e-ZZ)  
r(z) i . , yyw  

—ig4 4 
 

-ig4  

1284(47) 2  k, 
 

-r94  

12842(47r) 2  
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11 :1111 ^_, +:) ef.` +2M +I ' z 	t 	z 

onde A é a escala da nova  física.  
No entanto. quando calculamos as funções renormalizadas [1], não obtivemos o cancelamento das diverg uencias  

quadráticas e quárticas, conforme esperávamos. Essas divergências também aparecerão no cálculo dos observáveis  
fisicos, e nào soubemos ainda interpretar esse resultado coerentemente. Alguns autores [3].afirmam que as  di-

vergências quadráticas remanescentes são absorvidas na renornr il ização do acoplamento do W, on. eguivalentcnlente,  

na renormalização da constante de Fermi,  
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Color transparency and nuclear sandowing 
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In a recent work (D.lïltarzeev and H.Satz, Phys. Lett. II 327. 361 (1994)) it has been shown that shadowing 

effects observed in hadron and photon interactions with nuclei are due to quantum-mechanical coherence and 

interference. For qq production on nuclear targets, this model allows to estimate nuclear cross-sections in a direct 

way. 

In the present work this procedure has been used in order to compute cross-sections corresponding to cc-nucleon 

interactions fora range of photon energies and nuclear targets. 

The model describes the relation between 

R(y:l — 44) 

and 

: f o ('1 rb 
— g'l ) 

in terms of the size of coherence Ze  relative to nuclear parameters as the mean free path a of the qj fluctuation. 

the average internucleonic distance d and the uniform-equivalent volume nucleus radious R, for the regimes of 

shadowing, antishadowing, incoherence and vector meson dominance. 

The basic quantity to study is the transparency ratio 

:la(-tp — t!q) 

in the regimes mentioned above. 

In the Vti iD. shadowing and antishadowing regions T, is expressed in terms of 1' r . ru t, (proton mass) and A. To 

estimate the value of a 

it is necessary to calculate the cross-sectión for the interaction of the virtual system on nucleons. 

er was computed taking into acount the behaviour 

a(P) 	C:p_
,  

C = a(.l J w,V) 
< P= >11,r 

(p . = transverse separation of cc) 

In the case of VIVO, the transparency rate was calculated for nuclear targets of Be. Fe and Pb and the results are: 
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F3c Ti, = 40  

= 9.6 

Pb T„ -4.26 

These results are in contradiction with the model, because in this regime 7;, must be a constant. less than one. if 

this condition is imposed by hand, the value obtained for a does not. obey the quadratic behaviour shown above. 

which is a fundamental property of Color Transparency. 

In conclusion, the present results seems to indicate that there exists an internal inconsistency in the starting 

model. The origin of this contradiction is not clear yet.. We are currently working on this subject. 



XV  Encontro Nacional de Partículas e Campos • 	 205  

Ci, Constraints on Self-Couplings of Vector Bosons  
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Instituto de Física, Uniucrsidude de  São Paulo,  
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Rua Pnrnplona 145,  01405.900  São Paulo,  i3rnzil. 

We analyze the constraints on possible anomalous contributions to the W+W - Z vertex  

coining from non-universal radiative corrections to the Z - bb width. We parametrize these  

corrections in terms of cb and use the LEI data to establish the allowed values for the  

anomalous triple couplings.  

The Standard Model (SM) of clectroweak interactions has so far explained extremely well all the available  

experimental measurements. However, some elements of the SM, such as the symmetry breaking mechanism and  

the interaction among the gauge bosons, have not been object of direct experimental observation yet.  

One of the main goals of LEP II at CERN will be the investigation of the reaction e+ e -  - W+YV' - , which can  
furnish direct bounds on anomalous W+1V- ry and l'V+ IV' Z interactions. 	 .  

Other valuable indirect, sources of information on anomalous interactions are the low energy data and the results  

of LEI", which can also constrain substantially the possible deviations of the gauge boson self :interactions from the  

SM predictions through their contribution to the electrowcak radiative corrections.  

In this work we concentrate on non-universal effects due to the non-vanishing masses of the virtual particles  

running in the loop corrections to vertices. These non-universal contributions to the Zbb couplings have been  

parametrized in a model independent way in terms of the parameter cb, which is defined as  

4¡  cb = r  — 1  ,  
`1,t  

where g (g.ti ) is the axial coupling of the Z to the pair bb (t?C).  

The most general polynomial CP conserving and Lorentz invariant structure of the 1 +W - Z vertex is associated  

to the effective Lagrattgian,  

Gift = -  t e
sty 

[ ( V,+ W - rr —Iti ;^l'' + '')Z" + x 7, IVr;VV f µu +_WW DZ ' 	 (1) 
 4i  

with sw(cty ) = sin(cos)Ow and g = e/sw. The terms in Eq. (1) are C and P invariant.  

We will concentrate on terms that, conserve CP since the contribution of CP violating interactions to the decay  

width Z - bb is suppressed by powers of Tab / la, .  
The effects of the anomalous couplings are related to the quantities ,g¡. ,nz and Az, and their respective  

standard model values are  

,gi =g¡ -- i =0,  
1.1>4Z = ,cz - 1 = U  

Az 	= 0 .  
(2)  



Co (0 . :. 0, 1, tu. m)} ,  ( 5 )  
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We are now in position to evaluate the non-universal contributions to the decay width Z - f, f; associated to  
the anomalous interactions described above. As a consequence of the V-A structure of the W coupling to ferrnions, 
this anomalous amplitude also presents this structure. Neglecting the external fermion masses, can be written as  

I'inro ( 7Ij) = i 	
c  	E  1;; t;1 F(tn;)7°(l - 75 ) , 

4stv cw  
(3)  

where 141  = S;1 for leptons and it is the Cabibho-Kobayashi-Maskawa mixing matrix for quarks. Neglecting the 
mixings l4 (j = I, 2) and all the internal fcrmions masses but rritop '  i t is clear that this amplitude will 1w equal 

for all final fermions except for the h-quark. The universal part., F(0), affects the values of p and sin C.. `on-
universal effects appear in the Z , bL width and they can be parametrized by the parameter cb which takes the 
form  

et, = s11' _ [F(miop) - F(0)] .  

The anomalous interactions give rise to new contributions to cb, in addition to the SM ones (cb A1 ), that are 

 given, in terms of the anomalous couplings (2) by 

cb - cy M = ,rti^.L.11•-„Z  + Ag i/ LIEg f + a7,.]1•à Z  

where the form factors are given  by 

2 ^ 
'1F,^ z  = -g ca^ {-1  11671.

2w-̂ [I + Bo(:. tu. iv)]  + 2{80(0.0,w)-     1 .10(0,1,1, w)] 4  

1(1 - tu)  
+ 	[Bo(:, w , w) - 130(0,1, w)] - 2w [C0(0, :. 0.1, tu. w) - C0(0, z,  O.  0, mu,  w)] 

'lw° 
[(t -  tu) 2 +1: - 1,tu+4w 2 ]  

2w 2  
+ 1  

:11"y 	=  
g2 e2a, { 	1 	:It / 
16a= 	ltr; + 1tu B

o (:, u:. w 	'l ) + 	I +` / [130(0. 0, re)  -- B0(0, 1. tu)]  

t 
	1.'-+- 

t u, 
+2 - (I - 

	
[130(0,1 , u;) - 1.^10(: .  u:. w))  + 2w (I + --) Co(0, :. 0, 0, w, w) 	(6) 

 'l:  

[2 (/ -- tu) 2  +1: +tu: 	1. (1- w)'^ +t'- 2rr': + _'1 

 + 
	 J G0(0, ;, 0,1, to, tu) } 

 

tu  

1 7  
riC4i'  { 2w [I30(0. 0, w) - 130(0,1, w)) + (2tu - :)1 C0(U, _, 0.1. w. ur)  
16a2 w  

-2w2  [Co(0. : , 0,1, ur, tu) - C0(0.:. 0.0, w. w)]}  •  ( 7 )  

Bo and C0 are the Passarino-Veltman two and three-point functions respectively. We used the short hand notation 
= rn¡ w = rntiy , and t = rn^op . The Passarino-Veltman two-point functions are divergent and were evaluated  

using dimensional regularization that is a gauge-invariant regularization scheme. The above expressions have poles  

only in d = 4 dimensions that are identified with the logarithmic dependence on the cutoff, i.e..  

2 	 :1= 
4 - r1 

	In(47) + 1 = In 	.  

The form factor AFa a  is independent of the cutoff while the others have a logarithmic dependence of the form  

(8 ) 

F'- 	_ 	•̀ 1 
 (qv 

 -1 I n
'^=, 

F, 	64 r'^ ur= 	tt;  

:iq =' Cii, 1. 	A= 
4.N. Fy1 _ - 32a=' u; 

In 
 w  

In order to obtain the bounds on the anomalous triple gauge-boson vertices, we evaluated these form factors as  

a function of ta top , neglecting all other fermion masses. Our results are shown in Table 1 which also contains the  

SM prediction for cb.  
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lri top  cd 111  x 103  LIEN:, x 103  A r•y 7. X 1 03  AF,,,, X 103  

125 -2.82 -7.43 -27.98 -1.68 

150 -4.88 -9.94 -36.93 -2.10 

115  -7.13 -12.62 -46.26 -2.51 

200 -9.79 -15.41 - 55.77 -2.90 

225 -12.80 -18.29 -65.33 -3.26 

'fable 1: SM model predictions for fb  and anomalous form factors as a function of rn top , assuming A = 1 TeV. 

mtoP , h: ,gi Az  
125 (- 1.4,0.4 :i) (-0.3F.0.11) (-6.3. 1.9) 

150 ( -1.3, 0.1 I ) (-0.34. 0.03U) (-G.O, 0.53) 

175 ( -1.2. -0.091) (- 0.32. - 0.025) ( -6.0. -0.46) 

200 ( -1.1. -0.25) (-0.32. - (I.068) ( - 6 .1.  -1.3)  
225  (-1.1.-0.37) (-0.32,-0.10) (-6.3.-2.1)  

Table 2: 90 c/n CL limits on the anomalous couplings. assuming A = I 'I'eV. 

An analysis of the available LEI' and SLC data in on-ins of the oblique parameters ci (i = 1, 2, 3) and cb has 

been performed in the literature. which led to 

cb = (0.9 ± 4.2) x Itì - '' (9) 

This experimental result together with Eq. (4) and 'l iable I can be used to constrain the "blind" directions of the 

low -energy effective Lagrangian. We list in '!'able 2 the hounds at. 90% CL obtained for the parameters g¡ , nT. Az. 
At this point it is worth comparing our results +with the hounds obtained from the universal radiative corrections. 

which can he found in the literature. A crude comparison shows that our constraints are comparable to the universal 
hounds for g¡ and tiz. Moreover, our results for Az. are of the saute order for a heavy top after considering the 

strong correlation existing in the universal constraints. 

For more details and references see: 

0..1. P. [;boll, S. M. Lietti, M. C. Gonzalez-Garcia and S. F. Novaes. Phys. Lett. B339 (1994) 119- 126. 
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Elastic proton-proton scattering 
and complex parton-parton amplitude 

A. Ham. Martini and M.J. Merton 
Instituto dc Física 'Clcb Wataghin'. Unicamp 

13083-970  Carapinas. Sao Paulo, Brasil 

Starting from a simple phenomenological relation between real and imaginary parts of the el- 

ementary (parton-partori) amplitude, improvements in an eikonal approach to elastic hadron 

scattering is presented. It is shown that the model reproduces the pp differential cross section 

data at ISR energies. 

In the Glauber's Multiple Diffraction Theory the scattering amplitude between two hadrons. FAA. is connected 

with the form factors, GA and GB and the elementary parton-parton amplitude, f, through the well known formulas 

[1] 

FAB = i J bdbj0(0)[ 1  - e - ntb , rl) = i < 1 - e -n"" )  >. 	CO..) = C < GAGB f >. 	(1) 

where C is transferred momentum independent. In a diffractive model to elastic hadron scattering the following 

choices have been used [2]: 

C1=[(1 + q 2/oá)( 1 +q 2 /01)] -1 • J =,:1.13. f=[1- q 2 /u}/[ 1 + q4 /a4 ]• 	 ('2 ) 

In this model the eikonal is purelly imaginary, x = if/, so that. the amplitude FAB  is purelly imaginary too. In the 

original formulation the real part of FAB is estimated through the Martin's prescription. 

dcr d 
dt = 10-(q, s) + p̀'WI—(B M,'   , s)]]'' ). 

with p(q,$) = FAB(q.$)/FAB(). $) and where p is the ratio of the real to the imaginary part of the forward elastic 

scattering amplitude. With the experimental p-value at each energy as input., elastic pp scattering may be well 

described at ISR energies with the following values and dependences for the free parameters [3]: 

of.' = 0.42 Cc112 . 	a 2  = 0.183 + 0.I24[ln.s] =' (Get;`), 

132  = 1.80 Gcl% =', 	C(s) = 7.814+0.0518[lns] =  (GeV -2 ). 	 ( 3 ) 

However Martin's formula has limited validity [4] and also the p-parameter can not be predicted since it is an 

input variable at each energy. In order to avoid the use of this prescription we introduced a complex elementary 

amplitude through a very simple anzats: 
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1 — 4=/a 2  _  
1  +  g 4 /^4  — 

 /rat !(41s)},  Re{  f(q,  s)} _— A(s)!m{ f(q,  s) }, 	 (9)  

where A(s) is a free parameter to be determined at each energy. With (1) to (4) the differential cross section may be  

calculated by dv/dq 2  = srIFA B(q, s)r 2 . Fitting to pp at f = 53 GeV reproduces the same result as that obtained  

with the Martin's prescription for A = 0.055, as can be seen in Figures 1 and 2. Attempts to reproduce the results  

with the Martin's prescription in the 1SR energies have lead to the following preliminary parametrization:  

A(s) = — 0.04829 + 0.01262flns}.  (5)  

With this we have a complet predictive formalism. Figure 3 shows the comparison of the predictions through (I)  

to (5) and experimental data at all ISR energies.  
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A Single Quark Effective Potential Model 
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In the present work we construct a radial spherical symmetric single quark potential model 
for the nucleon, consistent with asymptotic freedom and confinement. The quark mass 
enters as a potential parameter and that way induces indirectly an isospin dependence in 
the interaction. As a consequence, a contribution to the negative charge square radius of the 
neutron arises as an effect of the quark core, which simulates an isospin symmetry breaking 
effect in the nucleon due to strong interaction. 

Our Lagrangian is represented by a massless fermion field (the quark field), which has to be extended by a 

vector potential, according to local U( I )-invariance. The massless Lagrangian however is symmetric under chiral 

transformation, which is known to be an approximate symmetry in spite of the u and d mass difference being 

small on the typical strong interaction scale. Various models of the nucleon based on chiral symmetry violation 

on the quark level (c.f. [1] and refs. therein), result in quantitative agreement with experimental results, such as 

electromagnetic form factors, for instance. 'l'}tus we lake chiral symmetry and its violation on the quark level as a 

guiding principle to construct the '`complete" model-Lagrangian. 

We choose the chiral group in its simplest form, i.e. isospin representation. The generators can be associated 

with isospin raising, isospin lowering and the third component of the isospin axial vector current, respectively. In 

our case, we regard isospin symmetry as an approximate one only, with symmetry breaking due to the possible 

mass difference m„ — rnd O. lit order to violate chiral symmetry explicitly, we introduce a scalar term into 

our Lagrangian, which contains Lorentz scalar and vector potentials. '1'Ite scalar potential is of the same order in 

magnitude as the vector potential, to combine the success of nonrelativistic quark models with a relativistic one. 

To be more specific, we use the approximation 7 0  V.  -1 6 Vo , with Vo = U, with U a Lorentz scalar, such that 

we gain an equally mixed scalar vector potential 7`'V ¡,+ U - (1 + 70 ) V. Further we introduce a mass term, which 

shifts the mixture between the scalar and vector potential contribution and leads to a different "overall effect" in the 

upper and lower component. The mass thus appears as a potential parameter. In this way the effective potential 

acts dominantly on the upper component of the spinor, and this way reduces in the nonrelativistic limit and for 
rnq  — At, x s , to a nonrelativistic description. In the present work we do not. discuss the Lagrangian in its 

complete (i.e. approximate chiral symmetric) beauty, but restrict our present discussion to the possible role of the 

quark mass as a potential parameter in a relativistic model. 

To get a convenient potential, we use the relation between a modulation function and a potential as shown in 

ref. [1]. The spinor wavefunction in the Dirac equation is taken to be a product of the free quark spinor y and 

a modulation amplitude , which modulates the quark wavefunction and is determined by physical boundary 

conditions. F in general exhibits a space-time dependence. The relation between the modulation function F and 

the potential V in our spherical symmetric and static approximation is taken to be V = —1 In F (c.f. refs. [1]. 
[2]). In order to define the potential we use the phenomenological behavior of asymptotic freedom F -- 1 as r — o 
and introduce confinement tentatively via Fl"1  — o ns r — co. For convenience we take the simplest solution. 
which seems to be appropriate for our purpose, that is a solution to the above cited relation including the boundary 
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conditions yielding: V = G(r) r2  with V = 2hc 74, where G represents a variable coupling constant of the  

harmonic oscillator potential. The variable R q  represents an expansion parameter, which depends on the energy  

eigenvalue and the quark mass.  

The Dirac equation for the upper and lower components di and x then reads  

P)X+(mg +2V)á= Egck,L•p)c +̂ —  ► n9 x = Eq X . 

After separation of the angular part of the Dirac equation, there remain the differential equations for the upper and  

lower radial components g R  and  

he 	dg. 	tc + I 	d2 	ex 	f li r2n-1  
= fR 	Eq  + mgc2  [ dr  + r gR ] ' 	

0= 
^ dr2 	r2 	r2 " —  RQ" + EE) (r9K(r)) 	 (1)  

with being the eigenvalues of the invariant quantity K = 7o(E • I + I) and the abbreviations Cv = ' "(E

.+

:

n,c. 

 E , = E2—(mOC2)2 E • = rc ti + 1). In order to fix the expansion parameter k g , we set the second derivative of the  

wave function to a minimum in analogy to the phenomenology of potential scattering and obtain :  

R 	3 	
hc 	

1 +` ¡1 +2(ER+6) EQ - 3mQ C2 

q 3
E  — 3rnq c2 	VV 	J 	Ey  + m Q C2  (2 )  

This formula has physical solutions for Eq  > 3rng c2  only. A simultaneous solution of equation (1) and (2) yields  

the values for Rq  lfrn (Rq  seems to be constant even for Inc' > 1) and the energy eigenvalues for h = —1:  

L•'° x 300MeV and Ed  1  310MeV with Arn = 3MeV (c.f. ref. [2]). It should be mentioned, that equation (1),  

with the simplest form of a potential leads to normalization problems, which is clearly a consequence of the static  

approximation with expansion at r = Rq . However if time dependence is taken into account, it can be shown that  

Rq  is related to a "natural cutoff" (a future paper, in preparation). To demonstrate the effect of the quark mass  

dependence. we calculate the charge square radius for the proton and neutron, taking into account the quark core  

only (i.e.0< r< Rq ).  

`r2) = 0.53fm2  < 0.74fm 2  (exp.) 	(r 2 ) _ —0.04ím 2  > —0.12fm 2  (exp.)  

For exact. isospin symmetry the expression (r 2 ).is zero as expected, or in turn the negative sign appears as a  

consequence of isospin symmetry breaking (compare ref. [3)).  

We demonstrated, that with a potential model of the kind proposed, even a small isospin symmetry breaking,  

in our case we used ,T,^°rm^ 0.05, can lead to a negative sign of the charge square radius for the neutron. This  

property is a consequence of the quark mass, which enters as a parameter into the potential and thus induces  

indirectly a small isospin symmetry breaking. Finally the question arises: Can the experimental fact of the negative  

charge square radius of the neutron be understood in terms of "proper" isospin breaking?  
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Oblique corrections in a model with neutrino  

masses and strong CP resolution  
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There has been recently some interest on the implications of one loop corrections due to majorana particles on  

the electroweak measurements [1, 2, 3]. Most. of this interest was focused on the consequences of the Hill and Paschos  

model [4], where it is introduced a fourth generation of leptons, which accomodates a heavy neutral member with  

a majorana mass of O(C^, 112 ), and where the light neutrinos obtain small masses through the see-saw mechanism.  

Computing the oblique corrections for such a model, it was verified that a heavy majorana neutrino in the third  

generation decouples from electroweak physics and cannot be excluded experimentally [3].  

The one-loop corrections in these type of models have been parametrized in terms of the heavy (or fourth  

generation) charged lepton mass, and of the light and heavy neutrino mass eigenstates (see, for instance, Refs. [2, 3]),  

and they show some intricate behavior as these masses are variated [2]. Although the introduction of a new  

generation is phenomenologically attractive [5], there is a much wider class of models, where we have majorana  

neutrinos without the company of the fourth generation charged lepton, and where we expect that the contribution  

of the new physics to the oblique parameters S, T and U [6], will be described only in terms of the light and heavy  

neutrino mass eigenstates. Therefore, we expect to constrain directly the neutrino masses, when we compute and  

compare their contribution to the radiative corrections with the experimental data.  

. 	Our intention in this work is to verify what is the order of the limits we obtain on the light neutrino masses.  

through the calculation and comparison of the oblique corrections with the experimental data. The calculation will  

be performed for a specific model, although we expect it to he sufficiently general to give one idea of the limits that  

can he obtained on neutrino masses in this class of models.  

The model we will consider has been proposed by Shin [7], and besides the standard generations of quarks and  

leptons, it contains three generations of right-handed neutrinos (NOR), one superheavy quark, and one SU(3) e  0 
SU(2)L p U(1)) ,  singlet complex scalar a. One of the interesting points of the model is that the o-  boson carry  

nonzero Peccei-Quinn charge [8], i.e. the a boson will acquire a large vacuum expectation value (vev), which will  
be identified with the scale of Peccei-Quinn symmetry breaking, which resolve the strong CP problem. At the same 

time the a will give large majorana masses to the right-handed neutrinos (No n), therefore, as it carries lepton-

number and PQ charge, the Goldstone boson associated with this symmetry breaking was called "ruajoraxion". As  

occurs with the ordinary .axion, the vev of this scalar boson (Vp Q ) will be limited to 10 1 ° -- 10 12  CeV [9]. Further  

details about the model can be found in Ref. [7], and here we will restrict ourselves only to what is necessary to  
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compute the oblique corrections in this mode!.  

In a general way, we can write the neutrinos mass matrix as follows,  

(i'OL STt)L ) I r.^.^T 
ll 	D  

MD 
	+'óR 	+ H.c. 

MN ^ NOR }  
(1)  

This procedure allows us to consider an arbitrary number of lepton families, i.e., for n families the mass matrix  

elements, mD and MN, are indeed a x It matrices, with  

i 

(MD)ii = ( 	)rJ^ t  e  ( MN)i . = ( f 	) x exp(r0o)y ii • 	 ( 2 )  

where 00 is the vev phase of a, which must be fixed according to the strong CP problem.  

In the case we want to deal only with the three Standard Model generations, the matrices mD and MN will  

assume a 3 x 3 form. To obtain the neutrinos mass eigenstates, we have to cliagonalize the mass matrix in Eq.(1).  

This was done introducing a 6 x 6 matrix, V. In order to make the computation of the diagonalization matrix  

feasible, we need to introduce some assumptions on the model proposed by Shin [7]. which are summarized in the  

following. Only the tau neutrino (v r ) will acquire mass via the seesaw ntecanismt. The heavy neutrinos (N1.:ti's. N3)  

are expected to have masses of the same order of 1/p4? (the Peccei-Quinn symmetry scale). We will assume mixing  

just between yr  and N3, and the mass matrix of charged leptons is assumed to be diagonal. These assumptions  

retain most of the physics of the problem, and at the same time greatly simplify the calculation, because we get rid  

of a complicated mixing matrix, which, if we do have a mass hierarchy in the Dirac neutrino sector, will not modify  

significantly our results. This yelds the mixing angle as a function of the y r  mass (m t ) and N3 mass (rn 2 ),  

S2  = e  

 

and cá =  
1712  

(3)  
ni t  + rn2  rn t  + rn•:  

which are related to Dirac and Majorana masses by  

rnD =m t ►n 2  and :1/N = rn2  — m t . 	 (4)  

With these results we can write the interaction Lagramtgian in ternis of these mixing angles, recalling some properties  

of majorana particles, which lead us to  

= }C % i — CBY r7^ 75Ur — S8 N37u 75 1̂ ^3 + liSgCBN37 7' 7/r  (5)  

and.  

+CWivN — — 	t^r^,̂ { 	—15)1).,+ 59T - 7P (1 — 7s)1V3 } + H .c. 	 (6)  

where we are abreviating the notation for the weak mixing angle, c = cos 0,, and s = sin 0W  

Now we are able to compute the oblique radiative corrections to this model. We have adopted the parametrization  

given by Kniehl e  Kohrs [3]. We computed the oblique parameters, and after some algebra we obtained the analytic  

form of 5,T and U [10]. which allows us to plot the oblique parameters in terms of neutrino masses (the figures are  

available via mail: FEDELlguspif.if.usp.br ). Using a very recent fit of the oblique parameters for the experimental  

data Ill], we have got some constraints on the light neutrino mass, assuming a Top quark of mass rn t  = 175 GeV.  

h7. the model we are discussing the heavy Majorana mass is related to VP Q , and we have naturally that. rn2  

MN = O(VpQ), therefore, when we computed numerically the values of S, 7' and U, we assumed m 3  to be in the  
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interval 10 10  — 10 1 ` GeV. The parameter S gives the most stringent limit on the mass m l  , and our results are as 

follows: for rn2 = 10 10  GeV we obtain that rn l  < 3.2 KeV, whereas for rn 2  = 10 12  GeV we obtain rn l  < 32 eV, 

which is a limit smaller than the experimental value of the y r  mass. This limit is a direct. consequence of the fact 

that, the experimental data still allow for a heavy Dirac neutrino with mD < 178 GeV. With the U parameter we 

obtain a limit that is at least one order of magnitude worse, whereas the T calculation does not give any meaningful 

result. 

As the Majorona mass is of the order of the Peccei-Quinn scale we obtain an extremely small mixing angle 

between the neutrino eigenstates, therefore our limits can be easily related to a limit on the Dirac neutrino mass. 

If we had a much lighter Majorana mass we would have the same constraint on the Dirac one. however, no limit 

would be obtained for the ter  i.e. better than the present experimental limit, on rri. Notice that even if we had 

not simplified the mixing matrix we would obtain a similar result, as long as there is a mass hierarchy for the Dirac 

neutrino masses. 
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Neutrinos Atmosféricos e a Razão ve / vet  

H. M. Portella, R. H. C. Maldonado. A. Comes 
Instituto de Física, Universidade Federal Fluminense 

N. Amato, C. E. C. Lima 
Centro Brasileiro de Pesquisas Físicas 

1. Introdução 

Os neutrinos atmosféricos sio produzidos nos chuveiros hadrónicos induzidos pelos raios cósmicos primários 

e são observados em detetores subterrâneos de grande massa dc água (Cerenkov). através dc suas interações no 

interior destes detetores. Da medida dos elétrons e dos nriious contidos nestes detetores estima-se para a razão 

(lie  + fie )/(1/j, + Pi+) um valor acima de 1, o que estri cm total desacordo corri estimativas teóricas que sugerem ura 

valor dc aproximadarnente 1/2. 

Neste trabalho calculamos analiticamente o fluxo de neutrinos atmosféricos resolvendo as equações unidimen-

sionais que descrevem a difusão dos !ladroas e lepions na atmosfera e comparamos nossos resultados coin os obtidos 

através de cálculos de simulação por Gaisser e colaboradores e obtidos analiticamente por Bugaev e Naumov. 

2. Fluxo de neutrinos 

O "Rate" de um detetor de Cerenkov é função do fluxo dos neutrinos atmosféricos que entram no detetor, da 

massa de água, da seção de choque dos diferentes tipos de neutrinos que interagem dentro do detetor e também 

da eficiência do Cerenkov em identificar um evento  do  tipo eletrônico ou rnucitiico cujo o vértice da interação está 

contido no detetor. 

Neste trabalho nós nos limitamos a calcular o fluxo de neutrinos atmosféricos na região de energia, 500 MeV 

<E„<2 GeV. 

Na primeira parte do trabalho obtivemos o fluxo de mesons (rr±, K{, h ) levando-se cm  conta a distribuição 

' zenital e os efeitos geoiiiagnéticos sobre os raios cósmicos primários. Usamos em nossos cálculos unia atmosfera 

isotérmica c para grandes ângulos zenitais (0 > 70°) se fez a correção no fluxo de muons do efeito  da  curvatura da 

Terra.  

Tendo-se obtido os fluxos mesónicos, calculamos o fluxo integral de inuons levando-se em conta os efeitos do 

decaimento dos muons era elétrons e da perda de energia por ionização dos niuons na atmosfera. Para esse efeito 

usamos a seguinte expressão —dE/dx =a  + bE, a e b constantes. Essa perda de energia foi considerada continua. 

Para a região de energia considerada os neutrinos são originados em sua maioria dos decaimentos dos pions. 

kaons c niuons. 

3 Resultados e Conclusões 

As razões entre os neutrinos e antineutrinos muônicos foi estimada ern 1.15 c entre os neutrinos c antineutrinos 

eletrônicos em 2.1.. Para a direção vertical c para a energia dos neutrinos menor que 2 GeV. os fluxos de neutrinos 

e antineutrinos rnuonicos vindos dos decaimentos dos pions e kaons, tem a mesma ordem de grandeza. Para a 
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direcção horizontal e para energias menores que 10 GeV o decaimento dos muons em elétrons é bastante importante, 

tornando-se dominante na produção dos antineutrinos muonicos. 

O fluxo de neutrinos por nós calculados é comparado com o obtido por Gaisser para as coordenadas geomagnéticas 

de Kamiokande. Da figura vemos que o fluxo dos neutrinos e antineutrinos eletrónicos coincidem com os obtidos 

por Gaisser, enquanto que para os neutrinos e antineutrinos muónicos hã uma direrença de cérea de 8% (nossos 

cálculos fornecem um fluxo menor). 

Fizemos uma estimativa do "Rate" do detetor de Kamiokande e o resultado é apresentado na tabela abaixo. 

tipo do evento dados experimentais Gaisser et. al. Portella et aI. 

e-like 122 127 125 
p-1 i ke 103 175 143 

630.00 raiser  
- - - (1111 

E 

" 2.30.00 
w . 

30.00 	 
0.00 

 

	11-771,1-rr rr, 1117-r . r r . -, I„ rn T r 	n-n-rr-rrn 
0.50 	1.0U 	1.1.,1.I 	2.00 	2.50 

E (GeV) 

 

Fluxo de Ne11tiinos 
(IC  cum ioko1uIr•] 
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Numerical analysis of the elastic  

parton-parton profiles in eikonal models  

M . J. Merton and D. S. Thober  

Instituto de Física 'Gfcb tl'atayllin' Universidade E;stadual de Campinas (Unicamp)  

We present a numerical analysis of the two-dimensional Fourier transform connecting parton-
parton profile functions and scattering amplitudes from five pure geometrical (eikonal) mod-
els. Making use of three numerical programs we show the cases in which the transform may  

he computed.  

Elementary (parton-Parton) amplitudes in pure geometrical models has recently been discussed in reference  

[1]. We shall assume the knowledge of this analysis and recall that a necessary condition for a consistent use of  

the Glauber's multiple diffraction theory is the existence of n well defined Fourier transform for the elementary  

amplitude. Current models make use of the following choices for this amplitude (I]:  

- Chou and Yang: Icy = 1.  

- Glauber and Velasco: fGv = e' (ó 1g 7 + 6,44) /(1 + (q/(1) 7).  

Saleem, Alcem and Alzhar: fsnn = 1  — (q/a)'/(I +(q/n)-') s. 
liourrely, Softer ánd Wu: fBsw = 1 — (q/a)`'/(l + (q/a) 2 ).  

- Menon and Pimentel: fn4 BSw = I — (q/a) 2 /(1 + (q/a) 4  ).  

where q 2  is the transferred momentum and a 2  a free parameter in each model. We recall also that fasw  corresponds 

to an interpretation' made by some authors and that the subscript in f,,BSW means modified - BMA' (I].  

Our aim is to investigate the integral  

D(b) _ ¡ l ^  gtfgJo(gb)f(q) _< f(q) >. 	 ( I)  

where b is the impact parameter. Ordinary two-dimensional Fourier transform may he found in two cases,  

DG1' = < Ifavl >_ ae - "/b, 	 ( 2 )  

Drrm551v =< frntisw >_ —a`[K ei(ab) + K er(ab)] 	 (3)  

and generalized Fourier transform in the case of the Chou and Yang model. Dcy =< fcy >= 6(b).  

Integration of equation (1) was tested by means of fast Fourier transform in XVGR. and Mathcmatica programs,  

[2, 3, 4], as well as through the NAG library for direct numerical integration. Due to slow convergence all cases  

presented fast oscilations. The same happens if a cut-off in the integral limit is introduced.  

In order to obtain a fast convergence we carried out an integration by parts,  

D(b) = 
gJ1(gb)f(q) I,  — b f N dgq•1 1(gb)f m (q)• 	 ( 4 ) 

n  

The first term vanishes in the case of IfGt'I  and frnnsw  
reproduces the analytical results (equations (2) anil (3)). as can he seen in Figure l.a. In the case of fBsw  the first  

term diverges at infinity and 'the second one can be calculated, as shown in Fig. 1.b. A cut-off above 30 GeV .' does  

not change the numerical results up to four digits. The analysis was made with a cut-off at 100 Gel/ In the case  

of fsAA  the first• term diverges and the second one presents last oscilations and so could. not he calculated. The  

novel results we arrived was: (a) a separation of the finite and divergent parts in the case of fBsw: (h) numerical  

integration throught the programs referred is not possible in the case of fsa,% .  

and with a cut-off above 30 GeV' the second term  
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Nucleon Mass Splitting in Thermo Field Dynamics  

11. R. Christiansen'  
Departamento de Física, Uniuersidad Nacional dc La Plata  

c.c.  67. (1900) La Plata. Argentina  

The finite temperature and finite density dependence of the neutron-proton mass difference  
is analyzed in a purely hadronic framework where the p — w mixing is crucial for this  
isospin symmetry breakdown. The problem is handled within Thermo Field Dynamics. The  

present results, consistent with partial chiral and charge symmetry restoration, improve the  

experimental data fit for the energy difference between mirror nuclei.  

in recent years. the possibility of producing quark-gluon plasma by means of very energetic nucleus-nucleus  

collisions [1] opened a rather important. program of investigation of matter under extreme conditions that could  

shed light on various fundamental problems of field theory and nuclear physics.  

In the present work we analyze the behavior of the neutron-proton mass difference with temperature and density  

within meson theory. Our results arc consistent with both partial chiral and charge symmetry restoration with  

increasing temperature and density. In particular. the density effects arc in order to exhibit the expected tendency  

to clear away the Nolen-Schiffer Anomaly (NSA).  

Although a full description of the neutron-proton mass difference calls for essentially non perturbable techniques.  

one may gain qualitative understanding of the problem. relying on the perturhat.ive methods used in many body  

nuclear physics. There, relativistic perturbation theory (RPT) is mainly used for the analysis of hadron interactions  

[2]. In Ref. [3) we have obtained a good result for the n-p mass splitting using RPT at the hadronic level. In that.  

work we have shown that the role of the p — La mixing interaction is crucial in the understanding of the n-p mass  

difference, in a hadronic context.. We have concluded that the mixing of the vector mesons is the main non-

electromagnetic charge symmetry breaking (CSB) contribution to be considered. We recall that r]!Ll^Ij, = 1.29  

NleV while Ailfnm r, = —0.66 to —0.76 MeV [4]. implying a 2 McV strong contribution.  

Here we obtain the finite temperature and density (FTD) dependence of the nucleon mass splitting using the  

same framework as in Ref. [3] where we have considered nucleons and mesons as the fundamental dynamical degrees  

of freedom.  

A natural framework for the study of matter under FTD conditions is the so-called Thermo Field Dynamics  

('FFD) [5]. TFD is a real time formalism of the statistical field theory. very powerful for describing non-isolated  

many body systems. It is a canonical field theory formulation in which the Hilbert space is doubled and each  

field operator has two independent components belonging to the thermal doublet.. Correspondingly, the Green's  

functions, self-energies etc.. are expressed.by  the thermal matrices. Moreover, the usual perturbation theory at. zero  

temperature and density can be easily extended to FTD. This formalism is also particularly useful to perform both  

high and low temperature expansions, a feature much less acccsible in the imaginary time formalism. Consequently.  

perturbation theory is at hand using the Feynman diagrams technique proper of RPT. Moreover, the TFD free  

propagators can be explicitely separated into two parts: one term being the usual one and the other part depending  

on temperature and density. TFD establishes that inner vertices of a diagram can he of either type. physical or  

ghost while the external ones ought to he physical. In view of this, and up to second order perturbation. only  

the mixing vertex involve both kind of terms. However, for the ghost type. the product of meson propagators  

'Partially supported by CONICET. Argentina.  
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will produce a vanishing contribution to the loop. The contribution coming from antiparticles can be omitted for 

temperatures 1.3' 1  below pair production. Furthermore, as the presence of real mesons calls for extreme conditions, 

its effect shall be neglected. 

We perform a low temperature expansion of the remaining self energy expression with a relativistic chemical 

potential depending on both temperature and density. The corresponding equations are adequate for astrophysical 

temperatures (a couple of MeV's) and baryon densities in the range of the nuclear matter density b°  = 0.1934f rn' 5 . 

Under these conditions, the 7' 2-dependent term of the corrected self energy is negligible. Hence the main contribution 

comes from the term which only depends on ó. In connection with this result let us finally comment on the NSA. 

The anomaly is the failure of theory to explain the mass differences between mirror nuclei, a gap amounting to 

a few hundred keV. The mass difference of mirror nuclei can be written as Mz>  — M < = — (Af„ — Mp )° 

where M z>  is the mass of the nucleus with the larger charge, JE T,„ is the e-m self energy difference between 

the nuclei and (M,, — AÍ ) 6  is the nucleon mass difference inside the nucleus. Since AE,„, has been exhaustively 

analyzed [6], in recent years particular attention has been paid to the second term. Our numerical results of 

(Ain  — AIr) 8  — (M„ — Aar )° for 7' = 0 and baryon densities ranging from 60/2 to I.56°. go from —100 to —250 kcV 

with a set of coupling constants chosen in order to saturate the 2 MeV hadron contribution to the vacuum nucleon 

mass difference within the model {7] (This election is well inside the accepted range of variation of these parameters 

{8]). The final result is in the right direction to remove the anomaly. 

In conclusion, we have shown that the extension of canonical Quantum Field 'Theory in vacuum to FTD media. 

provides sensible results for the nucleon mass splitting under extreme conditions. For standard astrophysical 

temperatures we find a negligible temperature contribution to the nucleon self masses. On the other hand, within 

the present framework, the hadronic model predicts the hoped trends to remove the `SA. Our numerical results 

for the nucleon mass splitting in dense media, snuggest that one should include (besides p — y mixing) some other 

contribution being of minor importance to the n-p mass difference in vacuum but relevant inside nuclei. 
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Phenomenology of the Spontaneous  

CP Violation in SU(3) f, 0 U(1)á-  
Electroweak Models  

Luis N. Epele and Daniel A. Gómez Durum'  

Depnrtnt ►tento de Físicu. Universidnd,Vnciunal de La Plain  

C.C. 67. (1900) La Plata. Argentina  

We study the phenomenological consequences of the spontaneous CP violation in an SU (3)L OU (1))• model with  

three Higgs triplets and one sextuplet, which has been recently proposed by Pisano and Pleitez [1] and Frampton  

[2]. Since this CP-violating effects are due to the presence of complex vacuum expectation values in the Higgs  

sector, our analysis requires a detailed study of the enlarged scalar potential.  

As we have previously shown [3], this potential yields a spontaneous CP-breakdown mechanism for a certain  

region in the space of parameters. The question now is. whether the model can reproduce the observed CP violation  

phenomenology or trot. To find the answer, we firstly identify the scalar mass eigenstates, and then calculate the  

main contributions to the mass difference r ►eh — rrth, and the Cl'-violation parameters and E' related to the  

Kaon decays.  

The diagonaiization of the neutral and charged scalar mass matrices does not represent a trivial task, in view  

of the many terms entering the Higgs potential. In our work, we proceed first by identifying the scalar mass  

cigenstates when CP is conserved, and then we approximately find the physical scalars when CI' is spontaneously  

broken. In order to deal with the large number of unknown parameters, we take as an assumption that. the only  

scales introduced by the potential are those given by the vacuum expectation values of the neutral higgs (say. u A  and  

r„), and a global coupling constant. scale A. After considering the spontaneous breakdown of the gauge symmetry  

SU(3)L 0 U(1)1 ,  to /1(1)„,,,  we find that the mass eigeustatcs interact. with the fermions through CP-violating  

Vukawa couplings.  

The most important contributions of the new physical scalars to drub . E and E' are given by tree-level diagrams.  

together with the well-known "hox" and "penguin"-like graphs, involving in this case neutral and charged scalar  

mediators. In the corresponding calculations, once again we have to deal with many unknown parameters. However,  

their order of magnitude can be computed. 'Thus, if there are no cancellation and enhancement effects, it is possible  

to obtain meaningful numerical estimations.  

The main contribution to ,nth is found to be proportional to the product ( Vi ) tt (V ) 12  where V¿ is the mixing  

matrix for the down-like quarks, d, s and O. Assuming that the masses of the light scalars are not greater than 150  

GeV, our result is that the condition  

(li^)tt({ ,¡ ° }t•_ < 0.01  

has to be satisfied if we require the SU(:3)L 0  U(1) 1 . contribution to be lower than the standard prediction by at  

least one order of magnitude.  

•e-mail: dumm©vcnus.fisica.unlp.edu.ar  

1  As usual, it is satisfied the relation 1/ 17 1. 111.1  = Vc/ M. I lowever. in this model both t'f and t'y also appear in a separate way in the  
Lagrangian.  
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The value of a receives contributions from both tree-level and box diagrams. Here, in order to get the experi-

mental value lei _ 2.26 x 10 -3 , the angles in Vf must obbey the stronger constraint. 

(vhtt(t'i )r2 < 4 x 10
-3  

Moreover, we find that other contributions are negligible when compared with this one. In this way. the d-quark 

mixing angles should reach the upper limit in the above equation if the phases coming from the scalar potential are 

responsible for the observed CP violation. 

Finally, for the calculation of the e' parameter it is necessary to consider both tree-level and penguin diagrams. 

Here even the experimental data are not conclusive: they just agree with the upper bound k'/e' < 5 x 10 -3 . The 

evaluation of the diagrams gives in this case the approximate result Ie'/eIsut3)  0( 10 -4 ). Therefore, once we have 

fixed the value of e, both JrnK and 'el fall very well within the experimental bounds. 

It is interesting to remark that similar calculations have been performed for a two-Higgs-doublet model [4]. 

However. in that case, the introduction of arbitrary small parameters in the Lagrangian has been necessary in 

order to reproduce the observed CP violation and flavor-changing phenomenological effects. In the SU(34, OU(1)y 

model, as stated above, the corresponding '`small" parameter appears naturally as a mixing angle in VL , and could 

he explained in terms of the hierarchical structure of the quark-mixing matrices. 
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Fluctuation and Dissipation in Nonequilibrium 
Quantum Field Theory 
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The nonequilibrium dynamics of a scalar field is studied using perturbation theory and a real 

time finite temperature formulation. The evolution equation for the scalar field is explicitly 

obtained and terms responsible for noise (fluctuations) and dissipation are identified and 

studied in the high temperature limit. 

I. Introduction 

The understanding of a very large amount of physical phenomena depends on the understanding of the dynamics 

associated to them. In the early Universe. for example. it. is fundamental the study of the dynamics associated to 

the cosmological phase transitions, that. possible happened at early times. which could lead to answers to most 

of the current questions in cosmology, like the origin of the large-scale structure of the Universe to the excess of 

haryonic matter [1). In inflationary models the dynamics of some quantum field driven inflation (the iuElat.oti) it is 

also fundamental. More at laboratory scales, we can also probe nontrivial dynamical effects through experiments 

of heavy ions collisions. The study of all these cases involve the understanding of nonequilibrium aspects of phase 

transitions in quantum field theory. 

In the study of any nonequilibrium system is important to identify what we call by "system .' and to what this 

system is coupled to, usually called the "thermal bath", which drives the system into equilibrium [3). Fora scalar 

quantum field, we can identify its short wavelength modes as a thermal bath driving the longer wavelength nodes, 

which have slower dynamics, into equilibrium. We can also identify other fields coupled to the background scalar 

field as being part of the bath. 

The separation between "system" and 'bath" is implemented here by perturbation theory, where the effective 

action is obtained by integrating over small fluctuations about the field configuration we are interested in. Prom the 

effective action we derive the effective equation of motion which we will show here up to two-loops. The Schwinger's 

closed time path scheme [2) at finite temperature is used as an appropriate formalism to study nonequilibrium field 

theory. In this formalism the time path goes from I = —co to I = co and then it. turns back tot = —co. As a result 

of this choice of time path we have a doupling of field variables: we identify the fields in one time path branch 

as ,p+,  for t E [—oo,+oo], and r._, for I E (+o0, —co]. The real-time propagators on the contour are therefore 

given in terms of a 2 x 2 matrix. [G(x, r')],„,,,, where rut, n = +. —. 'The physical (casual) propagator is C+.+ . The 

momentum space Fourier transform of [G(r., z')],,,,,, is given by (2] 

G++(k,t—t') =G>(k,t—t')o(t — t')+G<(k.t—t')o(t' --r.) 

—t')=G>(k,t—t')o(t'— r) +C,<(k,r—t ' )t?(t —I') 

'Work supported by CNPq. 
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G +- (k,t-r')=G'( ,t-t')  

 

where, for free propagators at finite temperature,  

- t') =c;<(11:,1-1') 
	

(1)  

G> (k, t - t') = 	1 	[(1 + 2n(w)) cos[w(r - t')] - i sin[w(t -  1')]]  
2w( k)  

G<(k', f - t') = G'(k, t' - t) , 	 (2)  

where n(w) = (e'lw - I) -t  is the Bose distribution and - w(k) is the free particle energy.  

Let us now consider a self-interacting AÓ 4  model with classical action S[¢]. The effective action ['f} up to  

two-loops and order A 2 , can be represented graphically as  

119+ = *PI  + >0 +  )i' (+  X 	

▪  

—e— + G ( A3) 
 

(3)  

where, in the graphic representation, all the possible combinations of ( 7.+ ._ are in the external legs and the internal  

propagators are given by Gm." (ni, a = -4- , - ). Sj+p] is given by S[ç.) = S[ça +) + S[y_]. The identification of 

fluctuations and dissipations in the equation of motion for a field configuration 9, derived in terms of the effective  

action, it is usually easier when expressing I'[ç. + ,  ç^_] in terms of new field variables denoted by rp, and VA (known as  

center of mass coordinate, or system field, and the relative coordinate. or the response field, respectively) expressed  

in terms of the old variables as ç, s ?(w +  + y._); and soa = sp_. In terms of rp c , +pa  and expressing the  

propagators in (3) in terms of the casual propagator G++, we get the following expression for the effective action  

(3) (for details see 16])  

^[ao, wc]  Jx { A z 
	 A f (Ilk.(1 +?ri(w)) 

	

= 	 ) -^ - „r -  — J 2 	(27)3 	
2w(E)  

	

A- 	d3q^ 	r^f rf3k 	2(W))
— 	fdt i   f  (2^) 3lm  [^ ++= 4  (4, t  - e ) ] ^ p(t — r }

J  (2^)3 

(1 + 

2w{

ri

k) 	
'Pe(x)—  

- ^ ( 4 99o(x)(Pac(x) + 401(x)+p.(x)) } +  

	

Jd4,¡  tí3k ^ .t ^-:}
{ -----  + 

	 x 	( 3 e  	k(r(x)(z')+ 
 1 	

3 
 

+ 4+p,1(x)ç^ c (z)^p^(x`) ] 

	

	̂̀ } 3 lin 1G -64,-+  ({T .r -  r' )G; + ( -  ^! ^ . t - t')1 0(f - r' )- f (2rr  

	

[ú i- 	3 +a)^p')Im 	1
C++( 	

! - r` )  0(1- t')Ã(k - 4., -4.2  - V3 )+ (`1^ 	
o )^  

2 	 , 
+ i  y,1(x)ç.c(x)9e(x')9c(x')Ite f

(2 r}3 
[^,e+ WI  - t')Gp+(4  - ^,  t — t')^ +  

 

 

2 	 3 

¡  g 
 

+ r  129042.(x»e(x')Re 	J  (2703 G 44' +(q.i.r - e) S(k — (Ti — 42 — (73) 	•  
i _t  

(4)  

The last two terms in r[v a vc ], Eq. (4), give the imaginary contributions to the effective action at the order  

of perturbation theory considered. It is straightforward to associate the imaginary terms in (4) as corning from  

functional integrations over Gaussian fluctuation fields 4 1  and ti_, [4,6,6]  
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r[Sao, 9s1 = ^  In I Dfi Pkt] 
J 

1.k2 116] exp ]1Seff(99a 	6.1,e2]}  

where  

Sett [49a, pc, 6,e.2]= Rel'[9o,4',]+
J 
 {1•'r[4%:,(x)7%c(x)ei(x)+ Spa, (x )E2(c)] • 	 ( 6 )  

and Rel'[tpo, ç2,] is the real part of Eq. (4). In (0), til and ti_,, are fields with probability distributions given by  

Pk1] = N 1-1  exp { _Jcizd4z'ei  (x) (— ' Re 1G +  +1  2 ^ ) ^1(x ' ) 	 ( 7 ) 
r r  

J^ 1.} P[s] = 1ti2 exp _d1 xd4 x'(x) (ÇRe [G,,) f2(X') 	 (g) 
 r,F '  

where N I-1  and N.  1  are normalization factors, and in (7-8) we introduced the compact notation,  

IGb+)
' 

	
= 

J 	T^
^ exp IrÁ'.('L - x^) ^ J 2T ^ ^Ció + (q. t - t')Cp+(4  - k,f - t')  

t2 s r 	 ^ 	i 	 ( 	)  

and  

a 	 a 
[C1á+^ J dsk

d3"^= 	(ZT) . 1  exp ^ik.(^ - x'), 	(2s)^ Gá + ( q̂ .lL1 1 f
— t ) 6(k4t --qs) • 

and 6 act as fluctuation sources for the scalar field configuration tp. f l couples with both the response field 94  

and with the physical field v c , leading to a coupled (multiplicative) noise term (9ag1) in the equation of motion for  

S^ e , while 6 gives origin to an additive noise term.  

The equation of motion for (p c  (the physical field) is defined by 

a efì[Ç A SO4 	tit] 	 (11) 
h^o • 

 = 0 .  

Restricting to situations near equilibrium and for nearly homogeneous fields, and using a Dyson equation for  

the propagators (or equivalently, by the use of full propagators), it was shown in [6] that the effective equation of  

motion for tp, would be given consistently up to order A 2  by the following equation  

(d+r !']soe(s,t)+ TA T 44(27,0+ rTlvç^e(r,t) =wc(z.t) 1(1.1) 
	

(12)  

where rraT and AT are the finite temperature effective amass and coupling constant, respectively, r¡ 1  is a dissipation  

coeficient given in the high T limit by  

r Tom -• 	-In 
r 

 j (13)  

77' 	in T  

In (12) we have dropped the aditive fluctuation field 6 and the associated dissipation term due to the fact that  

they can only be consistently defined at order O(A'') since it associated dissipation term is effectively of order A 4  

and therefore they are subdominant in the effective equation of motion for weak couplings.  

From (7) we get that  

• 
(e1(x)til(x')) = a- li.c (G+1

r,^.. 
(14)  

(5)  

(9)  

(10)  
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meaning that the fluctuation field f t is non-Markovian (it is not delta correlated) although it is Gaussian distributed. 

In [6] it was shown that a Markovian limit, exists for (14) at very high teïnperatures (T — co): 

(Ct(x)Ci(x')) 
T-"' 2T

►hb(r — x') . 	 (15) 

From (12) we can see that in nonlinear quantum field theories, the equation of motion describing the approach to 

equilibrium of field configurations, do not usually assume a simple form as given by the standart Langevin equation, 

with dissipation term given by PO and additive stochastic noise term. Instead, the dissipation kernels depend on 

the amplitude of the field configuration under study and fluctuations are of multiplicative nature. Also, usually 

we are only able to get a Markovian limit for the fluctuation correlation function at some nontrivial limit, as a 

very high temperature limit as shown for the case above. These differences in relation to the standart Langevin 

equation can lead to many new phenomena, when studing the nonequilibrium dynamics in physical systems. For 

example, multiplicative noises, as opposite to additive noises, are able to change the minima of the field potential of 

the configuration under study and preliminary results in the subject have shown nontrivial effects [7]. Dissipative 

kernels dependent on the amplitude of the field can also be very important in the study of inflation, being able may 

he, to lessen the constraints on the shape of the inflaton potential and leading to an improved study of particle 

production at reheating [8]. 

As a final comment, we must say that although we have used a perturbative study for dissipation and fluctuation, 

these are intrinsicaly nonperturbative effects. IL is not discarded the fact that higher order loop corrections could 

give same order corrections as the one leading to (13). In fact, in ref. [9] it was shown that there are an infinity 

series of diagrams contributing at the same order to transpot coefficients (e.g., the dissipation .  coeficient). These 

however can be evaluated by a resumation approach, leading to an effective vertex computed at two-loop order and 

the full contribution to the transport coefficients evaluated. Work in order to study corrections to the equation of 

motion (12) and the study of the effects of the coupling of others fields are under progress [10]. 
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Investigamos o comportamento das interações não lineares entre campos eletromagnéticos no  
limite de altas temperaturas. ,Mostramos que. era geral, não há contribuições proporcionais 

 à T2 . e que a dependência em log(T) se relaciona de maneira simples com o comportamento  
ultravioleta cm temperatura zero. Apresentarmos argumentos indicando que a ação térmica  
tende para o valor negativo tía ação, em temperatura zero, quando T —  oo. 

1. Introdução 

Campos eletromagnéticos exibem um  comportamento náo-linear (auto interagente) quando efeitos quanlico.s são  

levados em conta. As contribuições dominantes para este efeito podem ser calculadas utilizando-se o formalismo da  

elelrodinámica quántica, e são descritas pelos diagramas mostrados na figura abaixo.  

k4 , cr 	k 	k t , v 	 kz , v 	k3 . A 	 k  

      

•	 

     

 

•	 

 

•  
• 

     

Lk. 	 k 	Y t , It 	 z, 	 k t 	Ic 	 k ^ . ^ 	k 	 k r , 	lt 	 ` , 	 ri 

Diagramas descrevendo as interações ri do lineares entre campos eletromagnéticos. Linhas pontilhadas representam  

fótons e linhas cheias representam elétrons ou pósitr•ons  

O trabalho mais conhecido, onde este efeito foi calculado usando a cletrodirtámica quántica, foi publicado em  

1950 por Earplus e Neuman [1]. Anos antes. este efeito já havia sido calculado no limite não relativistico por 11.  

Euler e B. l<ockel cm 1935 [2].  

Em trabalhos recentes [3] (veja Lambem [41), estudamos as interações fóton-fóton. levando em conta os efeitos  

térmicos. Ou seja, os fótons interagem com os elétrons do vácuo e corn elétrons térmicos. Nossa motivação foi  

entender o comportamento da interação fóton-fóton em função da temperatura.  

Este tipo de estudo requer urn formalismo onde sejam levados em conta efeitos quánticos c efeitos térmicos.  

Por isso, faremos a seguir um brevissimo resumo do formalismo da teo ri a  de  campos a temperatura finita. Ao  

mesmo tempo, apresentaremos uma técnica de cálculo de funções de Green térmicas que simplifica muito os cáculos  

envolvidos.  



k2. P2  k3 ^  fU3  

km /IN  
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= 	1 3 J 	d3Q 	̂
 .'13 

	

 { 	Q + Trt2) AN1P2.••Pfv (kl ^ k3; . . .   kN ) q ,_m, 
( 2 T) 	'l q^ + rr:- \  

+ (Funcao de N Pontos cut T = 0)  

2. Campos a Temperatura Finita - Formalismo do tempo imaginário  

No formalismo do tempo imaginário, as funções de Green térmicas são calculadas perturbativamente de maneira 

muito semelhante ao que é feito em cálculos a temperatura zero. mas, com  urna  "pequena" (mas não trivial) 

modificação:  

(l ) 

onde 7' é a temperatura c w„ _ irT (2n + I) para férmions ou fim•„ = 2rT n para bosons: Do é o propagador associado 

à partícula do  "loop".  

Cálculos de funções de Green térmicas, em geral, envolvem complicações técnicas que tendem a obscurecer a  

interpretação física. Em trabalhos recentes, Lentos  utilizados unia técnica que. além de simplificar em muito os 

cálculos, fornece urna interpretação física bastante clara. Além disto, esta técnica permite que a ação efetiva da 

teoria seja construida de maneira sistematica. 

Cosidere uma função de Green térmica com n partículas externas. Utilizando as regras de Feynman a temper-

atura finita T 0, (com a modificação descrita acima), é possível mostrar que 

onde ,4,, P ,.._ PN  (k l , k 2 , - • , leN) é a amplitude cm ordem de árvore dada por  

(kt, k2, . • • kW) E  

k3: !l3 	̂V !L N  

q 

+ (perrnul. ciclic.) + (q ---  — g),  

e  

NF,e ( 4o) =  

  

 

cxp (go /T ) ± L  

é a distribuição de Fermi/Bose. 

Portanto, a interpretação física é bastante clara: 

`Uma função de Green térmica, com N partículas externas, e um 'loop" interno fertniónico (bosónico), c obtida  

subtraindo-se (somando-se) à função de Green do vácuo (T = 0) a amplitude de espalhamento, para frente, de  um  

¡  d4 4 	 , 	 f  
 ( 	
cÌs4 

J ^27r) q ^
0.^OiQ̂ ^ r

J (2T) 

onde 

	• 
^,  
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férmion (bison) térmico ;  no carrada dc massa, multiplicada pela distribuição de Fermi-Dirac (Bose-Einstein), e  

integrada sobre o 3-momentum do férmion (bóson)" [51.  

A amplitude de espalhamento A goza de toda as propriedades de invariância da teoria dos campos envolvidos  

(invariância de gauge abeliana ou não abeliana. transformação geral de coordenadas, transformações de Weyl, etc).  

Em particular, A é invariante por transformações de Lorentz.  

Temos portanto um cenário onde um sistema de partículas térmicas (plasma) interage com campos externos,  

mas  não exsite interação entre as partículas térmicas.  

A interação das partículas térmicas com os campos externos é descrita pela teoria guàntica dos campos envolvidos.  

Conhecend o-se estas interações (regras dc Feynman, e.g. QED) p,odentos calcular A e obter a interação não linear  

entre os campos externos, devida its interações com o plasma. A parte quântica deste efeito '`termo-quautico" esta  

contida em .4 c na estatística das partículas térmicas.  

3. Altas temperaturas  

Usando as regras de Feynman da QED, a  parte  tér111ica da interação não linear é dada por  

(2.x)3 o
N 2Qo dg'V (Q° ) f dS2 E ^13^ ,̀•Ji^i7 (kl.k^,k3;Q)+ I3rr-kit(kt,k2,ka;—Q}) 

Jo 	 ijkl  

(2) 

onde  g =  JQJ, (2o  = (7 2 + m2 ) 1/-- . A (V) = (1 +cü ° / I  )_t. f dÇ e a  integral sobre as direções de  Q.  e a solha é  

sobre as permutações cíclicas (ijkl) de (1231). Cada !i tem um  numerador que é um traço de Dirac. Por exemplo  

tr [(0 + um ) 7 0 (íQ + l^t + n 	(Q 	 + 	 + )Y° + tis+ in)T A (Q+ p123 mu)7 A (Q+ P123 in)7° 1  N  
[0234) — 	 (2 Q.k1 + /4)(2 Q.k12 + k='.,) ((2 C k 	+1423) 	 (3)  

onde k12 = kl + k2, etc.  

A série em potências da temperatura é obtida expandind o-se os denominadores.  

(2Q.k+ k 2 ) - ' = (2Q.k)- ' - k 2 (2Q.k) -=' + k4 (2Q.k) - ' + 	, 	 (4)  

c os numeradores de B. Obtemos assim termos que são funções homogéneas em Q de grau 1, 0, -1. -2. - 

Termos de grau n = 1, 0, -1 produzem as potências T 3 . T'=  e T, de acordo com a equação  

g 	dg  

o go (exp(g a /T) + I)  

Termos de grau -2 porduzem urna  contribuição log(?'), mais termos indepentes de T; potências ímpares cancelam-se  

na soma (B NyJIO
(k ] , k2 k3^ Q) ^ B

"vao (
kl i ^2, k3 : -Q)). {i ¡kt ) 	 [ i j 1!) 

Contribuições 0(T 2 ) tarnbcm se cairelam. Este cancelamento é nina pouco mais sutil, envolvendo identidades  

tais como 

k¡ 	

(Al2\ 

	\ 	 I
+)+-+ 	j i 4  + 	 ) + (3 permut. ciclic.) 

h¿ Al23I23 	A1 3 	1i

I 

 34 (7113 	hI q 	Ii

I 

 4 2 	í q 	TiIi  
k 	1 	l 	1 	1 

pipie ^ r + 	
) (— + —) + (2 cyclic perms. of 2.3,4) 

. 
 

I^1l^2^13i1q 
(k; +k:1+ 	+k9'k12 —k 13 —k 14) =0,  

onde K1 E ki •Q. Neste exemplo, consideramos somente os termos proporcionais a Q"QVQ A Q°. Urn  cálculo explícito  

mostrou que todas as contribuições proporcionais a T-,   se anulam. Note clue este tipo de cancelamento ocorre ao  

nível do integrando em di2.  

n +2 
= (  l - 2 - " -1 )I'(n +2)((rr  +2)Tr }2  + C}(rn). (5) 

(6)  
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0 cancelamento da 0(T 2 ) é por si só intrigante, pois mostra que não existe uma contribuição dominante para  

a não Linearidade. Isto contratsta com o comportamento da parte quadrática da ação efetiva, que é proporcional  à 

T2 . De fato, o comportamento dominante da função de 2 pontos é de 0(T 2 ).  

Este resultado nos leva a suspeitar que, talvez, não exista nem mesmo uma contribuição proporcional ao log(T). 

 0 cálculo explícito mostrou que os termos em log(T) não se anulam ao nível do integrando em dí2. A fim de obter  

um resultado conclusivo, teríamos que calcular estas integrais angulares explicitamente. Este cálculo se mostrou  

impraticável, mesmo utilizando-se os recursos de computação algébrica (Mathematica, Maple, Reduce, Form).  

No  limite de grandes comprimentos de onda (k — 0) e no limite estático (k0 -- 0), foi possível verificar o  

cancelamento dos termos em log(T). Isto aumentou ainda mais a suspeita de que a não-linearidade possa ter  um  

limite finito quando T —. oo.  

Esta suspeita é reforgda quando analisamos o comportamento das funções de n > 2 pontos, na QED em T = 0.  

Sabemos que a invariáncia de gauge elimina as divergências ultravioletas, exceto no caso da aut o-energia do fóton  

(n = 2). Lembrando que A,, , ..." (k^ • • • k„) é invariante de gauge, poderíamos esperar que todas as funções com  

n > 2 pontos fossem finitas.  

4. Teoria clássica de transporte  

Usando a teoria clássica de trasnporte, mostraremos que existe uma razão física muito clara para a inexistência  

da não linearidade no limite T — co. Veremos que, as funções de Green térmicas com um núrnero n > 2, par (ri  

impar é trivial, pelo teorema de Furry), de fótons externos, não podem se comportar como T 2 . Nosso ponto de  

partida é semelhante ao utilizado na referência [6).  

No limite clássico, um sistema de partículas térmicas é descrito pela densidade de probabilidade no espaço de  

fase f (z, p). No caso em que as partículas não colidem, f obedece a equação de Boltzmann  

df 
 =C{f)=0, 	 ( 7 )  

dr  

onde C(f) é a integral de cotisão.  

Usando as equações de movimento clássicas para um elétron de massa m  

dx" 	
P"` nr-  

dr  

dpe 
 r 	

_ eF"Pp,,,  

a equação de transporte pode ser escrita como  

p" 	— eF"y 	 f (z, p) = 0 	 (p) 
 

Neste ponto, é possível fazer a conexão com a teoria de campos a temperatura finita. Vimos que a expansão  

em potências da temperatura é Lambem uma série em potèncias dos momenta externos. Portanto, pelas relações  

de Einstein-de Broglie, ternos uma expansão em potencias de lii. A contribuição dominante corresponde ao limite  

clássico. A aproximação de um " loop" coresponde à ausência de colisões na equação de Boltzmann.  

Sendo f` o funcional gerador das funções de Green térmicas no limite de altas temperaturas (portanto clássico).  

teremos  
a 

^ 	J" = e
J  l2713 20(Po)ó(P2 — m2 )P"f(x,P)• 	 ( 10 ) 

"  

(8)  
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Deste modo, é possível obter as funções de n pontos usando derivação funcional da equação acima. Isto pode  

ser feito de maneira sistemática expandindo perturbativamentc a função dr. distribuição, de modo que  

P,. f(°)   = N (Po)  !',, ,  

= Iio)C 	.1n^ ....t^c._,r ,,,... µn . 	 .  

onde as funções  CO;  são obtidas resolvendo- se a equação de transporte perturbativamente  

r = P1,. 
p 1

cIP (8,,:1„ —  8,,:1 „ ) Opp  P
I))  

Portanto, podemos escrever  

4 1  
ll ,,,...,,^ = 

b:1^^ ^

,
^ • !,b :l+'^ — J 	

r3 20(po)ó (p2  - nr )Ito)(n — 1)!G ' 	 ( 14 ) r,,.. . ,,^  

A dimensão das funções C..., é pt 2- " ) . Portanto, o integrando das funções de n-pontos tem dimensão  

p(4—n). Isto mostra que a função de 2 pontos é proporcional 8  T.  e a função de 4 pontos pode crescer no máximo  

logaritimicamente para 7• — oc..  

Os  coeficients Cµ , ..„ n  siio sistematicamente obtidos. usando integração por partes em d 4 p. Por exemplo, para  

n = 2 obtemos a auto-energia do fótou  

7' 2  ¡ di2 k„ Q,, 	̂'„ Q„ 	k` Q Qp 
^ 

	

111 " t " = 2447rJ ^ [ k•C) + k•Q 	k•Q-, 	1b,Y  

onde a integral é sobre as direções de p/ifii e Q - p/In. Este resultado concorda com o cálculo (muito mais  

complicado) utilizando teoria quântica de campos a temperatura finita no limite T — cc.  

Portanto, a ação efetiva da QEI) a temperatura finita é dominada pela contribuição quadrática nos campos,  

sendo proporcional ã T2 . Os termos nào-lineares são subdominantes ern T. Isto concorda com o argumento  

intuitivo, segundo o qual a não-linearidade é produzida por urn efeito puramente quântico. Oeste modo, como no  

limite T — oo as interações do plasma com o campo externo são descritas classicamente, seria de se esperar que a.  

não-linearidade desaparecesse.  

Embora a teoria cléssica de transporte explique a supressão da não-linearidade, de maneira direta, ela não nos  

fornece uma resposta sobre a exist•carcia ou não dos lenhos fogarítiiHicos para funções de Green de n > 2 pontos.  

5. Comportamento das funções de n > 2 pontos no Rinite 7' -- co  

Usando regularização dimensional, a função de  n fótons, total (térmica + T = O), é dada por [3]  

ill- v7-." (kr kó 7') = ,11` T 	E 	f d3-, QI"'"7. PN
(Q°  Q, k; 

ge_.iT(211+1 )  

E possível mostrar que o termo proporcional à 1/c pode ser escrito como  

:1 v ^ µ7.. . ,,,
;(kr,T)= I'" , ) 	 + log (T-)1  .  

Ou seja, o Iog(T) sempre aparece combinado coar 1/c.  

(12)  

(13)  

(15)  

(16)  

(17)
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Como as funções de n > 2 fótons são todas finitas no ultravioleta, as funções fPI ' 0  > 2 (k;) devem se anular. 

Consequentemente, os termos log(T) também desaparecem. Este resultado foi explicitamente verificado, no limite 

de grandes comprimentos de onda, para a função de 6 pontos. Mesmo neste caso relativamente simples, um único 

diagrama de 6 fótons possui 975 termos. Depois de somar as 6! permutações, obtivemos zero. 

Finalmente, resta saber qual é o valor, independente de  T, que a função de n fótons assume no limite T 	o0 

No  limite de grandes comprimentos de onda, foi possível mostrar que a ação térmica não linear tende para o valor 

negativo da ação térmica em  T = 0 
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The canonical quantization of a nonrelativistic particle moving in a curved space is a long standing problem.  

Indeed, for such a system the classical-quantum correspondence does not define a unique Hamiltonian operator.  

The free massive particle already serves to illustrate this point; the corresponding classical Hamiltonian is h  = 

_R p,g'i pi , implying that the classical-quantum transition h — II is afflicted by ordering ambiguities. Moreover, not  

all quantum mechanical counterparts of h possess a coordinate representation behaving as scalar under generalized  

coordinate transformations. The canonical quantization procedure is, then, plagued with ambiguities which are not  

harmless, since they affect the energy spectrum of the physical system.  

The outcomes from the path-integral approach can be summarized as follows  

< 111 I ó  > _ —  2M / "T/ l igr'ôjd5(4)1  + :11 Ró(9) • 
J  

where g = dct gii and d i  = a/aq'. As can be seen, besides the Laplace-13eltrami operator,a term proportional to  

the scalar curvature It arises in the structure of N. For the dimensionless constant h several different values can be  

found in the literature. 

Therefore, an unambiguous determination of the Hamiltonian operator describing the quantum dynamics of a  

free particle moving in a curved space is still lacking. Here we make a proposal pointing towards such determination.  
First we work out the problem within the operator approach and t.hen,separetely, within the functional approach.  

Our main idea consists in treating the curved manifold as a hypersurface (UN_ t ) embedded in an Euclidean  

space. To secure that. the motion takes place on UN_ i We let the Cartesian equation of the hypersurface act as a  
constraint. The whole problem of formulating the quantum dynamics of a free particle in a curved space reduces  

then, essentially, to solve for the motion of a constrained quantum system in an Euclidean space. Afterwards. we  

undo the embedding in order to recover the original problem (for more details, see Ref.[I]).  
Within the canonical approach we obtain  

!!t = ^ g—  i llig 3 g'' Ilig" +  + 1'g , 

 2r11 
(2)  

where the II' are momenta operators,  

(1)  

li? (cÜrrf)(& 1 f)  -i •i 
1`4 	:11 roi  

(3)  
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and Í' ,  is the Christoffel symbol associated with the metric §„, and g designates the reduced determinant g  

del g ;1.  

The first term in Eq.(2) is the standard Laplace-Beltrami operator. It only contains quantities intrinsic to the  

surface. On the other hand, l' represents the contribution to the Ilamiltonian arising from the quantum fluctuations  

of the normal vector. It is easy to see that Vg behaves as scalar under reduced coordinate transformations.  

This result can not be considered as final since, for recovering the original system, one must first remove the  

spurious degree of freedom. We start by recalling that the intrinsic geometry of a surface is based on the inner  

product as applied only to its tangent vectors, which belong to the calculus of the surface itself. This is not the  

case with normal vectors, which enter in the structure of Vç  as (8a  f)(a° f).  

Hence, by isolating from ii  the piece intrinsic to the surface one arrives to  

H  ^  21if 	
zll;g^g^1H 1 y

- ^ .  (4)  

Thus we have x = O for H. determining the Hamiltonian operator of a free particle in a curved space without  

ambiguities.  

In the functional formalism we have  

11É = H + Vg, 	 (5)  

where  

vQ = s ^1 l 
R + 	

4i11 	[3g .og;,,o — (g gii3O) `j • 	 (6)  

Again,we undo the embedding by removing from H¿ all the terms which are not intrinsic to the surface. In this  

way we obtain  

H' =H+ 	R, 	 (7)  
8A1 

as the Ilamiltonian operator of a free particle in a curved space. This result arised unambiguously within the  

functional approach and is seen not to coincide with that obtained in the operatorial scheme (see Eq.(4), the  

difference being the term proportional to the scalar curvature.  

To summarize. we have shown how the operator and functional formulations of the dynamics of constrained  

systems can be used for obtaining the quantum Ilamiltonian of an unconstrained nonrelativistic particle in a curved  

space:  

[1] A. Foerster, H. O. Girotti and P. S. Kuhn, to appear in Phys. Lctt.A  
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Quantizando através das coordenadas coletivas, prostramos que existe um problema de orde-
namento na definição do operador momento. Então, sugerimos urna nova definição para este 
operador que pode resolver o problema de infravermelho que se apresenta quando tentamos 
minimizar todo o Harniltorriano Quãntico. 

I. Introdução 

O modelo de Skvrtne é urna teoria de campos não linear que apresenta soluções clássicas tipo sóliton. O seu 

sucesso consiste na possibilidade de ser uma teoria alternativa ã QCD tto limite de baixas energias, ou seja, no 

limite não pertubativo. Inicialmente, a Lagrangiana cstritica é escrita como  

L =
er  J da r. [-- I  Tr Pill i a) + 312  Tr (U+0;U, U+0iui , 	 ( I lb 

onde FR  é a constante decaimento dos pions, e é um  parãmet.ro adimensional e U é urn campo pertencente a SU(2).  

ou seja, UU+ = i. Introduzindo as coordenadas rotacionais coletivas através da substituição U(r.) por U(x,t) =  
A(t)U(x)A+(t) onde A é urna matriz SU(2) escrita couro A - 0 0  + in.r, podemos escrever o Ilamiltoniano através  

da relação f! = Tn — L , como  

11 =,11+ Ŝ ^^ r;  

:t  

_ ^Ll + , 2_„, (  
 r) ' ) 

b.l c?a^ 
i-o 

onde M é a massa do soliton e A é o momento dr. inércia. A quantização canônica é feita substituindo rr ;  por  
— iü/13u; , coar o vinculo Er =n a¡ = I. O operador ^^(— ei ) é conhecido como laplaciano na triesfera, com 

autovalores /0+2) 1= 1, 2 ... e autovelores polinomios em a ;  . Se o nosso propósito é trabalhar com as coordenadas 

a;, a expressão para o operador momento conjugado a a ;  devido ao vinculo é 

T1  = i V ;1 — n 1 a ; ] c3;  .  

Consequentemente T1 T1 pode ser escrito como  

T1 T1 = —01v1 + 3a1c31 + a;ali3; il1 .  ( 4 )  

Cabe agora mencionar o problema de ordenamento que aparece na definição (3). Tentando contornar esta questão e  

o problema de infravermelho que surge quando tentamos minimizar todo o Harniltoniano Quantico sugerimos urna  

nova definição para o operador momento dada por  

(2)  



J. Ananias Neto 	 231  

^j = 	I  (1+ )i [(ó. , ; —  aj a;)8; + o á;(ê;; — a.aj)] 
a  

onde a é um parámetro real livre. Consequentemente TJ;r j  = —8jOj + 3aj r7j  +aja,0; a, 5(Ifu-31 , e os autovalores  

do Hamiltoniano Quántico extendido são dados por  

E _ M + 

 

1 
 [1(1 + 2) 	

5a  	 ) 3')8 	 { 	1 	Q '  

Na equação acima quando 1=1 nós verificamos que para n > '^ i4  :1 ou o < ^1 -154'51 
 

(6)  

desaparece o problema  

infravermelho. Assim, é possível procurar configurações de campo que minimizem todo o Hamiltoniano Quântico.  

Com  estas novas soluções esperamos obter consideráveis melhoras no espectro físico do modelo de Skyrme. Mais  

reférencias podem ser encontradas em Remarks on the Collective Coordinates Quantization of the SU(2) Skyrme  

Model, preprint CBPF(1994), a ser publicado no Journal of Physics C.  

( 5 )  
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Calculamos em ordem /i a função de partição grã-canónica do  modelo  de Hubbard em  
d = 2(1 + 1) usando integrais múltiplas de Crassmann. 

É usual no cálculo de integrais funcionais de sistemas fermiônicos a utilização de formas bosonizadas. Neste tra-

balho utiliza-se a Álgebra de Grassmann para calcular de forma nã o- perturbativa as integrais funcionais fermiõnicas 

via integrais múltiplas de Crassmann. Mostramos anteriormente [1) que integrais múltiplas de Grassmann da forma: 

r ,v 
11 = J  n dil;dtr,czpj —NAT)  + (030), !  

r_  
possuem expressões exatas.  

As integrais funcionais de modelos fermiônicos interagentes escritas sobre uma rede pode m ser colocadas numa 

forma similar a 1 t . 

Pari um sistema em equilíbrio termodinâmico com um reservatório a temperatura T podendo trocar partículas 

com esse reservatório, toda informação está contida na função de partição grã-canônica, Z = Tr[exp(-13K)), onde 

/i= 1/k7' é K=H— pN. 

Para sistemas fermiônicos interagentes a função de partição grã-canônica é dada por [2): 

¡ 	 - I  dt f p drI1(E,r}o. i(i,r) 	f drK ^(rl, p) = J Dt^•(r, r)'Dr^(r, r}e 	u 	 e— 
 o 	, 

onde tb(•t, r) e r,(.E, r) são funções anticomutantes, ï e r são parãnrctros contínuos. Por outro lado podemos pensar 

em um sistema fermiônico descrito por parâmetros discretos. No caso de uma rede unidimensional, a cadeia contém 

N sítios espaciais. O intervalo de temperatura pode ser particionado cru M subintervalos de módulos , onde Mc = 13.  

A versão discreta da cq.2 corresponde a ã e r assumirem valores discretos sobre uma hiper-rede. A forma discreta 

de Z(/3, p) é similar as integrais 11.  

Para qualquer valor de c finito tal que  Mc  = ,Q é verdadeira a igualdade: E = Tr[c-mdK] = 1•r[(c-EK)at] A 

expansão no parâmetro c em alta temperatura até primeira ordem fica: 

Z = Tr[(1 cK)`u  + 0(c2 )] = 7'r[1 — AIcK + O(F")] = Tr[1 — />rK + O(E ^ )]  (33)  

G N,  (1)  

(2)  
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A equivalência das duas expansões é verdadeira em todas as ordens de e.  

Aplicamos esse método para obter a função de partição grã-canónica do modelo de Hubbard [3] de dimensão 

 r! = '2(1 + 1). Consideramos o modelo com interação entre primeiros  vizinhos na presença de um campo magnético  

externo.  

Trabalhando com urna rede espacial unidimensional sujeita a condições de contorno espaciais periódicas e corn  

um intervalo de temperatura particionado em M subintervalos de módulo E sujeito a condições de contorno an-

tiperiódicas, podemos escrever os geradores da álgebra ern função da  posição no sitio z; e do intervalo de temperatura  

Tf: 7)(r¡.  

A função de partição grã-canónica discretizacla possui unia forma esquemática dada por:  

2 = J  drldije''+ A l^ -rUg t d t u od,  

Na eq. (4) a matriz A contém as informações sobre as interações quadráticas incluindo as condições de contorno  

antiperiódicas na temperatura. A expressão dó o resultado exalo da função de partição grã-canónica até ordem 13.  

Com o auxílio de computação algébrica (MAPLE) encontramos ulna expressão geral para a função de partição  

para sistemas fermiónicos a altas temperaturas:  

^ = 2 2N { I + N rJ(ir -- I=er — U/4)) 
 

(5)  

No limite de altas temperaturas ('I' — c.) eucontralnos que a energia média por sítio é (Eo + U/4), o número  

média de partículas corn spin o é 1/2 e a  magnetização  média►  ti zero.  

Erui resumo, temos que esse método nos fornece a função de partição grã-canónica para altas temperaturas de  

sistemas  fcrmiõnicos intcragentes de  modo não-perturbativo. O método se aplica a qualquer sistema de férmions  

interagentes.  

References  

1. S. M . de Souza M.T.e 	Thoruaz, .I. M ath. Phys. 31 (195)0) r,.  

2. IJ.Wolf, Nucl. P}iys.. 225 (1983) 391. 

:S. .l.11ubbard, Proc. Roy. Soc. A277 (1963) 237; A281 (1964)  101. 

( 4 )  



240 	 XV  Encontro Nacional de Partículas e Campos  

A superspace formulation of the BV action  

Nelson R. F. Braga and Ashok  Da?  

!fleatuto de Fisica, Universidade Federal do Rio de Janeiro  

1{ia de Janeiro  21945 Crtirrs Postal 68.628. Brasil  

Received October, 1994  

We show that for a general gauge fixing Lagrangian. the BV action can be written in a man-

ifestly generalized BRST invariant manner in a superspace with one Grassmann coordinate.  

Generalized IIRST Invariant Superspace Formulation  

Let us consider the theory defined by  

C = C(á µ -G4„„ 1 1 -  r). 
	 (4.ti)  

and note that when the tilde superlïelds vanish, this Lagrangian reduces io our original theory. In this case, we can  

define  

• il) µ(x, 0 ) = ó„(a'• 0 ) - P„(1'. 0) 	 ( I )  

:1(x, 0) = rl(r:,0) -  Irj(x . 0) 	 ( 2 )  

and note that. if the field strength associated with the l-forth S2 = ^rlr.¡' + AdO vanishes along the O  direction, then  

we can determine  

(I) j ,(x. 0) = (.4, - %1 µ ) +  01n`t -4 ) (e -  C) 

A(x, t?) = (c  - c) - 1 $ 	r. [c-c- c] +  

This, however, does not determine the individual superfields Q, ¢, j ,  rl and ïl uniquely and this is the arbitrariness  

in the generalized BRST transformations that we discussed earlier.  

In addition, let us introduce the superfields  

(3) 

It is clear now that with these choices of the sir perfields, the generalized 13RST transformations of Eq. (2.11) arise as  

translations of the O  coordinate. 'Thus, we sec that the gauge fixing Lagrangian of Eq. (2.12) for the shift symmetry  

can be written in this superspace as  

• Permanent address: Department of Physics and Astronomy. University of Rochester. Rochester, NY 1.162 7, USA.  
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Gy1  =  c7o It 
 ló"'45/1 +'I'i 

—  

	

— 

f` f
^ 

Being the O component of a superfield, this is manifestly invariant under the generalized BRST transformations. 

The gauge fixing Lagrangian for the original symmetry can also be written in this space in a straight forward  

manner. Let d' = t"^{:1 e, e. F) denote an arbitrary gauge fixing fermion. We assume this to depend only on the  

original fields. Then, we can define a fermionic superfield as  

bib 	t) I.', 	óF _ 	D11,  
tIs= ti, +ON=tIh+ 	á:l 

O — 	r,¡'",+ ĉ  c+^ç r -

47,(P "^  

For the gauge choice presented before this superfield will be of the forme 

'I' = —Tr e)",cA' + O 'Fr (O,Pt1 ' + ô",.d"F)  

We see that the gauge fixing Lagrangian for the original symmetry can be written as  

041  
f s1 = r1O  

for any arbitrary fermionic gauge fixing term. Once again. being the O canrponent of a superfield, this is manifestly 

invariant under the generalized BRST transformations. 

The complete Lagrangian can now be written as  

È = •Co(o", —43,)+L11 +C4

¡

J 

Ca(Ap — A) + ^ Tr l çi p ci"^ + rj 'j — +rjr¡ — f^ f
\ + ((i^? 

( 4 )  

which is manifestly invariant under the generalized BRST symmetry and upon elimination of the auxiliary fields  

and ghosts associated with the shift symmetry, leads to the 1W action.  
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Examples of macroscopic structures "macroscopic quantum computers", described by wave 
functions due to nondistributive logics of work of these computers are discussed. lt, is shown 
for the lattice of topologies for 3 points that due to its nondistributivity and nonmodularity 
it can't be described either by Kolmogorovian probability or by the wave function. 

As it is well known usual Kolmogorovian probability measure doesn't. work for quantum systems. Instead one 

must use "probability amplitude" - the wave function, being vector in some Hilbert space. So in physics we have 

- "classical macroscopic systems", when one has the usual probability measure defined on the phase space and 

"quantum microscopic" systems described by wave functions. 

It was in the paper of Birkgoff and von Neumann [1] that the reason of use of the "probability amplitude." 

in microphysics was understood. This reason is nondistributivity of the lattice of properties ("yes-no" questions) 

of the micro-systems ("quantum logic"). Nondistrihutiyity means that if a, b, c are some properties and we define 

"disjunction" V corresponding to such property. d _ a V b that if a-"true" then d "true", if 6"true" then d"t.rue". 

and conjunction A as e = a A b so that, t-"true" leads to a "true", f-"true" leads to 6-"true". then in general 

a A (bVC) (aAb)V(aA C). 

Birkgoff, von Neumann, K. Piron and others then proved that nondistributivity of abstract lattices of properties 

leads to noncommuting operators in Hilbert space. 

One can ask, are there other systems (macroscopical ones) described by probability amplitude ?. 

As it was shown in our papers (2. 3] the answer is "yes". The example of such a system is "macro-scopical quan-

tum computer", the system, "hardware" of which is described by classical physics, but "sofware" due to "quantum 

logic" used for attributing symbols to states of "hardware" is described by the wave function. To construct, such 

automata one must look for graphs of these automata and to use the rule: the state of the system is identified if 

there is negative answer on the question about some complementary state: "a" is not "not a". Rules for constructing 

Hasse diagram for such automata were given in [2, 3] and it was shown that one comes to the usual Hilbert space for-

mulation for their work, to Heisenberg uncertainty relation, without Planck's constant and to Schrõdinger equation 

for the evolution of state. Bell's inequalities can be broken for such automata but surely without any reference to 

relativity theory. So besides superconductivity and superfluidity one can have other examples of systems described 

by wave functions. There is the possibility of interactions of microscopical quantum systems with such automata 

due to usual rules of.quantum physics. 'l'he intriguing possibility to look for such systems in nature is the work of 

human brain ("quantum brain"). Other question is: are there stochastic systems which can't be described either by 

• probability measure or by the probability amplitude?. The answer is "yes": such system is the lattice of topologies 

'Un leave from A.A.'Friedmann Laboratory for Theoretical Physics. 191023 St.. - I'cter•.it,urg, Criboyedov ran. 30/32, Russia 
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for 3 points [4], due to its nondistributivity if topology is random one can't have usual probability measure, and due 

to nonmodularity there is no wave function. One can find some realization of this lattice in terms of idempotent 

operators as some 6 x 6 noncommunting matrices and two "bra" and "feet" Hilbert spaces. This realization shows as 

some resemblance (noncommutativity) to quantum systems as some difference (two Hilbert spaces instead of one) 

of the lattice of topologies from other known stochastic systems, all this shows that "quantum topology" must be 

founded on some other grounds than usual quantum theory. 
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We show explicitly that Schwinger's formula for one-loop effective actions corresponds to 
the summation of energies associated with the zero-point oscilations of the fields. We begin 
with a formal proof, and after that we confirm it using a regularization prescription. 

Although the result we shall prove is quite general, we shall choose, for simplicity, a definite problem in order 

to emphasize the basic points of our demonstration without getting involved with mathematical details. 

Considerer then a massive scalar field in a (3 + 1)-dimensional space-time (the extension to d + 1 dimensions 

is trivial) and suppose we are interested in computing the Casimir energy c[1], where the boundary conditions are 

chosen to be of Dirichlet type in only one of the axis, say, the OX 3  axis. So, the fields must vanish at z = O  and 

= a, where two plates of area A » a paralell to each other are placed.  

In a recent paper, J. Schwinger[2] showed, for the massless case, how this calculation could be done through the 

formula (which we will call Schwinger's formula for now on) 

2 eo  s  

where 4ati 1  is the one-loop effective action and 	is the proper-time Hamiltonian for the system at hand. Then,  

the casimir energy is simply given by c = —42-, where T can be viewed as the time interval. In equation (1).  

the regularising cut-off s o  must be put to zero only after a suitable subtraction of non-physical terms is madeAn  

application of this formula for the same problem but with a different regularization prescription can be found in  

[3). See also [4) for the massive case...  

Since Schwinger's formula had also been aplied with siicess for the cases of effective actions for QED in the old  

fifties [5], we thought it would be interesting to give a physical interpretation of it through a connection with the  

more intuitive picture of the mode summation approach.  

We shall firstly establish a formal connection and after that, we shall confirm our result in a more rigorous way,  

using a regularization procedure.  

Let us start with the formal expression  

^(t) = i ¡ ou 
dsl,re-"(N-^e) 

` 2 J 	s 	 ,  (2)  
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where ?{ = p2  - w2  + m2 , with p = —iii ,  w = ir) r . Taking a derivative with respect to m 2  on both sides of (2), we  

get  

aw (1) _  1 	"' 

âm2 	2 0 
 

Computing the trace, and making the identification e = -:2 1) /T, we have  

w 1 ÚS 	1 [
w 
^ dkldk2dkp 

 

A arn'  2 L ^ 	(2103  J 
dse 

integration over s imediatly leads to  

1 8E _ i "' 	dkldk2 	dko 	 I 

A 8rn2 	2 
	
II  (27) 2 	2112 kó - [k¡ + k3 + "g — is + n:21  

Now, with the aid of residua theorem, we can integrate over ko to get  

1 ôE _ 1 r, ^ ¡ dk l dkz  
C^ 

 

am=2 n-1 f (2^ )2  Vki + kz + 412 + rn=  

Then, making the integration over rn 2  we obtain.  

A 	̂ J J d 	 2 2
w(k l , k^ rl), 

n^1 	
(2.703   

apart from an additive irrelevant constant, and where we defined the eigenfrequencies (zero-point energies of the  

field) w(k 1 , k 2 , n) = ik¡ + k1 + ár 2  + m2 . Expression (7) is precisely the usual (unregularized) mode summation  

expression for the Casimir energy of a massive scalar field between two paralell plates distant apart a distance a [6].  

Since in our previous deduction manipulations with divergent terms were made, let us now reobtain the same  

result, but this time in a more rigorous way. What we mean is that we shall establish a connection between  

two regularized expressions, Schwinger's one and a (regularized) mode summation expression, with some kind of  

regularization prescription adopted.  

However, instead of starting with the regularized expression (1) (with the cut-off s o ), we shall adopt the following  

regularization prescription  

will 	_ t ¡w  dssy_ 1Tre -^,(ai 	 (8)  
2 0 

 

where v is large enough to make the integral well defined. In this approach, after the integral is computed an  

analytical continuation to the whole complex plane of y must he done and then the limit v — 0 must be carefully  

taken (sometimes appropriate subtractions have shall to be made, see [3, 4] for more details of this approach)  

As before . we start taking the derivative of (8) with respect to rri. 2 . After evaluating the trace, we get  

ôw( 1) _ :1T "' 	
s" 

dkldk2dko ^ ds
e -" 	k; (-^g++t;+"-^R+ +'i 

0,12- 2 ^ 
¡ 	(2r)3  Jo  

(9)  

Using the definition of the Euler Gamma function, the integration over s readily yields  

(3)  

(4)  

(5)  

(6)  

(7)  

ôw(1)_ e ^+ 1  	r1TC 1/ + 1 ^^ 	
dk l dk 2  ` 	

dko 
k 2  + i '' k 2  + k; + n2T  + rTi2 { °{1 l. 	(10)  ^m2 	( ) 	2 	( 	) L 	J (2a) 2  I 2rr 

i(  o ( ) ( 1 	a _ 	)] 	 (  



rr2T2 + 772 2 1 - ("+,)  
a 2  
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Using 	now 	that 	foo dx(x 2 	+ 	n 2 )'" 	= 	(a'- ) 1- o r" r- 	̂'  

B (P 4)  = r(p ) rfq ►  we  get r(p+a) •  

i3zv( r l 	-1 ._ 	1 	I 	j¡ dk i dk :  1 	̂ 	̂ 
C^m 2  — 2 

r "ATf(2 )1'(v+2}
^ 1 1 [2r)'' `lr^Lï}k_ +  n_I  

Integrating on rr1 2  and identifying E  = _ 4  , we finnaly obtain apart from an irrelevant additive constant 

co 	di 

 716'=^ ^ J (2z -1^(kr^ k2, r^)1''(v), )2  n -1  
where we defined 

F(U)  - 1 r- 2v r(  ^ 

	 ) '^^" ( k ,  ^ :, n)-  

Some comments arc in order here. Expression (12) is nothing but the usual mode summation with the presence  

of the regulator function F(v), once F(v) contains the negative power w -2". So, for v large enough expression (12)  

is well defined and after an analytical continuation to the whole complex v plane is made the limit v -- 0 can be  

(carefully) taken to yield the physical Casimir energy per unit area. One could object by saying that, besides ° Z  

the regulator F(v) contains the other factors ,'ne3"  r(7 . However, this causes no problem at all, since for v — O  

this factor turns to be 1. Hence, we have established the equivalence between the modified Schwinger's formula (8)  

and the (regularized) mode summation aproach. Altl,ought we have clroosen a definite problem, eg. the Casirnir  

energy for a massive scalar field with 1)irichlet boundary condition in one direction, our deduction is general, and  

therefore the Schwinger's formula for (one-loop) effective action could be physically interpreted as the summation  

of zero-point energies of the field.  

One of us (CF) would like to thank M. Morey, A. J. Segui-Santonja and M. V. Cougo Pinto for helpful discussions 

on this subject. This work was partially supported by CAPES and CNPq (Brazilean councils of research). 
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It is shown how the BRST quantization can be applied to a gauge invariant sector of the-
ories with anomalously broken symmetries. This result is used to shown that shifting the 
anomalies to a classically trivial sector of fields (Wess Zumino mechanism) makes it possible 
to quantize the physical sector in a standard BRST way as for a non anomalous theory. The 
trivial sector plays the role of a topological sector if the system is quantized without shifting 

the anomalies. 

1. Introdução 

Let us assume that we have a theory described by: 

S  = SPh y s.(4)°, cr°) + ST ($b, t3", e) (1 ) 

Subject to the boundary conditions SPh y ,. ( 1°  4) = 0) = S(¢`) and ST(17 b , 13 •b  = 0,C° ) = O The set 0 b  includes at 

least the fields Bl and the ghosts d13 . Assuming that the new fields in ST have an invariant path integral measure. 

we get: AS = ASPhy,. = c -r A 7  

Wess-Zumino mechanism: 2(W, W) — ihAW = 

The anomalies have not been canceled. They have just been shifted to the symmetries associated to the trivial 

sector. 

Example 

SPhys. = J d2 x{ So +ic_-iFc) 	 (2) 

ST  = fd2 x {o. c +rd+r r +} 	 (3) 

The action Sph y ,, corresponds to the gauge fixed 13V action for the chiral Schwinger model, whose classical 

action is So- ST corresponds to the gauge fixed action for a theory of a scalar field that transforms with the gauge 

group of the Schwinger model 

We can write ST as a BRST variation, showing explicitly it's topological character:ST = óS2 with 

SI= —B`B + c c +3. 2 	 (4 ) 

Two different approaches are possible then. First approach: 

 

With 41 = 3(O — B) that leads to the action  

ST(P° á •° ) = J d2{6d +À+d) 	 (5) 

• braga®vme 1.nce.udrj.br  
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ST(0°,6" = 
 (3v' ° )  - 	

d'`x{ad+ a(o — a,)} 	 ( 6 )  

Second approach: (Wess Zumino mechanism)  

11f1 = — 4n ,¡ d
2
x  {  (a  2  I)  ape c?"8  +O  [(a — 1)8 1,AP + f"0,,.4v]} 	 (7)  

That satisfies (M 1 i  S) = ic^Sph, ,  + f d 2 z71(8, A,,)d Now the quantum action W = Sph y ,, + ST + Mil  gets  

= SPhy,. +
J  d

2 x{$'c+ c ;r) +?l11(.4,,, 8)  

that corresponds to the Schwinger model with it's standard Wess Zumino term.  

Conclusion  

(8)  

It is interesting now to make a parallel with the original discussion of Faddeev and Shatashvili. There, the  

anomalies are interpreted as not breaking the gauge symmetry but just inducing a different representation for the  

group, in which the WZ fields are also present. We can say that in order to build up this representation for the  

gauge group we are borrowing some fields from a sector that behaves as a topological theory if the WZ mechanism  

is not implemented.  
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We show that the Hartree-Fock-Bogoliubov (alias Gaussian) approximation of the initial  

condition problem of the . Fermionic Anharmonic Oscillator is equivalent to a bosonic hamil-
tonian system of two classical spin.  

It. has been shown that the Hartree-Fock approximation of fermionic many-body system can be mapped into  

an equivalent hamiltonian classical system(1J. This equivalence allows to derive physical properties of fermionic  

quantum systems by studying the classical equation of the equivalent system. It is not an obvious statement that  

all fermionic quantum system can be mapped onto a classical model.  

The Fermionic Anharmonic Oscillator (FAO) is the zero spatial realization of the Hubbard model(2) describing  

the itinerant magnetism. Even though this model is exactly soluble[3) its approximate treatment allows one to  

associate to it a classical dynamic system. In the general initial condition problem we study the dynamical evolution  

under the FAO dynamics of a given initial condition. Restricting ourselves to the extended mean field approximation  

we have to consider the pairing correlation effect and the Bogoliubov transformation is used to diagonalize the  

'generalized matrix operator.  

All the one-particle information is contained in the one-particle density matrix and in the pairing tensor.F(t) is  

the full density matrix of the system of identical fermionic particles.  

A generalized density matrix can be defined[4] and it is diagonalized by a similarity transformation WIRW = N.  

The matrices W and N are of the form  

S2 Z` 	 p 	0 W = Z .  	, and, N =  
0 D- p ^ ' 

(1)  

p being a diagonal matrix.  

We use the projector operator method(51 to get an approximation to F(t)..F(t) = F 0(t) + :P(t). where F0(t)  

should contain the complete information of one-quasi-particle operators. the two-quasi-particle density is approxi-

mated by the product of one-particle functions and finally we impose that Tr(F(t)) = Tr(Fo(t)) = 1. Fo gives the  

Hartree-Fock-Bogoliubov approximation. The expression of 1-0(t) for a system of identical fermions is known[6].  

The most general initial state vector for the FAO is,  
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1'V) =
g

{pII +/3a t,  +oai + ralai) 1 0) ,  

where the coefficients p, Q ,  o and r are complex numbers and the normalization constant N is:  

1 0 1 7  + 1*1 2 .  

The matrices f2 and Z can be written as  

cos-C(t)costi(t) 	e - i'P ( 'lsiny(t)costi(t)  
il(t) _ ^  ery^(rlsin ,)•(t)coy.E•(1) 	cos 7(t) cos l;(t) 	 ' 

and  

eie(r)  sin y(t) sin l;(t) 	e'(s ( = (-- o ( sl ) cos 7(t) sin e;(t)  
Z(t) i(8(1 	v(rJ) 	 i(8(f)-29(t)) — { —e 	)- 	cos 	a 	sin 7(t)sin3(t)  

The dynamical evolution of the parameters 7(0,0), 0(t) and 4p (t) gives  

(2)  

N = 1p1 2  + 1Q1 7  +  

(3)  

(4)  

y(t) = 0, (t) = 0, 9(t) = 2ABB+ 2hw + O(t) = 2JABB. 	 (5)  

The above equations of motion are equivalent to the classical system of two spins. To see this we define conjugate  

momenta of variables NO and so(t),  

je(t) = cos-f(t) 	and 	j4,(t) = cos€ (t). 	 (6)  

The hamiltonian  

H = 2JIBB(j,,, +je) + (2hw + U)ja  ( 7 )  

gives the same equation of motion as (6). The hamiltonian (7) describes the paired mean-field dynamics of the  

FAO. It has the form of the action-angle classical hamiltonian for two precessing angular momenta of magnitude  

one.  
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We use Schwinger's formula, introduced by himself in the early fifties to compute effective 
actions for QED, and recently applied to the Casimir effect, to obtain the partition functions 
for both the bosonic and fermionic harmonic oscillator. 

The computation of the partition function of the usual harmonic oscillator is probably one of the most elementary  

exercises in a Statistical Mechanics course. There are many ways of making this calculation, and undoubtedly the 

easiest is the direct one, that is,  

Z(0) := T•rc-1fi!  _ E 	"+ ^}"' 
ri =0  

I —  

2 Slnh( j.^; ) .  

where we -simply used that the eigenvalucs of the Hamiltonian operator for the harmonic oscillator are given by 

(n + ,̂ )w. with n = D, 1, 2, ... (we are using h = I) and summed the infinite terrns of a geometric series.  

However, it. is exactly the simplicity of handling with this example that makes it a perfect. "laboratory" to test or  

develop other methods of computation, as for instance, the path integral method ( I) . the Green function methódt 2  .  

etc..  

Our purpose in this letter is to apply a formula invented by Schwinger in 1051j 3)  to compute effective actions  

for QED, and recently applied with success in the computation of the Casimir energy for both the massless and  

massive scalar fieidt 4 76 j, to obtain not only the result of equation (1), but also the partition function for a fermionic  

harmonic oscillator. Curious as it may seem, this approach has never appeared in the literature.  

Let us start with the bosonic. case. .It is well known that the corresponding partition function can be written  

as(7)  

Zui) = dct - 1(2-0,2 )k, 

where the subscript Fr  means that the operator w — c7 acts only on a set of functions which are periodic, with  

period 8. In ref. [7}, Gibbons used the generalized (-function method to compute such a determinant. Here, we  

shall use Schwinger's formula (deduced in the Appendix A):  
v 

In Z(Ii) = 1 T'r ¡  

2 	0  

'e-mail: farinaelvmal. nce.ufrj.br  
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(2)  

(3)  
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where LW  := w2  - ô; and we•chose the regularization based on the analytical continuation, instead of Schw•inger's  

one.  

For periodic boundary conditions we have  

Tr e`ial. ,,  = 
E 

e —iap?+nit I 2 ) 

so that  

N 

	

In Z(Q) ^ 1  ^ 

J 	
ds sv-i  e -ialk^'^}te1^)'1 

2 	o  

= 1 Ew-+ (rl) _P 

 11= _(V 

w—  °
r(i')+ ( .2217 ) 2V  1. (v)E;`2 (11 . I).  

where we introduced the one-dimensional inhomogeneous Epstein function  

2(v 	 + ,I):= E (, 2 tt ^ )
_ ' 
 . Rev>  

n=1  

defined = s and used the well known integral representation of the Eider Gamma function f °" dt t° - I a -01  =  

o - "f(v).  

Although the above series converges only for Rev > ,  it can be analytically continued to a tneromorphic  

function in the whole complex plane given by(s )  

n- - c+o  

(4)  

(5)  

^ 

E¡ ( v, I)  _  

— —  

„_ ^ 
+ '̂ En I ( ^ } ^ 	(27rnN).  ( 1 )  

It is worth noting that the structure of poles of Er (v, l) is governed by the poles of L'(v — ). Hence. they are  

located at v = ; ,  — i , A.__ 
  

 and so on. As we see, El' (v, 1) is analytic at the origin.  

• 	Substituting (7) into (5), taking the limit v -- 0 and observing that the divergent terms cancel without any  

further subtraction, we get  

ts' In Z(Q) _ — 
2 

+ 2 2^ 	Ii - k {nw13). 	 (8)  
a=I  

In order to compute the summation on the r.h.s. of (8), we . appeal to the formulatsf  

I► _i(nw/3) = 
I. 

T  e- " .`' . 

V 2nwi3  

Inserting (9) into (8), and using equation (BA) (see Appendix 13), we obtain the final result  

(9)  

In Z(p),= —1n [2sinh 
 ()J  z 
	̂ Z(0) = 	    , 	 (10) 
 2sinh(._)  

in perfect agreement with (1).  

For the fermionic case, it can be shown that  

z1 (l3)=det +I (w''—^};)^^ e , 	 (l1)  
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where the subscript Y. now means that the operator L. acts only on a set of antiperiodic functions. As a conse-
z  

quence, the eigenvalues turn to be a„ = 	+ () 2  , with p an odd integer. Then, using these eigenvalucs in the  

analogue of equation (3), but remembering that for the fermionic case, instead of the factor . we must write (-1),  

we get  

In Zi(f3) = -F(v) E [,,,2 (p-) 

^ ̀ 	 l  1 

r=odd 

Adding and subtracting F(v) !1p=ven [L4/ -  + (pa) 2
] 	

to the r.h.s. of last equation, we may write  

Iu Zf (J3)= 21'(v) I ^^^ rv E^ ( v.l)- Í 
QJ 

Ei
2
(v,1) ,  

where now p = 	Following exactly the same steps as before, that 

one-dimensional in homogeneous Epstein function given by (7) and taking 

N 

is, using the analytical continuation 

the limit v 	0, we get  

of the  

N 

InZi(Q)=QW+4 P-Tr 	i li_4.(nw/3)-4 
,..t 

Using equations (9) and (B.1) we finally obtain.  

wQ
v 	lí _ 1(2nw^i).  n_ 1 

(14)  

7 

In 2.1  (Q) = In 
sink (Q) 

Z1 (1.1) = 4 cosh" (). . 	(15) 
sinh (''-9-)  

This result can be checked easily in the following way: the fermionic oscillator that is being considered here is the  

second order Grassmann oscillator studied by Finkestein and Villasante (10}  (in fact, we are dealing here with the par-

ticular case of N = 2 of their work). In this case, it can he shown that there are only three energies: 0 (double degen-

erated).  

+0w. -¡,3w. so that, if we use directly the definition for !, f(Q). we will obtain  
Z1 (13 ) = Tre - ir r  

= 2+ell' -1- e - /3"'  

ílw 
= 4 cosh -  — .  ( 16 )  

In this paper we applied the Schwinger's formula for the one-loop effective action to the computation of the par-

tition function for both the bosonic and Grassmann harmonic oscillator. Regularization by analytical continuation  
was adopted. We note that depending on the boundary condition choice (eg. Dirichlet condition), new subtractions  
(renormalizations) can be needed. But this is easily done remembering that the Schwinger's formula contains an  
integration constant, which can be,used to subtract these divergent terms.  

One of us (CF) would like to thank M. Asorey. A. J. Segui-Santonja and M. V. Cougo Pinto for helpful discussions  
on this subject. This work was partially supported by FAPERJ and CNPq (Brazilian councils of research).  

Appendix A  
Let  

(12)  

(13)  

r.' tL' ►  = det L,,.I^ = exp?'r lu  (A-1)  
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where L W  = c.1= — ót, and the subscript F means that some boundary condition is assumed. Hence  

r(w) = Tr ln(w 2 	 (r1 . 2 )  

Taking the variation with respect to w= (the subscript F will be omitted but the boundary condition is under-

stood). we obtain  

& 1'(w) = TrL, ' 6 L.  
¡¡

N 

iTr J 	d e-ilti..-Id  iii,,,,
0  

ó í- 1' r  ¡N  ds e -rli..-ic)} 	 (A.3) 
lL 	o 	s 	J  

Apart from an additive constant to be fixed by normalization, integration leads to  

T(w) = —Tr ¡
' 

 ds e - «i-. 	 (A.`1 ) 
o s  

where the is factor of convergence is tacitly assumed. Last equation is clearly ill-defined. One way to circunvent  

this problem was pointed out. by Schwinger: one introduces a cut-off so. so that. the integrai can be performed.  

Then, subtracting the divergent terms for so = 0, the remaining integral is finite. However, there is another possible  

choice" ) , which consists in replacing expression (A.4) by  

T(w} = —Tr  jd s• s v_ _ 1 .jr   
with v big enough, such that integral (A.5) is well defined. Then, after the integral is made, we perform an analytical  

continuation to the whole complex plane. After subtracting the poles at r. = O (when they exist), we take the limit  

— O. and this way we get a finite prescription for the integral (A.4). In the main text we adopt this approach  

instead Schwinger's one.  

Appendix B  

In this Appendix we shall prove that  

E lc"  = a - In E2sinh La1! : a > O. 	 (13.1) 
2 	 2  

n -1  

With this purpose, we will define S(.) such that  

S(n) :_ ^ ^ c-+"  
n  

n =1  
(13.2)  

Diferentiating both sides of (B.2) with respect. to o and using the well known result of the sum of the infinite terms  

of a geometrical series, we get  

(A.5)  

Now, integrating in a we readly get  

dS(a )  

- dn 	2sinh (ry^ 

S(a) _ 	— In.12sinh (2)j  

(8.3)  

(8.4)  

where we used that S(oo) = . 0. This completes the desired proof.  
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In this communication we are going to show that the heat kernel regularization has a clear and beautiful statistical  

meaning. This will be shown explicitly for the chiral anomaly for general Yang-Mills fileds with Fujikawa's approach  

[II. Let us start remembering that the chiral anomaly appears non-perturbatively in the path integral framework  

as the Jacobian of the fermionic measure which is noninvariant under infinitesimal chiral rotations. This Jacobian  

results in an additional term for the Lagrangian and can be written, in 13 = 2m dimensions, as  

tl(x) = E P„t (x)7n¢„(x) 	 ( I )  
n  

where 779 = i707112 • • • 7b - 1, ïr, are the usual Dirac matrices in D dimensions and (5„ are the cigenstates of the  

Dirac operator {p, such that If14;5„ = a„ ç,„.  

The expression (I) for the anomaly is not well defined since the trace of 7n  is zero but the product of fields in  

the same space-time point diverges. Thus, a regularization is needed in order to calculate it. Here, we will proceed  

with the heat kernel method introducing a damping factor and defining the regularized anomaly as  

..4 E (x) =  lira E çi„t(x.)7p cxp(—c.\ }ón(x) 
 (_o  

11  _ ^ino E ¢„t(z)7Uexp{ - elp'- }Ó„(x)  
n  

= lim litn t r[71H(x,z'; e 102 )}  (2)  

where H(z,z 1 ;(02 ) _< xlexp(-cz' > - }I = exp{-c (A }5(D)(x — z') is the heat kernel. 

Let us now reobtain the above resultsin the light of a statistical mechanics approach. To see how one can get.  

it. let us discuss a theory at finite temperature in D dimensional space-time, using the Euclidean time approach.  

This is done simply by restriting the tine integration in the action to the finite interval (0,131, where /l is the inverse  

temperature. In this picture, the thermal expectation value of an operator O, assuming thermal equilibrium. is  

< O >fi= Z(13) - 1 E < nlexp{-f3H}C)In >, (3) 

where T.((3) = E„ < nlexp{—/3H [jrr > is the usual partition function, which normalizes the expectation value  

< O >13. 11 is the Hanriltionian and in > are its eigenstates, such that Bin >_ .H„In >. Note also that  

E < nlexp{-,13H}OIn >= tr < n'lexp{- 1311 }OIn >= 7'r(exp{-1311 }C)), 	 (4) 
n 	 ' 

'r^mail: boschbtilufrj.bitnet 'boschiCuvmsl.nce.ufrj.br  
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where Ir means trace over matrix elements and Tr over both matrices and states. For simplicity, we described  

discrete basis In >, but in general. these can be continous as Ix > and the trace Tr would imply an integration over  

x. In order to connect the thermal expectation value and the anomaly, we choose the Ilamiltionian H - fo' so that  

the eigenstates In > are identified with the ones given in the Fujikawa's analysis, q„(z). The thermal expectation  

value becomes  

< 0  > D = Z ( Q ) -t E ó„(x)t exp{-0/0 2 }06„(x) 	 ( 5 )  
„  

and the partition function is Z(p) = ^ p„(r)t exp{—/310 2 )0„(z). Now, identifying the operator 0 with ,n  we  

have that. the anomaly is just the unrenormalized thermal expectation value when the temperature approaches  

infinity (13 — 0)  

.4(r)Ir e9  = ^ itra  Z(13 ) < 7 5D  >p •  

Here, the inverse temperature ,0 plays the role of the heat kernel cutoff. Note that we have obatined explicitly through  

this picture that the naive form of the anomaly is 0 x 00. since in th limit ;3 --- 0,. Z(8)—co and < >g -0  

and the product of these. which is just eq. (6). is finite. The analysis presented above can also be extended to  

anomalous models.  

As the heat kernel method is related to the zeta function and stochastic quantization these later methods could  

also, in principle, have a statistical interpretation in the above sense.  

Acknowledgement: This work was partially supported by CNPq - Brazilian agency.  
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In this communication we will use the path integral formalism to discuss the chiral Schwinger model (CSM) [1]  

plus the Podolsky term and its anomalous chiral fermionic Jacobian in a finite temperature approach (2] [3]. As in 

the usual CSM, the fermionic measure is noninvariant under chiral rotations, so that we expect that this Jacobian  

will give rise to dynamically generated masses for the gauge field. Let us start., writing the Lagrangian density for  

CSM with the Podolsky term  

C = — 1 F„v F,,, — b2 0v  F^Bo Ffio + 	rb• 	 (1)  

where b > O  is the Podolsky coupling constant. As we are going to discuss the finite temperature theory corre-

sponding to the above Lagrangian we demand that the bosonic and fermionic fields obey the usual periodic and  

arrtiperiodic conditions in the imaginary time formalism. Implementing infinitesimal chiral transformations in the  

fermion fields this lead to a change in fermionic measure of the partition function D,GD?b = Dt .10(s(x)),  

where . Jp(c(x)) is a non-trivial Jacobian. In order to discuss the dynamical mass generation through obtaining this  

Jacobian at finite temperature we u`e the Fujikawa procedure with the operator fD = 70 (8,1  — i<A„ + ierly5 A„),  

being rl and real parameters. Now, following Ref. [4] we find that the anomalous Jacobian is given by  

Jp(c(x)) = expS — rE J  d2 Ze(s) 	( r19„Y + c„,^)aN^1 v 
	

( 2 ) 
l 	p  

which implies an anomalous divergence for the axial-vector current. 8„[yrly„(1 — 75)0] = (e/rr)(rlg„v  + ec,,v )L,,.4 v ,  

which is explicit 0-independent. To •find the dynamically generated mass for CSM with the Podolsky term we  

decompose the vector field as usual and iterate the infinitesimal Jacobian to find  

/ 	 1 
Mr)  = exp  	2a  ! d

Z Z[gQ ❑ v — ^P ❑ P — (r) — 0o-0 p] 
JJJ 

 y . 	 (3) 
p  

such that, the effective Lagrangian is given by  
b2  

Zen = 2 e -  
	❑ p + ez( ❑ 8,, P)

2
+r^'Y„aµ^r' - 4z [rJ ❑ o — G) ❑ P — (r! —  )ff ❑ p]• 	(4)  

Now. using the Euler-Lagrange equations for higher-order derivative systems [5] we get the equation of motion for  

the p(x) field  

`` 
j 

This equation can be rewritten as ❑ ( 

❑ 

❑ 

—2b2 ❑ 

+ j 	)( 

❑ + cc 	(q+ 
	)2) 

0 p-0. 	 (5)  47r 	rl  

❑ —  Á1,2 )p(x) = O and the field p(z) can he expressed as a linear  

combination of three other fields; a massless free excitation, a pseudo-scalar field with mass Jl  and a tachyonic mode  
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with mass 111, 

4b1 [
(1 +8b2 pló) t1 --1

J  ; 
	111tá .= 4b' [(1 +8b2 ; )1r'  + 11 

	
(6) 

where is o 2  = 	+f ) 2 /Aar¡. These masses arc 0-independent. Taking b — O we find that p 2  coincides with zero 

temperature result of Jackiw and Rajaraman [1) (identifying 20 2 /(a — 1) = (r) 	) 2 /?1) and the Podolsky tachyon 

M? vanishes in this limit. As we can see, the higher order derivative term is not sufficient to restore the symmetry 

which was destroyed at quantum level. So. the basic properties of the usual CSM persist despite the additive 

Podolsky term. In fact, its usual mass was redefined by the Podolsky coupling b and we get also a tachyonic mode 

M; 

In a more complete version of this work. following ref. [6]. we have also calculated the zero temperature 

propagators of the model. i. e., the gauge field propagator in the nonsingular (a > I) and singular (n s 1) cases 

and the relevant fermionic propagator. We also extended these calculations to the finite temperature case in two 

frameworks: imaginary time and thermoficld dynamics. The analysis of the propagators lead to the same conclusions 

as presented above. This work was partially supported by CNPq - Brazilian agency. 
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Vamos considerar inicialmente  o caso de um modelo cuja densidade de lagrangiana é dada por:  

a e 
^2 

C _ - 	l
a" + h 1/' a c3"1 a 	O r  r:u"°.4J".^1,, + 029416 ( " r í3a rl^ apas:1 io.  

sendo a. b. 01 e 0, os parâmetros arbitrários que nos permitem tomar os vários limites da teoria. 

 0 propagador no gauge de Lorentz, e na representação dc momentum, é dado por:  

Du" = 	I 	 (a -  (02k' + 2fJ1 )-.,  - (a - 2bk 2 ) 2 k 2  

+ 171 (a - 16k'') ((a  ((_ i k 2 - 26k4 1 - (020+ 201)`  

^ E 1," 8ke 
^. - i(02 k" + ''Or )  

k'-  

onde o é o parâmetro de gauge.  

O propagador acima tem seus polos definidos através da equação de terceiro grau: .3 + arr =' + a-r. + 03 =  
Lei } 9ab) 	- tal -49.6 t 	- 	B ?  u, (r _ "), on ie a r  - — 4^
^b rt  2  — 	

4 	e 03  -  

A equação do terceiro grau acima tern urn discriminante D tal que. se D > 0, nos levam a situações não físicas.  

A única possibilidade seria aquela em que D < 0, onde definimos: D = Q3  + R='. onde Q = {3a ' " , ' t 	e 	It  _  
Ono,-27aá-2041  

54 	 • 

'1'eiiros a solução da equação polinomial acima dada por (D < 0):  

zo = rrrâ = 2prl3cos( i ) - 

 ql  

r*  = rrr t  = -p 1 /3 [cos(  ) f NaseTr( ì)} - 
 a; 

 • 

onde p = 	!r'= + L 2 , cora !,E VP5i e n = aretarr(L/!i!). Para eliminar-se a possibilidade da exist ência dc  

táquions ou ghosts, impomos que as três massas ao quadrado acima sejam reais. positivas e diferentes entre si.  

Um caso particular interessante é aquele cm que não existe o termo dc Chcrn-Simons usual (Ot 	= 0). Neste  

caso a equação (3) fica sendo: 	r(r 2  + a i r + a2 ) 	= 	1) ,  logo os polos estarão dados por: 	ru o 	= O . rrrf 	=  

[-ar f V°?-  403 1  .  

(1)  

(2)  



A. de Souza Dutra e C. P. Natividade 	 261  
A imposição que as massas ao quadrado sejam positivas, nos leva à restrição sobra a região de validade do paràinetro  

02: 0; > —8a6,  

como usualmente  torna-se  a = 1 e b = — e2 , teremos: 03 > —  r. 
-Podemos, agora passar a fazer a quantização canónica da teoria acima descrita com a = 1, b = —e2  e 02  

obedecendo à desigualdade (8).  
Inicialmente fazemos a variação funcional da densidade de lagrangiana (1) [1]. de onde obtemos a equação de  

movimento, (1 — 2 c20)8„ F" + 0 1  c""01, Au — 2 0 2EF" Fa„DA8 = 0. além dos momenta:  

7r" = — F°"  — 2 c2  (ak a) Foabj — a°aafá) + O f fo"-4 0  + 2O2 f^1''"C)„a°.48.  

= 2c2 (8,,F” — áoO r F°r) + 02E"a°:1j}. 	 ( .1 )  

como cF" 	("v., é fácil concluir que temos a densidade Hamiltoniana canónica 'H, = r  fim + s„:1 — G (coin  

A  F.  A), tal que:  

/  

¡{^ = 9r¡A' — 
4c2

s¡8' + s i c`1k^,' i k  — .-1 °(Ìk S k ^ + ^ {.^; -- 	+  

— 712.4o) + tiF'^F; 1 	201Ek;.4'Ak — 20 1 f¡i.4o0 1 /1 1   +  

—02c '1 A^ (dcTisi  + akF'k  + ô`A° + O2E¡kA k ) +  

—20 2 	 + 
Ek¡ÃoakAi  + E°iôkA08kar Ai)  .  

Impondo a consistência temporal dos vínculos. obtém-se o seguinte vínculo secundário:  

112=^a;s -71-13— e2Eila` (.41 + 2..i1 ) .  o  

= akz k  + 201 E;i81 .4 i 	0. 	 (6)  

Pode-se verificar os limites de modo a se convencer que os vínculos acima são os corretos. 	fácil ver que  

temos uma teoria com vínculos de primeira classe. Dessa forma devemos buscar uma lixação de calibre conveniente.  

Como é típico de modelos com derivadas de ordem superior. vamos escolher um vinculo fixador de calibre de ordem  

superior:  

Ti = ( 1  — 2c20) ak.4 k  ^.. 0,  (7)  

de cuja consistência s ilo gerados os seguintes vínculos:  

Y2 _ A°  + P E ;; c) '  .11  -1-.; O  

,Ì1 - :1°  + 	.̂'. 0.  

onde I'  _ 2(01 — 020)(1 = 2c 20) -1 7/ -2 . Os parênteses de Poisson não - nulos são :  

(5)  
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{S2 t (z).73( y7} _ - b'(x  

{n2(x), Y2(0) = b`(T —  ^ï) 

{S2 3(x)• 7 1(0) = (1 —' 2c2 V2 ) 17 2 6 2 (r —  lj). (10)  

Podemos então construir a matriz de Dirac e, após inverte-la, obtemos os seguintes parênteses de Dirac não -nulos:  

TJ(0)' = ó;;ó'(:r — ỳ ) - (1 - 2c2 i% 2 )8; 0).G(7 -  

= 	— , 

{T;(J) ,  Ti(g))' = (1 — 2c 2 P 2 )(20 E ck;c?J — 02tkJdi)ak 6 2 (r —  J^• 

onde G(i — yj satisfaz à equação : (1 — 2c2V 2 )V 2 G(i -- if) = b 2(.  — 	Novamente quando se tomam os limites  

apropriados, podemos verificar os nossos resultados comparando-os com aqueles presentes na literatura.  

Na seqüência, devemos verificar se os polos encontrados são dinàmicos. Em  seguida deveremos construir modelos  

com interação da teoria aqui desenvolvida com a matéria. verificando se as correçòes radiativas não reintroduzem os  

táquions ou os fantasmas. Além de procurar por estados ligados que possam ser responsáveis por fenómenos coou ,  

a supercondutividade. 
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One shows that 3-dimensional N=1-supersymmetric models with non-trivial topological field 
configurations develop a central charge in the supersymmetry algebra. This result is also 
discussed in the presence of a Chern-Simons term,' keeping supersymrnct.ry non-extended. 

Ordinary and supersymmetric Abelian gauge models in 31) space-times have been fairly-well investigated over 

the past years [1]. Besides their relevance in connection with tlie . possibility of gétting non-perturbative results more 

easily, the ultraviolet finiteness of Chern-Simons (including the case of gravity) theories is a remarkable feature of  

field theories defined in D=(1+2) (2]. Also, Abelian Chem-Simons models with matter couplings seem to be the  

right way to tackle exciting topics in Condensed Matter Physics, such as high-To superconductivity and Fractional  

Quantum Hall Effect (3]. Our purpose in this note is to assess a typical three-dimensional gauge model with N=1-

supersymmetry from the point-of-view of the algebra of the supersymmetry generators. We actually wish to present 

here a few remarks on the connection between topologically non-trivial solutions, the Chern-Sitnons term. and the 

presence of a central charge operator in the algebra of simple supersymmetry. 

The (N=l)-super-Poincaré algebra in (I+ 2) dimensions is generated by a real two-component spinorial charge, 

Qa , whose the operatorial relations are given by {Q a  , Qb} = 2 i Pa and [Qa  , Pab] U, Pa b being the translation  

generator [9]. This super-Poincaré algebra has been generalized in [5] for extended supersymrnetries. But, in fact, to  

recognize if a quantum field theory is consistent with supersymmetry, we need to obtain the Noether's (super)charges  

for the specific model, and the local features of a system are presented by the current algebra, that depends, as we  

will see, on the details of the model [6]. It. is worthwhile to mention that this is one way to detect the symmetry at  

the quantum level; another approach would be through the analysis of the Ward identities for the symmetry under  

consideration. With this point-of-view, we shall analyse how the various terms (consistent with the symmetries of  

the (1+2)-dimensional supersymmetric model) contribute to the equal-time commutators. The motivation to use  

the canonical formulation in our analysis is that we, actually wish to identify a central charge in the algebra and, in  

case it appears, it can be read off from the 11,115 of the ant.icotnnnttators between the supersymmetry charges.  

The models we shall contemplate here include an N=1-supersymmetric self-interacting matter model, its con-.,  
piing to gauge fields and an N=1-supersymmetric Abelian Chern-Simons model. The main result we find is that  

a central charge appears. even if the supersymmetry is siiíiple, providers that topologically non-trivial solutions are  

present in the model.  

The explicit representation we adopt for the symmetric. 4-Matrices  

(ry 	C 7) reads:  
^ l 0 

(7s)ab = 	
l  l J  

	

(7 r )ab = ( 

 1 

	0 
) 

 

	

0 	I  
_^ 	U 

(7 )ab = 	
—  

—1. 1  
O 	'  

'Nmail: colattoOcbpfsul.cat.cbpf.br  
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where C is the charge conjugation:  

(1)  

As a notational convention, we shall denote spinor indices by early latin characters (a,b,...).  

1. The Self-Interacting Matter Model  

Matter fields are assembled in scalar superfields, whose representation in terms of a 9-expansion (8 is a two-

component Grassmann-valued Majorana spinor) is given by 41(x, 8) = ó(z) + 8° O a (z) - 8 2  F(z) , where ¢(x) is a  

physical scalar, 0 3 (x) is a physical fermion and F(z) is an auxiliary field. Now, it is possible to write an action that  

is invariant with respect to the symmetries (supersymmetry, Lorentz) and that is power-counting renormalizable:  

¡ 

 { J d 3zd 20{- (Da  0)2+ mL2+ g
a 
 ,  

Da  
ea 

- ieb =ab ^  4^ 	(a. — 88  i ôa  ó) 4}. 	 ( 2 )  

The supercharge is obtained via Noether theorem and reads as below:  

Qe  = 1 d2xJ0,  

= J d'- s S - i di (7 )ac (mô+  63
) 
 

+ 2 ° ^ + 2 ¢ 8° Vc+ 

'2 E.° vPVa(7v)a.Úv + 2 EQvPW Úv 	(7p)ae1 • 	 ( 3 ) 

By using the graded canonical commutation relations for ¢ and tf1a , the anticommutator defining the super-Poincare  

algebra turns out to be: 	.  

fQa Qn 	- 2 iPN (7 ! Oa + ¡Eli  J % d^xÓ¡ I}r^7J)ab (mc 2  i ^ ^ = 	+ ¢4 	, 	 (4 ) 

where PI' is obtained as the Op component of the "improved" energy-momentum tensor. Observe that the mass  

and self-interaction terms both contribute to a central .  charge in the supercharge algebra. The case we study here  

is just the 3-dimensional counterpart of the model considered by Olive and Witten in the paper of ref. [7], where  

the topological origin for the central charge is first pointed out. In our case, proceeding along the same lines as  

done in ref. [7], it is shown that the second term in the RHS of eq. (4) is non-trivial by virtue of the contributions  

coming from soliton-like configurations associated to the 0-field. However, it should be stressed that these static  

configurations are not the straightforward generalization of the kinks to two space dimensions. for they have an  

energy that is divergent. They simply signal the presence of field configurations with non-trivial topology and  

only upon the introduction of gauge fields, as we shall proceed to in the next section, they will lead to static  

configurationsof finite energy: they are the so-called solitons with a magnetic flux. or vortices [8].  

2. Matter-Gauge Background Coupling  

The next step of our discussion consists in complexifying the matter model of the previous section and then  

performing the gauging of the U(1)-symmetry it possesses [4]. The degrees of freedom in the gauge sector are  

accommodated in a Majorana spinor superfield, r a (z; 9), whose 9-expansion reads [4]:  

Smatter =  

Ca = Xa + a b (Cab B + tVab) + 0 2 (24 - tVa b xb) 	 (5)  
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where Vab is the usual U(1)-gauge field, A. is its physical supersymmetric partner (the photino), whereas Xa and  

8 are non-physical components; Ca b denotes the elements of the charge conjugation matrix. The action that  

accomplishes the minimal coupling between the matter and gauge sectors is given by [4] 

Smatter—gauge = 
J 

d3 xd ? O l - (C a  c1))(Cac)} , 	 (6)  

whith Va = (Da  - 	= (Óa  - it9 b (Ìba - if a )0. The iN'oet.her supersymmetry charge turns out to be  

J d2 iJ0 , =  

= 	4 
1 

J 
d 2 iiir °1? [ ∎ a (yl)ac`i +Oa(Ìf)ncCiv1]—(4'cV 0 ti'+t('eV ° ó)+ 

(Ò V °  e + V0 C' c ) +  i e° i1 (p V i 6¡áa  + Ó CiC¡̂ a )( 7})ac} : 	 (7)  

V° and V i  stand for the gauge-covariant derivatives with space-time indices. Also, we should mention that our  

component fields are defined through the action of the (spinorial) gauge-covariant. derivatives on the superfield 4),  

according to:  

419-0 =  C1. 

Ca 4'18-0 = lll n  ,  

v-  419_0  =  i'  • (8)  

After a lengthy computation and the use of well-known algebraic relations among the -•-matrices, we obtain that  

{Qa , Qb } = - 2 i P t (^N )ab . 	 (9)  

where to momentum operator P P  appearing in the RITS includes now contributions from the gauge field minimally  

coupled to matter through (6). Nevertheless, no term in the form of a central charge arises from the action (6);  

this means taht the central charge operator of eq. (4) is not modified by the introduction of the U(1) gauge  

superfield. The role of the latter is to stabilize the topological configurations associated to the action (2) in the  

form of vortex-like solitons, as already known from the works quoted in ref. [8].  

3. The N=1 Abelian Chern-Simons Term  

The gauge sector.discussed in the previous section was treated as a background; since no Maxwell-like dynamical  

term was added to the action (6) that gives propagation to the physical fields lab and A. We have now in mind to  

introduce a Chern-Simons (CS) term for the latter and we shall compute how it contributes to the algebra of eq.  

(9). We begin with the gauge-invariant CS term written up in superspace [4]:  

Scs = 
,1f ¡ 

d3s d =0 1'a W , 	 ( 10 )  
g -  J 

where M is a mass parameter, g is the gauge coupling constant and the field-strength superfield W. is defined as 

 Wa  = ,t-,DbDa rb [4]. The CS term above contributes the piece  

(Qcs)c = f d2i(JCS41  = 	dzx 	V ° (tPc0 - tbe9)} , 	 (ll)  

Q^ 

to be added to the RHS of the supersymmetry charge of eq. (7). 'The reader should be warned for the fact. that  

the contribution given in eq. (11) is true once one has chosen to work in the Wess-Zumino gauge. Moreover, also  



[8] 

[9) 
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restricting the supercharge of eq. (7) to the Wess-Zumino gauge, one computes the anticommutator (9) with the 

CS piece and verifies that no new contribution appears that modifies the central charge. 

4. Conclusions 

The work of Haag, Lopusanski and Sohnius [5] yields a theorem stating that a central charge in a supersymmetric 

model in four dimensions can only appear whenever supersymmetry is extended. In two dimensions, Olive and 

Witten [7] showed how configurations with non-trivial topology (namely, kinks) could be the source for a central 

charge operator in the framework of a simple supersymrnetry. I n this letter, we presented some results on the algebra 

of supercharges for a self-interacting matter model and an Abelian gauge theory in D=(1+2). Our results indicate 

that the conclusion drawn from the two-dimensional case persists in three dimensions, i. e.. 3-dimensional models 

with topologically non-trivial field configurations develop a central charge in the algebra of simple supersymvretry. 

The central charge appears indeed as a space integral that probes the behaviour of the fields at infinity. 

This result differs from the one presented in the paper of ref. [9], where the authors consider an Abelian (N=2)-

supersymmetric model with a 0 6-potential and a Chern-Simons term for the gauge potential. They conclude that 

the non-trivial topological contribution to the central charge is nothing but. the magnetic flux associated to the 

gauge field. 
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We want to compute the following determinant. 

cxp(I'e(.& )j - det' (w 2  + 0;2 ) 9  = dei.' (1.) 8 . 	 (1)  

where L acts on functions that satisfy sonic given boundary condition specified by the label O. The power of the  

determinant given by the parameter s is left. completely arbitrary to take into account the cases that interpolate  

between the fermionic and the bosonic oscillators. Hence, playing with the boundary condition and the parameter  

s we can pass continuously from the bosonic to the fermionic oscillator. That is why we refer to this determinant  

as the partition function of an "anyorl-like" oscillator.  

Suggested by the Green function method usually employed in quantum field theory, we write  

J f
' 1'; ( u,) = 2s4,'1'r (!, -1 ) 8  = 2s.: I GW(t,t)dt, 	 (2) 

Üw 	 n 

where the Green function G4,(t, t') satisfies (w= + Ü) G4,(1, r') = á(1 — I'), as well as some boundary condition (to  

be given in a moment). Integrating this equation we obtain  

(Cd) — 11(0) = '2s ¡ LL  d:.:'w' f T  drGW,(r,t). 
o  

Since our purpose here is to use a generalized boundary condition in the sense that the periodic and antiperiodic 

cases will appear as particular cases. and in order to make connection with the behavior of correlation functions of 

anyon-like systems, it is natural to impose the following 0-dependent condition 

r./1)= r-i9 C;4 (1  1r) 	 (4)  

It is clear that this boundary condition becomes periodic for 0 = O arid antiperiodic for O  = a. Depending on these  

conditions and the value of the parameter s, which can he thought. as a -statistical" parameter, this determinant  

will be mapped into different partition functions. As these particular cases are related to bosonic and fermionic  

systems, this condition of general periodicity could. in principle. be related to particles whose statistics interpolates  

bosons and fermions, i. e., anyons [2].  

It is straightforward to construct the Green function Gs,(1 - 1'). Using basically tile: same technique that Kleinert  

[3] employed for the simpler cases of periodic and antiperiodic boundary conditions, it can be shown that.  

c -i9/e eiwtt-1'-r/21  Gw (t — t') =
rill 	sii (^ 	) + 	sin( WT  9) 	: r —  r' c [U, r) 	 (5)  

(3)  
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Substituting this Green function in Eq.. (3), for the interval [0,r) and with t = 1', we have  

w r ¡ 	ice 	e —iw'rf2 	eiw'r/z 
*La) — r;( 0 ) = 2s

J 
 dt J clu

iV 4u/sin("— = ) + sin(" '' — a  )J ^  

= In le is  i —i  + `—i(9+W1 it — 
 e''] 

 Y  . 
 (6)  

Recalling Eq.(1) we see that the exponential of r (w) is the desired determinant. Identifying r = —id (li = I).  

taking O  = 0 (periodic boundary condition) and i = —1/2, this determinant. reduces to the partition function for  

a hosonic oscillator [I], [3]. Analogously, for a fermionic oscillator. we just make 0 = r (antiperiodic boundary  

condition) and s = +1, so that the above determiant reduces to the partition function of•a fermionic oscillator.  

For the general case, the partition function reads  

[cosli
^

Z(!3) = exp [r(w)] = 4' 	
n 
-  `^ —  con - 	

r 

 , 	 (7)  

Note that, in Eq. (7), we left the statistics parameter 

s 

 free. In fact., it. may be a function of the periodicity  

parameter 9, interpolating between s(O = O) = —1/2 (hosonic case) and s(I) = r) _ +1 (fermionic case), as for  

example s(9) = —1/2+3/21(0), where f(0) may be a function which satisfies f(0) = 0 and f(r) = +1. We wonder  

if this factor can be obtained from the functional integration of a generalized variable, with arbitrary commutation  

relation, interpolating the cases of' bosonic (c-number) and Grassmanniatt variables, as a kind of a q-deformed  

calculation [4],(5].  
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O trabalho consiste no estudo de estados ligados férmion-anti-ferntias na eletrodinâmica  

quântica massiva bi-dimensional erit (1 + 1)13 na expansão 1/N (I). Foram calculadas via  
TQC as matrizes de espalhamento na aproximação não rclat.ivisticn, e comparada caiu a  
secão de choque na aproximação de Born, e obtemos de sta forma. o potencial responsável  

pela interação nos processos de espalhamento. Via equkão de  Sclirõdinger foram investi-

gadas a existencia de possíveis estados ligados.  

Introdução  

A importância do estudo de modelos 41i-dimensional com N campos fe:rriiiõnicos, reside no fato que cm baixas  

dimensões algumas teorias (o caso da Q 132) são mais facilmente investigada, sendo portanto uni bout laboratório  

para o estudo de propriedades gerais e também para a descoberta ele novos aspectos possivelmente relevantes em  

dimensões superiores. O aspecto não relativistico des ta teoria ser,'i analisada na ordem mais baixa, 0(  

Estados Ligados na QED2 Massiva  

A QED2 com N campos fermiónicos é descrita pela seguinte densidade de Lagrangiana:  

,C = - 4— F¡rvl:N L +^'(iUy^7 j ' — FÌl)l'^^ — , (a„!lP)  + el!, TY° t' 	 ( 1 )  

onde  A é o parâmetro de fixação de gauge, M a massa do férrtiion e e é a constante de acoplamento (que neste caso  

possui dimensão de massa s ). e existe unia soma  implícita rios indices de simetria interna dos campos ferrniónicos.  

i.e, 0,, (a = 1, ..., N). que neste espaço-tempo, possuem duas componentes. O tensor 1.„„ é o usual. ou seja.  

Ft,,, = O 1„ — c^„:i„ corn p. v•= 0, 1. 0 campo :1„ é uni campo de gauge. e as matrizes de  Dirac  são matrizes 2x2.  

Para a massa do férmion diferente de zero a teoria não possui urna solução exate. apesar de ser super-renormalizável  

na constante de acoplamento. No entanto. na teoria de perturbação ordinária existent uma série infinita de diagramas  

de Feynman que contribuem para um dado processo de espalbbaluerüo. Dentre esse conjunto infinito de diagramas  

'This work was supported in part by CAPES.  
t  Lembre-se que no sistema de unidades naturais. c = A = 1. [L] = M D .  onde 4 é a dirnensfu (III espaça-tempo. Como a dimensno  

canónica do campo de Dirac é {,,gy'1 = [o'' = ,'if 	e a do campo bosõwic, IA „ ) = Al 
r 	

. implica que para I) = 2. [e] =  ,11. 

2 Para Al = O e N = 1, temos o chamado "modelo dr. Schw•inger” [2,31 chi e  é exatame:ntc solúvel. i.e, as'suas fnnçúcs de Green  

podem ser calculadas de forma fediada[dl.  



e  

4AI 2 	k=' 
arctg( 	̂ ^ 	  1 	U  << 4M 2  14m2.0 - k4  

f(k 2 ) =  
N/4M 2 k 2  — 1: 4  

onde  

e  
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podemos escolher aqueles que possuem uma mesma ordem ent N. Pode-se fazer isto introduzindo lima nova  

constante de acoplamento  

q =P. TI , 	 (2)  

onde cré mantida fixa para N grande. Com  esta mudança a Lagrangiaiia de interação em (1) fica: L in,  

(*Aj, 7„ e)  . Incorporando o efeito de polarização do vácuo ao propagador do campo dc gauge .1„ na expansão  
4  k” 

1/1V, que na teoria livre é dado poro c]„„F(k) _ -i[ 	] (no gauge de Landau 1 — •x•), encontra-se a seguinte  

expressão:  
, 	 k„k„ 	 1 

	

, vF(k) = — i(guv i 
k 2 	« 	̂ 	r ^  

1 k - rn2 + * ( - 1 Tf(t' - )) 	 ( )  
coin  

4M' 

f(k2 ) — 	
2Al2 
	In(

1— 1- - - )+ 	Iir:112 	
4: 2 > 4Al 2 	 (5)  

	

4,20 — 	4 	1+0_4151 L
. 	̀  i;c-  

Utilizando o formalismo de redução [5, 6] encontra-se a seguinte amplitude  de  cspalhairientu féérmion-ant i-

férmion:  

Ail fi = (2T) 2  t( P l — P2 — pi + 112) ;
` e ^' reto — :^1^^ 	,  

dirctn 	O” 	; .p  
 

= :\' ti (P1 )? tc(Pi )a„Y F (k)t' (!'2  

I ^"° = ` n(Pt ^ ) 7 ^`v( }̂ 2 e)^ 	( k ) NyF iã (P2) 7 v U (171 )•  

Com ajuda das soluções da equação de Dirac em (I -;- I )D [1], e fazendo nina aproximação não relativist ica  ate 

Cq(p/A 1) na expressão (3) e nas correntes espilioriais eni (7), a amplitude ele espalliamento do termo direto fica:  

direto 	et 	1 

onde foi levado cm consideração que o quadrado du bi-momento transferido k'- = kó - [EI-' ; -[LI= ate' O(p/,11)  

[1]. Observe que o termo  constante  no denominador de (9) pode ou não ser desprezado. No que segue, motos  

considerar f > I de tal forma que a contribuição advinda cia polarização do vácuo é relevante -i . Por outro  

lado, para o termo de aniquilação k 3  4Al2 , e a função j(k 2 ) dada por (5) diverge' para  1- 2  =.1111 2 . Isto  implica 

que zirpop (k) — 0, e consequentemente M7"/' se anula para este valor elo  momento.  Vemos assim que não há  

contribuição para o potencial proveniente do termo de aniquilação. Deste iiiodo, encontra-se a seguinte expressão  

para o potencial efetivo, no limite para in — 0,  

3 0 termo de massa m foi introduzido a lint de evitar possíveis diverg meias infra-rerrmel}uu nos calculus intermedinrios.  

4  Na situação oposta, i.e, para Ms << 1, o cálculo reproduz, i o iimite m 	U. sontrntr. o potencial coellombiiuio eláse.l.:u.  

(1)  

(8)  



• > a 
▪ <0  
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o`  
Ve11( x ) -  2rV (I +° ]1 

ixi ' 
	

(10) 

6x
r(3

, 1  
que representa o potencial coulombiano em 2D, atrativo, responsável pela interação entre o par férmion-anti-férmion.  

Resolvendo-se a equação de Schrbdinger para o problema de dois corpos de massa reduzida p = rn t m,/(rn t  +  

rn 2 ) = 4, submetidos ao potencial (10), obtém-se as seguintes funções de onda:  

a1.41 	x - 
^ 

(Mp) 1 /3 ] = eY+ ,  

a 2 :I; 	-x - n  
	p)1/3]  

_  
com p =  . 2  e  também a equação que determina os auto-valores da energia E,  ^ 2N t+ a )  

(_.M'i) = a (12)  

onde A; é a função de Airy.  

Conclusão  

Na QED2 massiva estudamos a existencia de estados ligados entre férmion-anti-férmion. E possível obter estados  

ligados variando a constante de acoplamento, ou a massa do férrniou. para um determinado valo de N (a princípio  

grande). Esses resultados foram obtidos na região de acoplamento forte ( f ry2  > 1), onde o efeito de polarização  

do vácuo não pode ser desprezado. Esse modelo exibe características semelhantes it QCD. corno  o confinamento  

do par férmion-anti-férmion. Observa-se também,  através da expressão do potencial efetivo (equação (10)), que  

o confinamento só ocorre se os férmions são massivos. Caso  contrário, se M -- U. não existem estados ligados.  

Devemos enfatizar que o limite quando ¡ll — a aqui considerado não corresponde ao modelo de Schwinger. pois o  

limite não relativístico que temos pressupõe que M 2  é grande. O modelo de Schwinger e; obtido se tomarmos M =  0 

de inicio na teoria de campos, i.e, fazendo este limite no propagador do campo A +, dado por (3). Podemos analisar  

os resultados dessas duas teorias rapidamente. Pela expressão (:i) verifica-se imediatamente que o fóton adquire  

urna massa 
T 

 quando fazemos M — 0 S . Dessa forma, a energia do estado ligado que se formaria teria exatamente  

o valor T. No nosso caso, isto não acontece, mais precisamente esta energia é nula. O motivo dessa diferença de  

resultados está no fato de que o limite não relativístico do modelo de Schwinger perde o seu significado (este limite  

corresponderia ao caso o 2  >> k 2 , pois r1 2  é o único parâmetro de massa (lesta teoria). E oportuno ressaltar que os  

estados ligados obtidos nesse modelo tiveram corno contribuição apenas o termo direto do espalhaniento, visto que  

os gráficos de aniquilação não contribuem.  
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Introdução  
No presente trabalho, considera-se a expansão 1/N do modelo Nambu-Jona-Lasinio (NJL) SU(3) sabor gen-

eralizado das interações quárticas ferrniemicas em 4D no formalismo da integral funcional, sendo N o parãmet.ro  
livre que representa o número de cores. O modelo apresenta as propriedades básicas de simetrias da QCD.  
não-renormalizável e contém o termo sugerido por t'llooft que quebra a simetria axial UA (l ).  

0 trabalho consiste em obter o espectro de massas dos hádrons mais leves como pólos do inverso da matriz função.  
vértice e as constantes de acoplamento méson-quark-antiquark na aproximação árvore da matriz de espalhatnento  
T.  

O Modelo e a Expansão 1/N  

O modelo NJL para estudar as propriedades dos mesons mais leves na escala hadremica conipativel com as  
simetrias da QCD e incorporando o termo de quebra da simetria axial .U A (1) é dado pela seguinte densidade de  
Lagrangiana generalizada,  

GN^L =  tí'  [i0 — mo) + G i f  + G"oofi 	 (1)  

onde  

Gxif = 2 G1 [(7Aa0) 2  + ( ITaai750^] ` 2 G2 ](^vaa7^` x'') + (UAa7P 75r•^')`] 	 (2) 
 

c 

Et ,  HoofI  = li [iet. v(1+ 75)Id]+ det1 [7( 1-15)tJ.] } . 	 (3) .  

As matrizes a a  são os geradores do grupo SU(3) sabor, n = 0, 1, 2, .... 8 e rrt o  é a matriz diagonal cujos elementos  
correspondem as massas correntes de quarks. A dimensão das duas constantes de acoplamento C1 é [L] 2  e da  
constante K  

A interação de seis campos, Gvlroofa  precisa ser reduzida a unia interação q+Iártica fechando num  loop  de  
fermions", formando assim, um condensado de quarks (70/2 i ). Usa-se um "cutoff' euclidiano covariante. A. que  
define o esquema de regularização .  

Assim, a densidade de Lagrangiana efetiva quártica vem dada por  

G = tb [iíJ - mo) r;, -}. ,1-Iín -1 (I:r, Aali}) -  + 
2

Ka+)(7aat75 0)2 	.  

+^hob 1 [(tGaOtL)(vand^) + (tt,A8tt^)(t'aot!')]  

•Supported by CNPq.  
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•
. +21il ó^ i ](t,4aoi75 ^)(t•^^JIsi7 5.t1^) + (il'Asi7 5 ^^')(7aoi?.S tr, )]  

-  

— 2G_ {(0A.7' 0) 2  + ( 4l,a, 7u 75 O) 2 ]  

unde  
KV )  = C:1 ± ^  !i [2(úu) ^ (ss)]; 	Ii ^^ }  = Ií  (T)  = lí3^ }  = Gi +  Ií (s•s);  

li4*i =lís*) =!ï¿^ ) =líl ^ i =C t+ Fli(r^u): 	!i ^ 1 =Ci^^Ii[4(i,ti)—(tis)] . 

^'  

lios ) = 	'It[(►iu)—(ss)1  

Na  expansão 1/N escrevemos (4) como.  

_ 
C - I 	., 1 _•, ! 	•> 

—Ir•1% 
1 	x + Ct rroah 	C^^sroTa + 

2^ 
_t a a 

a lt^+) 
	° - ` 	

n  
4 g2 

— — ► r•:1 5 	+ 
4g2 

:1` [C,lao + C-•ra^,] + TKO  + de  

	

onde C1 , Cti, C3 e  ar dependem das constantes dc acoplamento e 	'  

I T12' 
^ T) - ^

^ 
(*I _ ^` Ut+ 

^ 	̂
 	

61T)  

(T  y•_' 
-1T) —  ^ IT1 	Ì oã 

à  

= 1;' j  

1  
=[ia —m][1+ . f̂ (iif — rrir ' (rr +ai75 +il%r,^ P +i=1u5 7° 75 )]  

Como = 	7r. = a^°, Ll¡, = —ii'fA° :1„5 = —i.•1r,5°a°  
Utilizando o formalismo da integral funcional obtem-se as equações de " gap" ("t.ad-pole" ).  

e a função vértice  

tau  = rn,i 

rn.. 

I.  = 

- 

= rn° — 2 ( 77u) . (gl + 4-3  k (79s ) 

= uia - 2g, (7.$) — . ^  

	

rao 	r ? v 	o 	. o  

	

r,., 	r^  t' 	o 	0 

	

o 	o . 	r ., . 	rv^ __ 	=11  

	

o 	o 	r', 1̀4, 	r;¡",5  

)  

(6)  

(7)  

que é uma matriz em blocos diagonais. Cada bloco vein ser tratado independente e os -clenieutos tem a estrutura  

r; =(1— JÇ)S2' t  

o simbolo J refere-se às integrais fermiònicas em " um-loop" do tipo  

273  

(4 ) 

k (^1 
o  

coin j =1, ....r e  
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Jab(E,=') =2iTr J  (1a  [Z-
d )a 

aaSF (P+ 2) 	 y ^^ 6SF  \p —  1l1 ' 	 (9) 

f2 é uma matriz na qual contém as constantes de acoplamento e E é uma matriz de Dirac.  
Os propagadores mesõnicos estão dados pelo inverso da função vértice e as massas dos campos auxiliares são  

determinadas pelo conjunto de condições  

'D(q`) = det(I— At) =0 	 (10)  

para q 2  = mh, onde cada canal é determinado pela fornia especifica de J e St compatível com os números quanticos  

da partícula.  
Para obter a matriz de espalhamento, usaremos a fórmula de redução com a densidade de Lagrangiana de  

interação dada por  
1  

Cirii = 	4'X:111.  

Na ordem N. podemos escrever a matriz de espalhamento na forma  

T=:ll;á(E.E') { moa; O_'A1) 
	

( 12 )  

coin as matrizes Al dadas por  

	

:t9 =(1 — cur' ft. 	 (13)  

Expandindo o denominador da matriz M em torno do pólo 'i = rirh para um canal hadronico. a matriz Ì  
corresponde ao termo de Born representado na forma  

(LdlTir'u) ^ :Idb(-7) 	•, 	I •^ 	:/r  (71 • q-  — rir h  { ic 

onde  

,:li(q) = g(q2 ) E A 	 (15)  

e q(q 2 ) o fator de forma quark-antiquark-méson.  
As constantes de acoplamento quark-antiquar!-méson são definidas para os pólos mesõnicos g = g(inh ).  

Resultados Numéricos  

As constantes de acoplarnento do modelo são obtidas como ria referéncia (12) : yr é essencialmente fixada pelas  
equações de "gap" as quais geram as massas dos quarks constituintes  mi.  O parametro 92  vem ser obtido através  
(la massa do méson p. A constante k é determinada do levantamento qq ' . O "cut.off-  covariante é A = 1 Gil'. Os  
valores das constantes são : g i  A 2  = 7.858, g2 A =' = 10.998, k A =  = 336. As massas dos quarks constituintes são  
rir„ = ri,d = 385.9.Gel% e 771, = 529.0 GeV.  

O espectro de massas pseudoescalares associado a este conjunto de parâmetros são  

in,. = rui+ = rn r _ = 139.5 Met% (exp. 139.56 X11 r.V) 

rn + = rir _ = 491.5 Met% (exp. 497.07 Al  cV )  

m io  = 545 Mel% (erp..548.8 Alel:)  

rrr T , = 1128 Mel;  ( e xp. 957.5 Meti) .  
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Conclusões 

A implementação formal"da 'expansão 1/N com a introdução dos campos auxiliares bosõnicos usados para a 
derivação de uma densidade de Lagrangiana efetiva coin interações rnesônicas, têm como teoria "macroscópica" 
fundamental o modelo NJL SU(3) é portanto as apropriadas simetrias da QCD. Esta implementação  permite  obter 
uma densidade de Lagrangiana que preserva a dinâmica original do modelo. 

Têm-se demonstrado. que na ordem dominante da expansão 1/N. exibe a geração dinâmica de massa dos 
campos fermiônicos. As equações de "gap" que achamos são precisamente as obtidas no formalismo Bethe-Salpet.er. 
Os campos hosônicos auxiliares pseudoescalares mostram ser bem representados por estados ligados q — q. As 

massas são obtidas como pólos da inversa da matriz função vértice. Estes resultados são muito bons com os dados 
experimentais. 

A discusão anterior é básicamente dedicada à derivação da densidade de Lagrangiana mesõnica. Isto representa 
um primeiro paso em obter as correções na aproximação de '`um-loop' como um caminho sistemático e consistente. 
Por exemplo, para os efeitos de ordem mais altas, temos diagramas "triângulo" relativo aos processos de decaimento 
e "quadrados" relativo a espalhamento. 

Outra contribuição importante da presente densidade de Lagrangiana é relativo a q 2 =0 na expansão local dos 
campos auxiliares. Neste caso, obtevesse urna interação local efetiva dos campos mesonicos incorporando termos 
cinéticos destes campos. Temos a confiança que as  aproximações " — !i molecules-  e outros sistemas compostos. 
sejam bem descritos. Estas investigações estão em desenvolvimento. 

Agradecimentos : agradecemos a l.i. hi ller e A. II. Min,  ela Universidade de Coimbra. Portugal e M. O. (=urres. 
R. Mendes. V. S.Alves. S. V. L. Pinheiros. 1.. C.  Malacarne. da Universidade de Saro Paulo, Brasil. pelas sempre 
leoas rlisciisões. 
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O Método de Integração a Dimensão Negativa (NDIM). [1], foi originalmente concebido através da seguinte  

integral:  

I ddk(k2)» = (— r)
d/ "nl^,,+d/z o  n E Z 	 (1)  

O ponto fundamental aqui é que agora valores negativos da dinieitsão d são admitidos, o que torna a integral  

acima não trivial,  corn  d/2 inteiro. Este resultado é compatível coin o limite da integral (d > 0):  

J dd k(k`)" = lim f dd k 	(k^)n 	= lini (a tif ? ) n+d/^ 	1'( ►r + d/2)I  {rri — n —  d/2)) 	(2)  
:.-.o J! 	(k 2  + b!'=)m 	rn—o 	 F'(d/2)I'( ►n)  

o que significa que, se n > O necessariamente d < 0.  

Unta outra maneira possível de se obter este resultado é através de projeção Ide potências da integral Gaussiana  

em d dimensões, [2]:  

f ddke -Ara  = J7r\ +^/
2 

 

I 	¡l¡1 1  

Considerando-se fana continuação analítica para d < 0, podemos expandir o lado esquerdo da equação - (3).  

cc 	
¡ 

	CLid/2 
 

e concluir que a igualdade só se dá se a integral em (4) tomar o valor de (1). Em outras palavras, só uni termo  

da série contribui para o resultado conhecido, dando ã integral Gaussiana um caráter feriniónieo, caracteristico do  

método.  

A integral (1) define portantõ o método, permitindo o cálculo de integrais d-dimensionais, comumente utilizadas  

para resolver integrais de Feynman dimensional mente regularizadas, . Os cálculos envolvidos baseiam-se fundamen-

talmente na expansão binomial em série de potências e as manipulações são puramente algébricas; frequentemente  

ternos  que fazer somas de funções hipergeométricas generalizadas. E neste ponto que aplicamos a integral definidora  

(1) para demonstrar, de forma original, teoremas bastante conhecidos. Apresentamos aqui os nossos resultados.  

Considere a série hipergeométrica truncada, cuja soma é dada pelo Teorema de Vandermonde (1770). (caso  

particular da Soma de Gauss, [3])  

^Ft (a, b ;c; I)= 
E  (a)n(b)n  = (e —  a) - b 

	 (5)  
(c)nn!  

^^ ^n  
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onde c — a — b > 0, c > 0, 6 < 0 e (6)n  = (--1)n/((1 — b)_,, é uma propriedade do símbolo Pochhammer.  

lntroduzimos urna variável vinculada: k = —b — n de forma que  

EE  6k +n+6,0  
n 	n. k 

Usamos então o parâmetro negativo b como a dimensão negativa da integral definidora do método, (1)  

15n +k+b,0 = (—T)b(n + k)1. 
J d2bk(k2)n+k  

A partir dai usamos somente as séries binomiais,  

(I — era = E (
a)n 

(q')n — r 
r(
r(

a(
a 

 +1
)n , 

n) {q 2 ) n 
l 	 n1 	 L. 

n 	 n  

^Q 
	r(°' + 	1) 
	2n 

(1- 4') = ^ r(a + I — 
n)n! (4 )  

obtendo finalmente o resultado acima.  

O Teorema de Saalschutz refere-se à soma da função hipergeométrica F2(a, 6, c; d, e; 1), quando vale a relação :  

a + b + c + 1 = d + e entre os seus coeficientes e um dos parâmetros do numerador é inteiro negativo. [4)  

eci 
 3F2 (a, b, c; d, e; 1)=

é(a)„(b)„(c),, _ r'(d)r(1+a — c)r(1+ b.— e)r(1+c— e) 	
(10) 

n _a  (d)n (e)„n! 	l'(1 — c)r(d — a)r(d — b)r(d — c)  

No nosso caso, consideramás os parâmetros b. c e e negativos, de forma que introduzimos duas variáveis vinculadas,  

—c — n = I e —6 — n = k,  

E E 61+n +c,0 6 k+n+c,0  
a 	,l.k  

Usamos a integral definidora do método (1) duas vezes, onde (—b) e (—c) fazem o papel da dimensão negativa.  

Através das séries binomiais obtemos o resultado desejado, (10).  
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[1] I. G. Halliday and R. M. Ricotta, Phys. Lett. B193 (1987) 241  
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In this letter, we present the action for the massive super-QED2 +2 . A pair of chiral and a 
pair of anti-chiral superfields with opposite U(1)-charges are required. We also carry out 
a dimensional reduction à la Scherk from (2+2) to (1+2) dimensions, and we show that, 
after suitable truncations are performed, the supersymmetric extension of the r3QEDi + 2 
naturally comes out. 

The idea of considering space-times with several time directions and indefinite signature has deserved a great 

deal of attention since a self-dual Yang-Mills theory in (2+2) dimensions [1] has been related to the Atiyah-Ward 

conjecture [2]: this theory might be the source for various integrable models in lower dimensions, after appropriate 

dimensional reductions are carried out. 

More recently, Gates, Ketov and Nishino [3] have pointed out the existence of Majorana-Weyl spinors in the 

Atiyah-Ward space-time, and N=1 self-dual supersymmetric Yang-Mills theories and self-dual supergravity models 

have been formulated for the first time in this particular space [4]. 

Since over the past years 3-dimensional field theories [5] have been shown to play a central ròle in connection 

with the behaviour of 4-dimensional theories at finite temperature [6], as well as in the description of a number of 

problems in Condensed Matter Physics [7, 8, 9], it seems reasonable to concentrate efforts in trying to understand 

some peculiar features of gauge-field dynamics in 3 dimensions. Also, the recent result on the Landau gauge finiteness 

of Chern-Simons theories is a remarkable property that makes 3-dimensional gauge theories so attractive [10]. Very 

recently, this line of investigation has been well-motivated in view of the possibilities of providing a gauge-theoretical 

foundation for the description of Condensed Matter phenomena, such as high-Tv  superconductivity [8], where the 

QED3  and r3QED3  [8, 9) are some of the theoretical approaches that been forwarded as an attempt to understand 

more deeply about high-7 e  materials. 

Our purpose in the present letter is to show the relationship between massive Abelian N-1 super-QED 2+2 

 [l1) and N= l super - r3QED, after a dimensional reduction à la Scherk is carried out and suitable supersymmetry-

preserving truncations are made in order to suppress non-physical propagating modes in three dimensions. 

The supersymmetric extension of the massive QED in D- 1+3 requires two chiral superfields carrying opposite 

U(1)-charges [12]. On the other hand, to introduce mass in the matter sector in D=2+2, without breaking gauge-

symmetry, we have to introduce four scalar superfields: a pair of chiral and a pair of anti-chiral superfields; the 

supermultiplets of each pair exhibit opposite U(1)-charges. 

To appear in Ph pa. Lett. B. CHPF preprint, CBPF-NF-066/94 (1994). 
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The massive Abelian N=1 super-QED2 + 2 is described by the action : t  

Sr, = - ( J  ds WC W + f ds W`W1 + J  dv (gI+e4"V  + + *Le -  49V  _)  + 

+i rn (1dstU + tY_- J  ds + ,l"_)+ h.c.  (1)  

where q is a dimensionless coupling constant and nr is a parameter with dimension of mass. The + and - subscripts  
in the matter superfields refer to their respective U(1)-charges. To build up the interaction terms, we have used a  
mixing between, the chiral and anti-chiral superfields (in order to justify such a procedure, we refer to the works of  
Gates, Ketov and Nishino [4]). This mixed interaction term establishes that the vector superfield be cornple i.  

In the action (1), the chiral (tYL) and the anti-chiral (,l' ) superfields arc defined as follows:  

111 ±(x,0, 0) = 
ciéns 1.4±(x)+ iOtb±(x) + i0 2 E± (x)] , 	D0W+f = 0 , 	 ( 2 )  

t'* (x 00
) = ci9a8 [13± (x) + i4 ± ( .r) + 	x), , Da  if = O ; 	 (3)  

where  

5aa _ shlitQ" Fjaa" and as'  da  = (ia$ . -Qy, or:, 1 2 )a 
 

aaá = caacr" l36aJ, and a °'J Ì0  = (-ia,.ay ,-Q:, 1 2) 5 ^i 

A , and B* are complex scalars, .f  and  Xt  are Weyl spinors. and P±  and G± are complex auxiliary scalars.  

In the Wess-Zumino gauge [12L a complex vector superfield, V, is written as  

í -_ 
V(z, 0,0) = Zi0crgii,(x) — 2 0= 0.1(x) - 

9.,20p(x)  -  4 0282 D(x)  

where D is a complex auxiliary scalar, JI and p` are %Veyl spinors and Bp, is a complex vector field.  

The field-strength superfields, Wa  and 76, defined by  
1  

Wa  = 2 D - D° V and 14/6 = -D2 noV  

respectively, satisfy the chiral and anti-chiral conditions, D- ,i4Va=O and DBWa=O .  

By considering the superfields defined above, the following component-field action stems from the superspace  

.action of eq.(1) : 	
¡ 	¡ 	l 

Sr,=  dx j - i( a`ap+P`aa j-RG;, Y GF`" - 4D - D+  

..- F.;G+ - A+0B+  - 2itr,+rat +  -  qBv Gie+cr"  + -4 +a"B+ - B+a"A+  1 +  

+ig(Ira +P+B+tG+a) -(ql)+ g 2 Hp HP) A+B+ + 

- F' G_ - /11.08 	 q l3" ( it/i` cr"t _ + .41a,  13_ — B_ a" A; f +  

- iq (AIR _p + B._ tyc t) + (qD - (1 2 13 B") A' B_ +  

+ t ►: j 2it;^ + t;v_ -Zit + t_ - r1 + F_ - .4_ F+  + 13+ G_ + B_G + ) } +h.c. 	 (8)  

I In this letter, we are adopting n„=(+ .  — ,  — . +) for the A-W space-time metric. ds=d'xd2 9, dá_d'rdgand du=d4 reOd2 O. where 

 O and a are Majorann-Weyl spinors. Notice that we are using the following convention for charge conjugation of all Weyl spinors: 

yCEia s y' and ã`Eia=i'. Our conventions for the supersyrnrnetry covariant derivatives are: D„=,3° —i2°QO° and Do =Ba —ii o o O°.  

The.spinor indices are raised and lowered with the help of the following antisyrnmetric tensors: e n 0=—a° 8 -iay  and ea @=—c" 3 =—io y .  

We use the abbreviations Oo"Os0°oá 60°, O0=0° Uo and OYSO° RC. For more details about notation and conventions in D=2+2, see  
ief.111).  

(6)  

(7)  
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where 	is is the usual field-strength associated to B,,.  

Due to the fact that in massive super-QED2 +2 one must have two opposite U(1)-charges to introduce mass at  

tree-level, and a complex vector superfield in order to build up the gauge invariant interactions, we can read directly  

from the action (1), the following set of local U(1) a xU(1)-1  trasformations :  

bg A** = ±igA(x)A't , bog = ±igJ3(x)4 and bg F't = fi4Q(x)F`* ; 	 ( 9 )  

45g  /31= +igl3(x)B± , 6gi± = +igp(x)k± and ó9 Gí = igp(x)G* , 	 ( 10)  

where (i_a-i7 is an arbitrary infinitesimal complex function. Notice that the complexified gauge transformations  

(10) read as above because one has previously fixed to work in the Wess-Zumino gauge. As for the gauge superfield  

components surviving the Wess-Zumino gauge, we have  

óg a=Dgp = O , 459 D= O and bgB,, = i a„p • 	 (11)  

Therefore, in the Wess-Zumino gauge, the real part of B,, gauges the U(1).-symmetry with real gauge function./ ,  

whereas its imaginary part gauges the U(1).-symmetry with real gauge function a. The latter is an ordinary phase  

symmetry, and we associate it with the electric charge. Indeed, as we will see later on, the imaginary component  

of B„ will be taken as the photon field. The parameter 7 generates a local Weyl.-like invariance [13]. However,  

the vector field that gauges such a symmetry, namely the real part of B,,, will be suppressed in the process of  

dimensional reduction, so that such an invariance will not leave track in D=1+2. It should be emphasized that  

the mass bilinears in the action given by eq.(8) preserve the local U(1).xU(1) 7-symmetry, since their component  

matter fields (fermion and scalar) carry opposite charges.  

It is well-known that outstanding supersymmetric models with extended supersymmetry are closely related to  

simple supersymmetries in higher dimensions [14, 15]. As we are interested in simple supersymmetric models in  

.D=1+2, since those should be more relevant for applications in Condensed Matter Physics [7, 8, 9], we concentrate  

our efforts to investigate which sort of model comes out after a suitable compactification from Atiyah-Ward space-

time to 3 .space-time dimensions is accomplished. Therefore, it will be interesting to carry out a dimensional  

reduction (ã Ia Scherk [14)) of the massive N=1 super-QED2+2 . Bearing in mind that this procedure should extend  

the supersymmetry [14, 15] to N >1, truncations will be needed in order to remain with a simple supersymmetry  

and to suppress unphysical modes, i.e. spurious degrees of freedom coming from D=2+2 dimensions.  

Performing the dimensional reduction 2  of the action (8) to D=1+2 [11], the following result comes out :  

sD= 
iou

3  =  J mi1)-- $  (Gmn
Gmn + 28m4'Ó`n^1 — 4 D'D+  

- F+C+  - A+ 0B+ - ^ i^l^ + 7m amX+ - gBm  ( + 7m+   + A}amB - B+ á"' A+ I +  

+ 2 qbxl,+ Y + + 4l A+Y+F - B+ .7+aJ - (qD + q 2  B. Bin + q2  02 )A+B+ +  

- F'G_ - Alp B_ - 2i tfi_7m8,r¡x_ + gBm ( _7°'x  +.4' 8m  B_ - B_ 8^'A' ) +  

I  
- 24^>G _ X- - 4 A_ k`- P -  B-^_A + (QD - g 2 Elm  Bm  - g2 02) A. B- +  

f 1--el^ 	
A 	B G B G + 	 1^ 

h  -m 2 ty + t/,- + 2
Y+ Y _ .4+F_ + _F+ - +_ - _ + J + .c.  (12)  

2 One uses the trivial dimensional reduction where the time-derivative, 83, of all component fields vanishes. 83 7=0. Also. it was  
assumed that B„ is reduced in the following manner: BP=(Bm, 0), where vi is a complex scalar field and the 3-dimensional metric  

becomes mmn=(+. —. —). Note that. A. p, ' and x are now Dirac spinora in D=1+2.  
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where, after dimensional reduction, the coupling constant q acquires dimension of (mass)t.  

Analysing the 3-dimensional action given by eq.(12), it can be easily shown that the spectrum will unavoidably  

he spoiled by the presence of ghost fields, since the free sector of the action is totally off -diagonal. Therefore,  

truncations are needed in order to remove the spurious degrees of freedom, as well as to give rise to a simple  

supersymmetric action in D=1+2. First of all, to make the truncations possible, we need to diagonalize the whole  

free sector, in order that the ghost fields be identified.  

The diagonalization is achieved by looking for suitable linear combinations of the fields which yield a diagonal  

form for the free action (12). After extremely tedious algebraic manipulations, we find the following transformations  

which diagonalize the action S.Dv 3 :  

1. gauge sector :  

A  =
Nfi 

 (p + ^1) 

2. fermionic and bosonic matter sector :  

and p = 	 (p - JI ) (13)  

tr'i= — (t3i 	4+l't and Xi- — (tift-vf+  ?PT 
 ^ 

(14)  

Af = f (A t  - ;§±) 
 

and B+ _ 	(ri± + 13t)  (I5)  

F*  = ^ (Ff + e,"±)  and Gt= —1  (ct -Ft)  (16)  

On the other hand, to simplify the Yukawa interaction terms (gaugino-matter couplings), we find that the following  

field redefinitions for the bosonic matter sector are convenient :  

Af = 	(Ai + fl;) and Ti = 	(Ft + F ) 	 (17)  

By replacing these field redefinitions into the action (12), one ends up with a diagonalized action, where the  

fields, ¢, p, Y+,  _, B+  and B_ appear like ghosts in the framework of an N=2-supersymmetric model. Therefore,  

in order to suppress these unphysical modes, truncations must be performed. Bearing in mind that we are looking  

for an N=1 supersymmetric 3-dimensional model (in the Wess-Zumino gauge), truncations have to be imposed on  

the ghost fields, ¢, p, Y+,  X_,  Q+ and B_. To keep N=1 supersymmctry in the Wess-Zumino gauge, we must  

simultaneously truncate the component fields, G+ , G_, D, a,,, and r 3  . The truncation of r is dictated by the  

suppression of a m . Now, the choice of truncating a m , instead of Am , is based on the analysis of the couplings to  

the matter sector: Am  couples to both scalar and fermionic matter and we interpret it as the photon field in 3  

dimensions.  

After performing these truncations, and omitting the (-) and ( ) symbols, we find the following action in  

D=1+2 :  

S137 - J d3  S h ii-rm ôm A -  Fmn Fm'1 +  

-

Tom  am0++  _7"'arrOP_+ F. F+ +F:F_+  
qAm  1

\

1fi + 7mt,b+  - 4^ _ ym  _ + tA .Om A +  - i21101",4_ - iA + 8"'.4 f + iA_ô'nA .) + 

. 	3 The a m  field is the real partof Brr„ since we are assuming Bm =am+iAm. Also, as a is a Dirac spinor, it can be written in terms 

of two Majorana spinors in the following manner: \=r+iX.  
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—i4(A + V+ a —  A_iy_JI — A+ã'G+ + A:^tj^_ ^  + g2 Arn Am (A+A +  + A: A_) +  

—m(T+ 1,b + — ^ _ - +A+ F+ —A: F_+A + FF—A_F_) } 	, 	 (18) 

where it can be easily concluded that this is a supersymmetric extension of 

a 

 parity-preserving action, namely,  

r3QED [9]. However, to render our claim more explicit, we are going next to rewrite (18) in terms of the superfields  

of N=1 supersymmetry in 3 dimensions.  

In order to formulate the N=1 super-r3 QED action (18) in terms of superfields, we refer to the work by Salam  

and Strathdee [16], where the superspace and superfields in D=1+3 were formulated for the first time. Extending  

their ideas to our case in D=1+2, the elements of superspace are labeled by (xm, 8), where xm are the space-time  

coordinates and the fermionic coordinates, 8, are Majorana spinors, 0c=0. 4  
Now, we are ready to introduce the formulation of N=1 super-r3 QED in terms of superfields. We define the  

complex scalar superfields with opposite U(1)-charges, fi t , as  

	

= Af+Õ' —,88Hí and $t= 4+>Gf8-BOFt , 	 (19)  

where A +  and A_ are complex scalars, v+  and tai_ are Dirac spinors and F+  and F_ are complex auxiliary scalars.  

Their gauge-covariant derivatives read :  

=(Do 	)$f and Da tDf=(Da f igT a ) (DI  ,  (20)  

where Da -óa —i{7m 0). Om  and Da =aa —i(87m Lam  . The gauge superconnection, [ a, is written in the Wess-Zumino  

gauge as  

1'a = t(7m  O)a Am + 88aa  and ra  = —1(á)7m )„ Am +B—X. , 	 (21)  

with field-strength superfield, W e , given by  

Wa  = 2 
 D

bDa I ã . 	 (22)  

By using the previous definitions of the superfields, (19), (21) and (22), and the gauge-covariant derivatives,  

(20), we found how to build 

Jdí

up  t

r

he N=1 super-r3QED action, given by eq.(18), in superspace; i

1
t reads

SQED=— 	 { 2 Ww+(óá+)(o$+)+ (C 4  )(V(1, _)—rn(4)+ 4>+ —.1s_)} , 	(23)  

where the superspace measure we are adopted is díitaeid 2 0 and the Berezin integral is taken as f d28=—  á  aa.  

Our final conclusion is that the massive Abelian N=1 super-QED2 + 2 proposed in ref.[II] shows interesting  

features when an appropriate dimensional reduction is performed. The dimensional reduction à la Scherk we have  

applied to our problem becomes very attractive, since, after doing some truncations to avoid non-physical modes,  

the N=1 super-r3 QED is obtained as a final result. In fact, the Atiyah-Ward space-time shows to be very fascinating  

as a starting point to formulate models to be studied in lower dimensions.  
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W-algebras (1] are an extension of the Virasoro algebra. They describe the commutation relations between the 

components of the stress-energy tensor (T++ , T__) and currents (W++++. W____...) of higher spin (see ref. [2] 

for a general introduction). 

Among the various W-algebras considered in the recent literature, the so called W3 -algebra plays a rather 

special role, due to the fact that it has a simple field theory realization. The corresponding field model, known as 

W3 -gravity, yields a generalization of the usual bosonic string action. In its chiral version, the starting field content 

of the model is given by a set of free scalar fields e) 1 (i = 1, ..., D) which are used to study the current algebra of the 

spin-two and spin-three operators T++  and W+++ 

	

T++ = 2 40'04' , 	ll'+++_ -di íka+P`c9+Ó)a+4F . 	 ( I) 

The operators in (1) can be included in the initial free scalar action by coupling them to external fields h__. B_ _ _ . 

It is a remarkable fact then that the resulting action exhibits a set of local invariances which can be gauge fixed 

using the Batalin-Vilkovisky procedure. The gauged fixed action with the external fields (Y', r+ , P++) coupled to 

the nonlinear BRS transformations of the fields (0 1 , c_, 7•_ _) then reads 

r = Jde  ( 2 8+ â+ó' — __- 
 
¡ \ 
	 (2) 

+ f d2xs (b++h--+I3+++B-__)+ Jd2z  (Y's4'+ r+ sc_ + P++ 87--) , 

where (c_,'y__) and (b++ Q+++) are respectively a pair of ghost and antighost fields and s denotes the BRS 

operator (see (7) for the details). 

The model is thus constrained by the Slavnov-Taylor identity S(s) = O  , with 

	

r óE 61',óE 6E 	6E 6E 	5E 61-1 	óL 

	

S(E) = d ez 
(

óY' ó b' + ôr +  óc_ 	by++ by-- 	ób++ óh--  óÍQ+++  6B___ 	 (3) 

This identity is the starting point for studying the properties of the Green's functions of the model with insertion 

of the composite operators (T++ ,  W+++), i.e. it yields an algebraic characterization of the (T - W)-current algebra. 

As it is well known, the existence of anomalies in the quantum extension of the Slavnov-Taylor identity turns out 

to be related to the presence of central charges in the corresponding current algebra. 

At the quantum level the classical action (2) gives rise to an effective action 1' _ E + 0(h), which obeys the 

broken Slavnov-Taylor identity 

sm. hA•1', 	 • (4) 

where the insertion A I' represents by the radiative corrections. According to the Quantum Action Principle the 

lowest order nonvanishing contribution to the breaking A • r = A + 0(hA), is an integrated local functional of the 

fields and their derivatives with dimension three and ghost number one which obeys the consistency condition 

BEA = 0 , 	 (5) 
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where BE is the nilpotent linearized Slavnov-Taylor operator.  

Setting A = f Al, condition (5) yields the nonintegrated equation ',  

BEA.'-,+ dA¡ =0, 	 (6)  

where d denotes the exterior space-time derivative. A solution A2 of eq. (6) is said nontrivial if  

BE 
	

(7)  

with .Â and Al local functionals of the fields. In this case the integral of Al, on space-time, JAI, identifies a  

cohomology class of the operator B.• in the sector of the integrated local functionals with ghost number one.  

Equation (6), due to the anti-commutation property between Br, and d, and to the algebraic Poincaré Lemma,  

generates a tower of descent equations  
BEA1+dA¡=0,  

BEA?+dÀó=0, 	 (8)  

L Aó =0 .  

In order to solve the ladder (8) we follow the algebraic setup proposed by one of the authors [4] and successfully  

applied to the study of the Yang-Mills [5] and of the gravitational anomalies [6]. The method is based on the  

introduction of an operator 5 which decomposes the extea B;- commutator, i.e.  

Defining the two operators 6+ ,5_ as  

d =— [L::-,h] .  

a 
3+ 	ilc_ '  

b_ =  
 ^¡ 

 - - 	
a 	

- - 	
a 
	OP 

_ 	a  
p-aç=o  

—c7P a+P++ aaP av 	aP- °T Y' 	 ,   

we see that the operator 6 = dx +6+ + 	6_ obeys thus (9) and [5,d] = O  .  

Suppose now that the solution Aó of the last equation of the tower (8) has been found, it is apparent them to  

check that the higher cocycles A, A¡ can be identified with the 6-transform of Aó [4]:  

A¡ = áAo = dx + S+Ao + 	, 	 (1'2) 
 

.A = 181Aó = —dx+dx-5+á_Ag . 	 (13)  

Let us emphasize that solving the last equation of (8) is a problem of local cohomology instead of a modulo d  

one. One sees thus that, due to the operator 6, the characterization of the cohomology of BE modulo d is essentially  

reduced to a problem of local cohomology. It is also worth to recall that the latter can be systematically studied  

by using several methods as, for instance, the spectral sequenctechnique.  

Following (7], the final result for the cohomology of BE modulo-d is given by two anomaly cocycles:  

Au = J u2 
¡ 

= Jdz I 2c_^ h__ — 4a+ h 	- c7+Y— 	+ 4afc_ B_ 	_6++ 
 

— 40+c_ 7__a+ 13___6++  — 4a+c_ y_ _a+ 7_ -r+ ) .  

1  We adopt hire the usual convention of denoting with Ay a q-form with ghost number p.  
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=
J T1  ^j 2  

= Jd 2z 
 ( 2 (B __ o+7__ - a+ B- __ --) ckia+¢'  

+ 2.(3.2+ 13___a+7__  - a+ B-_ O+7
.
__)T++  

+ (643. B---7-- — B___01.7„ )T++  

- 7--a+7--a+yia+ói - 7--a+i-- }" of  

+ 27,
--a+7--a+Yia+ó' + 1a+7--v+7--}"a+fr'

J  
Let us remember that, in general [4], eqs. (14), (15) give only a particular solution of the descent equations (8).  

However. in the present case, they yield the most general solution. This is due to the fact that the cohomology of  

BE turns out to be vanishing in the sectors of the one forms wtwo forms with ghost number one [7].  

Equations (14), (15) give the expressions of the anomalies which arise in chiral W3 —gravity. They agree with the  

explicit Feynrnan graphs computation done in ref. [3]. In particular, the term An of (14), also called the universal  

gravitational anomaly, is easily seen to be a generalization of the usual diffeomorphism anomaly of the bosonic  

string, while the second term AT in eq.(15) is a matter-dependent anomaly whose origin can be traced back to the  

nonlinearity of the W3 —algebra [3].  

As a final observation, we show that the classical action (2) turns out to be cohornologically trivial, i.e. it is a  

pure B.r —variat ion . It is easily checked indeed that  

_ BE
J 

 d"x (iYi.l — r+  c _ — 2--
1

p ++ 1__ — 	+++ 8---) • 	 (16)  

This property allows to interpret in a suggestive way the 'V —gravity as a topological model of the Witten's type.  
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We consider a model that describe a non-relativistic particle immersed in a degenerate 
gravitational background, where we apply the Hamiltonian for- nudism and we obtain the 
constraints. According to the form of background components, we may have a system with 
first. or second class constraints. We also study string theory in a similar background, where 
the Hamiltonian analysis is non-trivial because of the new structure of constraints generated  

in this case.  

The formulation of general relativity in terms of tetrads and Lorentz connection, is such that the action and 

equations of motion remain well defined even when the tetrad (or the metric recovered from that) is degenerate.  

An analogous situation occurs when we consider a non-relativistic particle or a bosonic string immersed in a  

degenerate gravitational background.  

For the particle, the action is  

S = f ^ rng;1 .1' í ^^dt 	 ( 1 )  

where gi1 is an spatial metric defined in a D-dirnensional space.  

Writing g;1 = g;gj, this becomes degenerate. This form of metric was chosen in analogy with the form in the  

string case, which in this case the background was found in the search for non-perturbative solutions [1].  

For the particle we have D — 1 constraints:  

(I)°=9t Pe - 9°Pt =O 	o= 2,..., D 	 (2)  

We find that 

( 4) (1, 0p ) = Pt(gud{p!ll] + 90{190] + gialo93] ), 	 ( 3 )  

and,  

4'0 = 
R̂ ^i 

°{Q9!) + a(Oa ,  00) = O.  ( 4 )  

From this, according to the value of r;gll, we have the following cases.  

1) c7(s m = O. In this case 100 , 41s) = O  and On  are first class constraints, so that the system has only one degree  

of freedom.  

II) [31íg}) 0 O. For odd dimensions D > 3, we can find a°. implying in (D — I) second class constraints. In this  

case the theory has i i)-7,11  degrees of freedom. For D = 2, 141)„,(1)p) = 0, implying P1 = P_ = O. so die theory  

doesn't has degrees of freedom. For even dimensions D > 4, the matrix associated to {(1)„,(1.0) cannot be invertible.  
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so a° are not determined completely. In this case there is a linear combination of (D a  that is a first class constraint. 

This case deserves additional care since the structure of constraints is non-trivial and will be treated elsewhere. 

Let us consider now the action of an string in a gravitational background defined in a D-dimensional space-time, 

given by 

b = 4rn' 
dadrf-71ha b Gp„(.t')8 a X° 	 (5) 

where ha, is the world-sheet metric. When G F,,, is non-degenerate, there are only first class constraints. However. 

when G R,,, is degenerate, we have additional primary constraints and according to the form of the metric components, 

we will have two class of constraints and their related algebra with a non-trivial structure too. The complete study 

of that will be presented in the near future in order to study the quantum aspects of the model. 
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In a CAUSALITY PRESERVING MANIFOLD FORMALISM, (CPMF). which is based on a model of spacetime 

with geometric and strict implementation of causality, masses are consequences of the spacetime symmetries. The 

mass spectrum of a set of non abelian fields is so lely determined from its Lagrangian kinematics term. in a way 

independent of any kind of interactions and without any extra field (no Iliggs, no Yukawa coupling, etc). The origin 

and meaning of mass in this formalism is discussed and then illustrated with the vector boson sector of the standard 

SU(2) ® U( I ) electroweak theory. 
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Estudamos a questão da integrabilidade das equações de Maxwell-Dirac(We}•1) quirais em (3+1) dimensões num 

formalismo com preservação local de causalidade. Característica destes formalismos é que mesmo em (3+1)1) a 

dinãmicase passa em (1+1)D porque as coordenadas espaciais ortogonais à direção em que se dá a interação (troca 

de um quantum) não participam. A dinâmica é confortnernent.e invariante e as equações se tornam exatamente 

integráveis. 
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Causalidade e Grupos de Isometria 
em Teoria de Campo 

Manoelito Martins de Souza e Gikrnar de Souza Dias 

Departamento de Fisica, Universidade Fedcral do Espirito Santo 

Received October, 1394 

O grupo de invariância das teorias fisicas (gravitação excluida), das leis da dinâmica das partículas e. também. 

o grupo de isometrias da estrutura geométrica da variedade espacioternporal onde estas leis e teorias são definidas. 

é o grupo de Poincaré. Não é por coincidência que se trata de  um  mesmo grupo; é urna consequência de relações 

de causalidade que restringem as regiões acessíveis à evolução e propagação de objetos físicos (campos. partículas, 

etc) à partir de um ponto da variedade espacioternporal ao cone de luz deste ponto e ao seu interior. A invariância 

de Poincaré implica em uma implementação parcial ou global do principio de causalidade através da estrutura de 

cones de luz, definida em cada ponto da variedade. Esta implementação parcial da causalidade não é suficiente 

nem satisfatória, pois pode-se mostrar que ela é fonte de grandes dificuldades no formalismo usual  corn  covariancia 

de Poincaré. Estas dificuldades podem ser superadas corn uma implementação geométrica local da causalidade. 

Isto corresponde a substituir a descrição do espaçoternpo de :Minkowski por uma estrutura geométrica definida por 

congruências de curvas bicaracteristicas, ou seja urna variedade corn preservação local de causalidade. Discute-se 

neste trabalho o grupo máximo de simetrias destas novas estruturas de cspaçotempo, sua isometrias, geradores, 

algebra,  bem  como suas consequências e interpretações físicas. 
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Causalidade e Estruturas de Espaço-Tempo 
em Eletrodinâmica Clássica 

Matloclito Martins de Souza e .lair Valadares Costa 
Departamento de Física, Uniuersidade Federal do Espirito Santo 

Received October, 1994 

A propagação de sinais ou de campos de massa nula cm teorias físicas relativisticas é associada às superfícies 

características de suas respectivas equações de ondas. Estas teorias podem ser re-escritas numa estrutura  geométrica 

de espaç o-tempo definida por foliações dessas superfícies e que constituem um implementação geométrica e global 

da causalidade. Formalismos que adotam a variedade de Minko vski como modelo de estrutura geométrica do 

espaçotempo são exemplos desta implementação global da causalidade, e são acossados, como se sabe, por vários 

problemas e patologias, tais como a presença de singularidades e divergéncias. Mostra-se, por outro lado, que a 

propagação de campos s et  se dá ao longo de suas bicaracteristicas, que são as geratrizes de suas superfícies carac-

terist.icas, são suas curvas elementares constituintes. Isto constitue a base para uma implementação geométrica. 

local. do principio da causalidade. A adoção de bicaracterísticas como elementos definidores da estrutura geométrica 

do espaçotempo leva à construção de formalismos mais fundamentais que os usuais, porque estes podem ser recuper-

ados a partir daqueles como formalismos efetivos definidos sobre valores médios; e mais simples e eficazes, porque 

não possuem muitos de seus problemas e patologias. 

Busca-se, neste trabalho, uma formulação da Eletrodinãmica Clássica no contexto de um modelo de estrutura 

de espaçotempo com implementação geométrica e loca! da causalidade. A formulação usual é reobtida com uma 

integração sobre as hicaracteriisticas deste novo formalismo. Discute-se, em particular, o campo, suas simetrias e 

leis de conservação no ponto limite em que este se confunde corn suas fontes; situação ern que o suporte experimental 

da Eletrodinâmica não é tão sólido, e onde grandes problemas ainda persistem. 
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Boundary Conditions of Bosonic Lagrange  

Multipliers at Finite Temperature  

M. T. Thomaz 
Instituto dc Física, Universidade Federal Fluminense Au. Litordnea s/n°,  

Campus da Praia Vermelha, Nitcrríi, R.J., 24310-340 	BRAZIL  

anel  

Y. Ipekoglu 
rtfiddle East. Technical University, Ankara, TURKEY  

We show that. Lagrange multipliers (non-physical bosonic fields) are not constrained to 
satisfy boundary conditions in the path integral at. finite temperature. 

It is a common knowledge that. to get. the partition function of a system at thermal equilibrium we have to  

integrate over all configurations that are periodic(bosons) or anti-periodic (fermions) in the temperature parameter.  

The aim of this communication is to explicitly show a comment made by Toimela[t] that the boundary condition 
•satisfied by a non-physical field is a matter of "gauge" choice. 

To exemplify the general result that non-physical field does not have to satisfy any boundary condition in the 
path integral we consider a quantum mechanical model that is invariant tinder global translation. The ansat_ of 
Bernard[2] and Gross et al.[3] for a physical partition function is used to discuss the boundary conditions of fields 
associated to Lagrange multipliers which implement the symmetries. 

Let us consider a one dimensional quantum model of two particles invariant under global transiation[4]: 

^ 
H = Pi + 

p^ 
+11((11 — (12),  2rni 	2rn 2  

where q;, p; and mi are the position operator, momentum operator and mass of particle i, i = 
 V depends on the relative position of the two particles. • 

We denote the position and momentum operators associated with the center of mass (C.M  

X and P respectively.  

In the center of macs frame the total momentum is zero. llowever this equality can not.  

operator P = p t  + pz. This requirement can be enforced by demanding that the operator P  
states is zcro[4], that is, P I tli phy,) = O. .  

In the model under consideration, we may construct a "gauge' invariant quantum mechanical model where the  

"Gauss law" gives the constraint on the total canonical momentum.  

The classical analogue of hatiiiltonian (1) can he obtained from the Lagrangian  

L ^ 2rni(4i + eA) z  + 2rn•s(4z + cA)`' - VO L  - (72 )  (2)  

( I) 

1.2. The potential  

.) of the system by  

he imposed to the  
acting on physical 
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that is invariant under the simultaneous transformations q;(1) = q; (1) —  n(f ) and .4'(1) = A(t) + -à(/). where a(t)  

is an arbitrary tithe-dependent function. In particular o(t) can he chosen such that A'(t) = 0 1 . Therefore. A(t) is  

a Lagrange multiplier. The hamiltonian associated with eq. (2) is  

, 
., 	•, 

II= 
! i + ' —e:1(f)(pt+ p2)+ 1.;(gi—g2)•  

2rri i 	'^rn•, 

The equation for the Lagrange multiplier gives a "Gauss law" for A(t): p i  + p2  = O.  

The ansa!: of Bernard and Gross et. al. for a physical partition function is given by[2, 3]  

¿ _ E 1pphya e.-'+H I  Wr h y a) =  

I''.)  

where :j = 	, k is the Boltzmann constant. and 'f is the absolute temperature. The projecor operator 1)  is:  

= f7„,  dry eiwP  

The calculation of (4) can he simplified if we use the coordinates and momenta operators of the center of mass  

and the relative motion.  

The partition function (4) can be written in terms of the particles positions q;  as 

CO  

f 	
¡ 

	j P:)(Z = 	dg t (0)dq_,(0) J 	Dq ) (r)Pg2(r) 	 r) e..ro^ 
9 )( 0 )=91(0) N 	
970)=970i 

 

(5)  

where. L ej i = —4 	(' 	— (IA( r)) 2  + ";'( 	— e.-1(r)? + 1•'(q )  -- q•,)), and it. is the Lagrangian (2) written in the  

Euclidean space. The "gauge" field :1(r) does not have to satisfy any boundary condition.  

Since L eff  is invariant under the simultaneous i.ranforniationà Or) = q;(r) + aft), i = 1.2 and A"(r) _  

:1(r) + Pri(r), we can choose the function 0(r) such that. .4"(r = 0) = .4°(r = ,d). The function n(r) that allows  

.4°(r) to satisfy periodic boundary condition is:  

ri(r) = c[.,101)—  .-1(0)] I!( r), 	 (6)  

where g(r) satisfies the conditions: g(0) = !!([3) and g(0) = —1 +!i(0).  

References  

[1] T. Toimela, ]nt. .iur. of'I'henr. Phys. 24, 901-949 (1985).  

[2] C.W. Bernard. Phys.Rev. Do,  3312 -3320 (1}74).  

[3] L) ..1, Gross,  R.D. Pisarski and L.G. Yaffe:. Rev. Mod.  I'liys 53. 43 -80 (1981).  

[•t] Ii. Jackiw: Current Algebra and Anomalies,  ed.  by  S.Ii. 'Freiman et al. . Princeton University Press ( 1985), pp. 243 -247.  

1 This choice is called the Weyl gauge' A(t)=O  

(3)  

(4)  



XV  Encontro Nacional de Partículas c Campos 	 295  

Estados Ligados na Eletrodinâmica Escalar  
em (2+1)D com Termo de Chern-Simons  

M. O. C. Comes. L. C. Malacarne  
Instituto dr. Física.  Universidade de Seio Paulo  

Este Trabalho consiste no estudo da existência de estados ligados para a Eletrodinãmica Escalar. em três  
dimensões. com  o termo de  Chern-Simotts t  

O método consiste no cálculo, via teoria quântica de campos. das matrizes de espalltantento M ji na aproximação  
não relativística, ou seja. foram calculados os propagadores dos campos responsáveis pela interação nos processos de  
espalhamento e construídas as matrizes de espalhamento. tinia vez obtida a matriz de espalhamento, comparou-se  
a secão de choque na teoria quântica de campos corn a seção de choque da tnecãnica quântica na aproximação de  
Born, obtendo-se assim a forma do potencial responsável pela interação nos processos de espalhamento. Através da  
equação de Schrõdinger analisa-se a possibilidade de estados ligados.  

O modelo é descrito pela seguinte densidade de Lagrangeana  

C(s) = — , rrFjle  F"-} 
0  

4ivA F,,,, :Ia -1- ( Du ór(D" di ) — rn` ó'Ó .  

O propagador para o campo A"  é 

	

D"(k)   ¡>"^ — 
 rO ^re"a ^a _̂ ^ 	 ^ 

rrk= — B 	a 	k-  

e na ordem mais baixa [0(e2 )] o potencial obtido  é 

c 	. Or 	e 	1 '  r 	4r 	(Ir } 
— h —) — 	— I - - Ii  t( —) E VT = 	0( 
2aa 	a 	r rnO  r• - 	a 	a  

que é idêntico (a menos de um termo de interação spin-órbita) ao potencial obtido para a eletrodinãmica ferrniõnica=•''.  

	

Em coordenadas polares (r,¢) o operador L é representado por —i d. Escrevendo 	= R.,,t(r•)4)1(ó) com  

•r(ó) = 2 * e't. obtemos a correspondente equação radial de Schrõdinger  

	

-tR„t - 
rn ^r7r= + r 8r !

{.„r + (ifir (r)Rnt = E41Rn t 	 ( 4 1  

onde  
1= 	e 2 	Or 	r.' I 	Or 	Or  

Ufff (r) _ —7  + -- K,(—) — , [ 1 — —Ki(—)k . 	 (5) 
rn r- 	2au 	a 	a 	r•- rrio 	a 	u J  

Para o caso que 9 — 0, a teoria se reduz a eletrodinâmica escalar pura, e o potencial dado na equação (3). no  
limite O — 0, vai para o potencial Coulornbiano em trés dimensões.  

No limite a — 0, tom O # 0, o termo de Maxwell desaparece da Lagrangiana inicial, e temos uma teoria de  

Chern-Simons pura.  Neste  limite o potencial se reduz à  

(1)  

(2)  

(3)  

1'¿,(a=0.0.r)=—  
r• 	l  

TOlri r 2  
(6)  

Quando I > :ã  o potencial Ucs é totalmente repulsivo e não possibilita a formação de estados ligados.  
Por outro lado se I < ty, o potencial tern comportamento atrativo corn decaimento forte na origem. no entanto  

as condições de contorno nos leva a  unia  solução nula para energias negativas não possibilitanto a existência de  
estados ligados.  



7  

re= ;r
'

B 	̂ 	O  

^ 

► ma 	 ma'  
e 	E„t = , Enr O -  

Or  
y= —  

a  
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Para a análise do potencial de Maxwell-Chern-Simons, vamos escrever a equação de Schrõdinger em termos das  

variáveis adiniencionais  

obtemos  

^

c7=' 	I 8 

, — y ^^ 
— 	ant(Y) — t'e11 Rnt(y) + E n f Rnt(y) = 0 

Vy`  

onde  

– t eff (o. 0. y) = 1^ + l a0 o(y) – - (1 yl^t(y)) • y- 	2  

Pela análise da derivada do potencial Ue'  f f  o intervalo onde o potencial apresenta mínimo  

pode se anular) e dado por 2 < 1 < a. Neste intervalo o comportamento de  ti: //  fornece que,  

o potencial diverge para +co, e para grandes valores de 1/, ele se aproxima de zero por valores  

então a possibilidade da existência de estados ligados. Através de análise numérica encontramos  

do estado fundamental para alguns valores dos parâmetros n, f3 e /.  

(8)  

local (a derivada  

perto da origem,  

negativos. Temos  

valores da eneigia  

ff 1 o , ^ 	
,?  eta(  II  

6 8 2000 - 0 .0221 ± 0.0005  
6 1 2 2000 - 0,1235 ± 0,0007  
6 16 2000 - 0,2490 ± 0,0005  

-n1 

2 8 2000 - 0.0221 ± 0,0005  
4 8 2000 - 0.0365 ± 0.0005  
6 8 2000 - 0,0221 ± 0,0005  

Conclusão  

Utilizando a equação de Schrõdinger estudamos a possível existência de estados ligados partícula-partícula para  

o potencial não relativistico obtido. Em primeiro lugar tornando  o limite para a teoria de Maxwell pura (0 0),  
obtivemos o potencial Coulombiano em duas dimensões. como era de se esperar. No limite para a teoria de Chern-

Simons pura (a — 0), obtivemos um potencial atrativo, no entanto fortemente divergente na origem.  

Comprovamos assim que é o termo de Chern-Sirnons que dá o caráter atrativo para o potencial, mas o termo  

de Maxwell é necessário para eliminar essa divergência. Finalmente, via cálculo numérico do potencial Maxwell-

Chern-Simons, confirmamos a existência de estados ligados para vários valores dos I>arãrnetros livres da teoria, com  

a massa do campo de gauge O não muito grande.  

Certamente o resultado obtido necessita ser complementado, isto é, precisamos comprovar se o caráter atrativo  
elo potencial não é destruido quando incorporamos efeitos de ordem superior em teoria de perturbação (ordem e4 ).  
Também temos que obter uma melhor compreensão da estrutura infravermelha da teoria, o que pode ser feito via  
análise do tipo Block-Nordsieck.  
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Magnetic Monopoles without Singularity  

P.C.R. Cardoso de Me11o0 l, S. Carneirof^ 1  and M.C. Ncrnes( r)  
("Departamento de Física - Universidade Federal de Minas Gerais  

(2) Instituto de Física. Universidade de São Pauto • 

In this work. we suggest a lagrangian description for dual electrodynamics, i.e., electro-
dynamics with electric charges and magnetic monopoles. Calculating the Euler-Lagrange  

equations, we can obtain the whole set of equations we need, namely the generalized Maxwell  

and Lorentz equations, without introducing Dirac's string.  

The proposed lagrangian density is  

^ = L o  —  4!'" "  F" — 1" A"  
(1)  

where C o  is the free lagrangian density for the charge and pole. j" and g" are, respectively, the electric and magnetic  
currents, and we define the generalized tensor field  

_ 0".1 °  — ô".a" 	 l7a 	 (2)  

and the non-local potentials  

A" _ A" + L  eji"[3 ¡ r `^hflp [í4Y 
2 	t' 

r _ 
  
	—  ^ f " tiáF ! C^^f^F^  d^? 

Y 

in terms of the field variables, A" and Â".  

With these definitions, it's ease to check that  

F" =  0"  A "  —  d"  A"  

and that its dual  

F"" _ ^ e""áp  Fro  = 8" Ã" — c7" Ã" 1  

From the density lagrangian (1), using (5), (6) and the identity  

F" F"" _ ]: " F"" 
 

we obtain, for A" and A" ,. the Euler-Lagrangiau equations  

(3)  

(4)  

(5)  

(6)  

(7)  
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C) ° !'„„ = 1u 	 (6)  

(3°1'„ i, = yE, 	 (9)  

That is. precisely the generalized Maxwell equations.  

For the charge and pole degrees of freedom, the lagrangian gives the equations  

i°  
m dr = e([)"d1^ — 0' 3 .4'11113  

Y' *  
,1f 

rlr 
= 9(frr1^ -- ^1^.4°)4"/3  

Using (5) and (6), we get the wanted generalized Lorentz equations  

dU °  

^ 	

f. 
f(T

^•'^. ^ ^ 
= ^ 

 (12)  

d1'< ,  
:4f 	= yF"3 1 â  

dr  
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Hierarquia de Schroedinger não Linear Generalizada  

H. Arat,vn. .1.F. Gotites r, A.H. Gitncrnlan  
Instituto de física Teó rica- Ur1'ESP  

Rua Pamplona 145, 014115.1011, Silo Paulo. SP  

A importância do estudo dos modelos completamente integrávi:is tern se evidenciado nos ultirnos anos principal-

mente devido ao fato destes apresentarem unia estrutura algébrica ext.reinamcite rica fornecendo o cenario natural  

tia descrição de solitons. Estes modelos podem ser descritos através de equações diferenciais não lineares, operadores  

pseudo diferenciais (formulação de Lax) ou ainda através de nula fornnilaçáo matricial.  

A integrabilidade implica na existência de unia lei de conservação associada a cada grau de liberdade. Cada carga  
conservada Q ; , por sua vez pode ser associada a urna Ilamili.oiiana definindo a evolução temporal corn respeito  a 

um tempo l ;  através da equação de Ilaim iltoil.  

r1:1  
1) r  = 	(-1 

 (1)  

Em particular. para uma teoria de campos eni duas droic:m6es existem infinitos graus de liberdade e consequente-

mente infinitas leis de conservação descrevendo a evolução temporal num espaço de infinitos tempos. As equações  

de evolução (1) definem urna Hierarquia de modelos que apresentam em comum iiin conjunto infinito de leis ale  

conservação.  

Ern particular, um modelo integrável de grande interesse devido a suas soluções soliton apresentareis aplicações  

na construção de laser de solitons utilizado em transmissões ielefonicas o modelo de Schroedinger não linear  

descrito pelas equações (veja ref. [I] )  

— 27(rq) = 0  

ai r -I- 	2r(rq) = 0 	 (2)  

A estrutura algébrica deste sistema é introduzida através ria condição de curvatura nula,  

[(9 — 13. (Ìr  .4] = (qi — 'Irr — 2 rg )E+ + (r1 + rir + 2r?q)E_ = 0 	 (3)  

onde os potenciais de gauge são definidos na álgebra .sl(2),  

1  
A  — r ^ II + i1 !.+ + l•. _  

13 = ( 2  + gr)11 —  (0r9 —  ,Iq)E+  -r (Or r• + lr•)E_ 	 (5)  

e os geradores satisfazem [11, E±]= ±E± e [p+ , 	H.  

Note que, apesar das equações de movimento independereni do paminei ro espectral a. este é de crucial im-

portância a nível dos potenciais de gauge corno veremos a seguir.  

Na realidade, o sistema  físico descrito pela eq. (2) é totalmente descrito somente pelo potencial de gauge  
A. A outra componente. 13, pode ser  determinada  através da condição de curvatura nula assumindo unia forma  

polinomial para 13 em termos do parâmetro espectral A. Dentro da hierarquia o potencial B contam informação  

(4)  
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sohre a evolução temporal corn respeito a um determinado tempo. Podemos então descrever toda a hierarquia de  

Schroedinger através da condição de curvatura nula para um tempo arbitrário  

—c)r Bn +[r1. Bid -0 	 (6)  

onde .1 é dado na eq. (4) e queremos determinar B,, segundo o seguinte ansatz. Bn = ELI  B;,a'. A eq. (6) é  

chamada equação de Zakharov-Shabat cuja solução é conhecida ser da forma Bn  = \B0 _ 1 + 0(1).  
A generalização desta estrutura para muitos campos pode ser proposta de várias maneiras titilizando a álgebra  

de  sl(n +1). Entre elas, as de maior interesse físico sio  

n 

A  - = E  qaLá.+u. + ,+•••+r,,, + r'a I:_s,._a. +, ^...^n^ ( 7 )  
ac 1  

onde En  são operadores step de sI(n + I) e o potencial de gauge em (1) define a hierarquia de Schroedinger não  

linear generalizada., GNLS. Um outro extremo nesta formulação consiste na hierarquia de.  Toda  definida por  

A  = L QaEo.  +raF,—na—te 
a - 1 

( ^) 

Urna analise detalhada da solubilidade da equação de Zaklarov-Shabat para estes modelos pode ser encontrada  

na referencia [2] onde também exploramos a formulação de Lax. matricial e suas equivalências.  
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A Study on the Ground State of  
Heisenberg Antiferromagnetic Chains  

.1.  Rodrigo  Parreira' O. Doiinat and .1. Fernando Perezt  
Inslitulo dc Piaicn. tlnicersidadc de São Paulo  

P.O. Box 20516. 01452-990 Sao Paulo. Brazil  

We consider the ground state of one dimensional antiferrornagnets with exchange function  

given by (— l ) 1 r -yidjx —  We prove N'éel order in the ground state for 1 < o < 3 for a  
sufficiently large spin and absence of LRO for any spin if o > 3.  

The model is given by the Hamiltonian:  

= > 	I ) I)r hS r ; E 
 

rE.S 	 '1=1  

where J < 0, o > 0,11 > 0 and A = { — L ,  -4 + I ...., 4 - 1. +4) Ci-, Z (I, odd). The S variables are usual spin  
operators such that S 2  = s(s + I ). We define the spontaneous magnetization  as. 

rrr = litn a(ii) = lim lim I  {  E sr 	.  
h_o 	h—.o 1. —cv  I. 1 

rett 

where < , >='l'r(.)exp{—fill}/Trexp{—)311}. The first condition to be imposed on the exchange function is due  
to the thermodynamic stability of the system. We need E„ n"' < co o >  I. 

We introduce the Fourier transform of an arbitrary fu nction f  with k E A' (the first Brillouin zone), as  

f(k) = 	E  f( x ) c-rkr.  

vL rEA  

We also introduce the two-point function yF =< Sk 5' 1  >.  

Theorem 1 For the model described above, with h = O. for every l <a < 3, Mere exists s(o) < ae such that the  
system will show LRO at zero temperature ifs > s (o) .  

Proof  

We have, as a consequence of the infrared bound [1]. [2]. the following condition for the existence of Neel order  
in the ground state:  

2* 	 1  

1419 	11 > 1 1 	r^l• 	̂̂   —r L Jr]-[r(—I)"(1—coskn)^ i  

L.,„ Jntr[1 — (-1 )” COS kn] 	= 1.  

The numerator is hounded, if o > 1 by a positive number. A(o). The term in the denominator, after making  
can he estimated by a second degree function. At, this point we obtain:  

1(a) 	' 	 1 

	
= I < 	

I3(a) 
¡ flk (T3_rt1R -1 

 — 
k2)] I 2 .... Z.  

where B(o) = 2 [71- 2 (3 — 0)] -1 . The integral above is finite if ǹ   11 < 1, implying that the condition for LRO can  
110W be stated as [s(s + 1)]1 > Z. which can always be made true if a < 3 and s is sufficiently large.  

•Supported by CAPES  
'Supported by FAPESP  
'Partially supported by CNPq  
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Theorem 2 If cr > 3 we have rn = O in the ground stale for any value of s.  

Proof  

Our proof follows from the following inequality [3]:  

{{b', b}) ✓IIa'• N],a](a'. a)O> IUa' ,  bpi=  

where a,b are self-adjoint operators, 13 is the inverse temperature, (.) is the usual expected value and (.,.) is the  

Duhatnel two-point function [1]. In our case we choose a' = S=r  and b = a = where Sk are the Fourier  
transforms of the operators S= = Si f iSi.  

The anticommutator and the double commutator (after an explicit calculation) can be bounded by the norm.  

The Duhamel two-point function can be estimated by the infrared hound [I].  

So we have, when L — oo:  

112 s(s + l) >4Q(h) 2  J x dk ^ 	2 ^: [1 –(–l)r cos kx]r-° 	̂ = 4a(h)=I(a.h). 
o 	ll `I Er[ 1  — cos kr.]r.'Os(s +0+1 1160)1 

We first look at the denominator, where we know that I – cos kr < k 2 r 2 /2. The numerator can be estimated by a  
constant, R(o) after throwing away the contribution coming from even values of r.. We then have:  

r  1(a,h ) 	 I 	  
= 	fi:(a 	dk f 

o 	(4k2 Er  r2`0 s(s + I) + jha(h )I } 1 1`
,, 

showing a logarythmic divergence when it 	O and n > 3, which implies limh_o rr(h) = O..  
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O Método HMC e Fermions Dinâmicos  

Marcia G. do Amaral  
Instituto de Física - UFF  

Embora o método de Monte Carlo (MC) tenha sido muito usado na simulação de diferentes tipos de teoria.  

seu sucesso foi estabelecido somente para o estudo de modelos que contenham campos bosonicos. Qualquer simu-

lação que contenha cariáveis fermiemicas só pode ser feita, usand o-se um  MC  tradicional, se dispusermos de um  

tempo infinitarriente absurdo de CPU. 0 aparecimento de máquinas cada vez mais velozes não elimina, sob hipótese  

nenhuma, a necessidade urgente de se desenvolver algoritmos que sejam unais velozes e eficientes.  

Para que possamos entender a natureza dos problemas com os férmions, vamos considerar unia função de partição  

na qua! existam férmions t6 e acoplados a um campo bosónico 	ic:  

Z = 	f [d041dSP) exp { — .5'T (Y, 11-, 4`^ )1.  

onde  

ST = So(s') + TM(v)ti, 
 

pode ser escrita como a soma de uma ação puramente bosónica e uma ação fermiónica n a.  qual M(v) contém a ação  

livre fermiónica e a interação férmion-bóson. Como ;7 e y são variáveis de Grassmann e não sabemos como lidar com  

um grande número de variáveis anticomutantes, é mais conveniente intrmos os campos fermiõnicos diretamente.  

o que provoca o aparecimento de um termo proporcional a (exp {—S 0 (9")) det A1(cp)) no integrando. Quando  

fazemos uma simulação MC precisamos gerar configurações dos campos cp que obedeçam à seguinte distribuição de  

probabilidade:  

Peq  = exp (—S0(y2)) de r. /l1 (9)  

Em principio com esta expressão podemos fazer uma simulação MC tradicional. mas o cálculo de det :11(w) 

 é muito lento, exigindo N 3  operações, onde N é o número de sítios da rede. Usando um método de updating  

Metropolis, teremos de calcular det A1(cp) 2 vezes por sítio por passo de MC. A conseqüência disto é que o cálculo  

do determinante irá exigir um total de N 4  operações para cada passo MC, o que torna impossível em termos práticos_  

usar um MC tradicional.  

O método de Monte Carlo Híbrido (H MC)  tem a vantagem de combinar todas as boas qualidades de métodos  

nas quais as equações de movimento são calculadas sem a existência de erros de truncamento com aquelas do MC  

tradicional. Unia das grandes vantagens do HMC é que os campos são updated de urna maneira paralela sobre  

todos os sítios c posteriormente a nova configuração será aceita ou rejeitada globalmente. No HMC introduzimos um  

parâmetro de tempo artificial r juntamente com uma dinámica Halniltoniana especificando a evolução dos campos  

bosõnicos com função de r. Introduzimos, também, um momento conjugado a(r) para os campos bosónicos. No  
caso de férrnions usamos a seguinte igualdade, 

	JLd] Z = Nf(dbddco] exp{ —S  o(ç)—M(P)V} _- 	det A 1 (cr)zP { — So(çc))  

que por sua vez é igual a  

N f[dr]Edx]  exp  { =Sa(cP) -'
'T 

 (A1T  (cP)M(+p)) —r  1'} 
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onde introduzimos os campos x boednicos - chamados de pseudofermiónicos- e. onde ao invés de usarmos ,1!(9,) 

. usamos M T (rp)M(sp) para garantir a convergência das integrais bosõnicas. Se M(9e) for real (como acontece na 

caso do modelo que descreve os polímeros conjugados), os campos x  serão reais e a potência correta do det M(+') 

é encontrada. 

No caso de polímeros. por exemplo. a Hamiltoniana de uni problema no qual os férmions sio acoplados a um 

campo escalar. é dada por. 
I , 	, 

H (4p. n l = 2 
a" + S0(kpl  + l. ► '  (M T 	 (921) -  1 

() algoritmo de Leap l'rog pode ser facilmente adaptado a esta classe de problemas e na evolução de e a durante 

um intervalo de tempo r,. os campos pseudofermiónicos 1  sào mantidos fixos. Depois de uma evolução de Dinamica 

Molecular completa para (jr, ap), a nova configuração gerada será aceita ou rejeitada por um Monte Carlo Global. 

Durante o processo de evolução, cada vez que os campos so  são updated teremos de modificar MT (Sp)M(+p) e também 

(M T (+p)A1(9))_ 1  y. O updating do primeiro termo é simples já que a matriz  M T M é altamente esparsa, porem a 

inversa de uma matriz esparsa não é esparsa. Com  isso, temos de definir um campo auxiliar 4,  = (MT(w)M(ç^)) -1  ‘ 

e usamos um resolutor especifico (gradiente conjugado) que nos dará o valor correto de $ para um conjunto de 

campos \• e Sp. 
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The program of constructing the S-matrix by means of causalit.y'in quantum field theory goes back to St.neckel-

berg and Bogoliubovl t l. In the early 70's, Epstein and Glaser 1 = 1  proposed an axiomatic construct .  where ultraviolet  

divergences do not appear, leading directly to the renornialized perturbation series. They have shown that in the.  

causal theory the UV problem is a consequence of incorrect splitting of distributions.  

In the causal theory 131  the S-matrix is viewd as an operator-valued distribution and has the following form  

1 J dr. i 	 t S(9)=1+ E
n' 
	...x ...r!x7,idxi „)g(x1 ) ... g(rn)  (1)  

The n-point operator-valued distributions T„ are the basic objects of the theory. They can be còustructed  

inductively from T1 through a number of physical requirements. the most essential one being causality. Let the  

operator-valued distributions T„ be defined by  

S(gr i  = I  	1
rtl 
	d3 271...d3 .1: `n n(i 	 ).-. ri(rn) . 	 ( 2 ) 

n=0  

Then one defines, for arbitrary sets of points X. V in. the (2+1)-dimensional Minkowski space, the following  

distributions  

Ain (x ...Jn )  = ^"1n,(•11^iz-n,(}.•^n} • 	 (3) 
 

!42 (s l .. .t. n ) = 	Tn- n,( }J,rnlfn,(•1 } • 	 ( 4 )  
p,  

where the sums run over all partitions  

P2 = ¡rt, • ,x„_I) — .1 U I . .Y 
 ^ N 
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into disjoint subsets with IXI = n 1 , IYI < n — 2. We also introduce 

Dn (xl ... x n ) _ Fen  — 

If the sums are extended over all partitions P4 ) , including the empty set X = 0, we obtain the distributions 

(5) 

A n (xy...x n ) = An + T„(zl ... x„}. 

Rn(zl ...x r,) = R;, + Tn(z1 ...x n ) 

These distributions are not known by the induction assumption because they contain the unknown T,,. Only the 

di fference 

D„=lion — Ain  =Rn —A n 	 (8) 

is known. We can determine Rn or A n  separately by investigating the support properties of the various distributions. 

It turns out that R,, is a retarded and A n  an advanced distribution. Hence by causal distribution splitting of (9) 

one gets R„ (and An), and T„ then folows from (8) (or (7)). 

In QED3, Dn  is of the form 

Dn (xl ...x n ) = E : ll rG(zi)dn(ii ...rn) 110(xr) 	xm) : , 
k 	j 	 l 	 n, 

(9) 

where ;i(,i1) are free fermion field operators and A the free radiation field operators. The double dots denote the 

usual normal ordering. In the above expression, d n, are tempered numerical distributions, which have causal support. 

They must be split, as follows: 

= r„(x) — a n (x) . 	 (10) 

where r., and an have support in the forward and backward light-cone, respectively. 

The first order term T1 of QED3 is given by 

T1(z) = ie : W(z)?'” '(x) : . A"(x) ; -1'1(z) 	 ( 11 ) 

By using Wick's theorem, the term due to vacuum polarization in (10) is obtained by two fermion-  ic contractions 

In momentum space we find 

where 

DV(zl, z2) = d""(rl,z2) : A"(xl)A"(x2) : , 	 (12) 

d,,"(k) = ds"(k)+ dA"(k) , 	 (13) 

	

.d7(k) _ (k "k" — k 2y")B(k 2 ) . 	 (14)
.  

	

dA"( k) = irnce"k n B(k 2 ) . 	 ( l5) 

and 

r7(k) = irnc""oka nf 2
l(0) , (16) 	• 

wlie re 
IItz)(kz) _ 	lne2 
	  l0 1 	— 

0:2/42n2

2(21r). k2 
g 
 1+ k 2/4rrx2  

(17) 
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The vacuum polarization tensor can be written in the form 

n r,„(k) = (9rá,, — 

In the limit k 2 	0 it can be shown that 

k” k„  
Z )fIt 13 (k 2 ) + inu r,,, a k`11 {2) (k 2 ) (18) 

Woo) ( 0) = 0 ', 

and _ 
n(2)(0) = c 

4rrrn 

As a result, the photon propagator modified by proper vacuum polarization insertions have a pole dislocated 

from the origin, so that the photon acquires a "dinamically generated" mass 141 . 
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Path-ordered Phase Factors in Scalar QED  
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The main difficulty in dealing with long-range potentials in the relativistic quantum theory is the factorization of  

infrared divergences out of scattering amplitudes, in order to get finite cross-sections. Who first had a deeper insight  

to circumvent this problem in spinor QED were Bloch and Nordsieck 111 , over fifty years ago. Later, it was shown 121  

that if we cast bremsstrahlung contributions in all orders of perturbation theory, we get finite cross-sections. In the  

same spirit, Kulish and Faddeev 131  and others considered a new space of asymptotic states, containing an infinite  

number of coherent photons, in order to extract finite elements from the 5-matrix. In the early 80's, applying the  

concept of path-ordered phase factors, usually employed in QCD, Kubo 141  reproduced the Kulish-Faddeev results  

for spinor QED in the infrared asymptotic region in a simple and straightforward way. We must expect that Kubo's  

method still applies to scalar QED in order to obtain information about its behavior at the infrared. As we shall  

see, it is sufficient to write the interaction Hamiltonian of scalar QED in a suitable form.  

Keeping this in mind, we will adopt an alternative approach to scalar QED, which is also useful to the investi-

gation of electromagnetic properties of particles of either zero or unity spin. It is specially adequate to the study of  

the renormalizability of scalar QED as an effective theoryl 51 , equivalent to the original, whose structure is similar to  

that of spinor QED. For our purposes it is not convenient to start with the usual equations of motion for interacting  

fields but with the Heisenberg equations  

	

[i/3p(ôp + ieA p (x)) — rn111i(x) = 0 , 	 (1)  

	

+ ieA p ( x))  + rnj = O  , 	 (2)  

	

❑Ap(x) = jp (x) • 	 (3)  

where 13p  are matrices satisfying the algebra  

^p a„aa + /3), f,1,431, = 9p„Aa + 9aA .  (4)  

In the linear equations (I) and (2) the field tb and its adjoint 3(x) = rl (x)(2/3 0 2  — 1) have five components  

corresponding to the scalar field and its four derivatives with respect to the coordinates and the time, which  

transform like the components of a vector. They are known as the Duffin-Kemmer equations for scalar fields which  

interact via the electromagnetic potential Ap(x).  

• Partially supported by CNPq  
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In spinor quantum electrodynamics the field operators ii(x) and Ap(x) in the interaction picture have the same  

form as the operators for the corresponding free fields. The situation is different here, since not all the components  

of O(x) are dynamically independent. As a consequence we can evaluate S-matrix elements from the effective  

Hamiltonian density  

^i►!t! (x) = —4°1 (x)A0°)(x)  

j^°) (x) = eV  °1 (x)ppVt°) (x)  • 

In this case the Green's function for the free scalar particle in momentum space is given by  

SF (P) _ 05 — m) - _ 	+  in)  +  p2 —  m  2  
m(p2  — m2  + iE) '  

with IS __ p ops.  

We now apply Kubo's tethnique 141  to extract infrared singularities from Green's functions in the effective scalar  

particle theory described above. So, let us first consider the simplest case of the two-point Green's function G°(x—y).  

In the interaction picture, this can be written as  

G`{x —  p}  _ < 0[T( ,̂ ^(°) (x)^ 
°){J)S}10 >  

— 	< 01510 >  

(8)  

with  

S = T(exp[i 	d4 x'-  J¡,°)(s¡)•4"(°)(x'))}  . 	 ( 9 )  
As we are mostly interested in the infrared asymptotic behavior of the theory, we replace j (,°)  in (9) by  

j^,'(x) = 
J d3 

Ã L
o 
 p(P^õ(3)(s — 

po t )  '  (10)  

and neglect contributions from vacuum polarization graphs, like in the Bloch-Nordsieck modell l l, since there are no  

antiparticles in the limit of low frequencies. As a result we arrive at  

Gc(p) =< OlT(exp[ie 
1 

dig, A" (0) (x')]}[0 > SF(p) , 	 (11)  

where SF(p) is the Feynman propagator for charged mesons, given by (7), and  

< 0IT{exp[ie J  (Wm  A'` (°) (x')]} 1O >= e 1(1V oft)  , 	 (12)  
y  

where  
e 2  

f(v) =- 8x2 (2p +1— a){—i = +log[ c 	]}, 	 (13)  

a standing for the gauge parameter. The last expression also appears in the calculation of the Green's function in  

the Bloch-Nordsieck model for spinor QED3 161  

In the same way, we obtain  

(5)  

(6)  

(7)  

	

RN(p,P)= p^, exp{ie2 •I d4E 	pp'  

	

4 	2  
1 (2a} (k + ic)(k.p)(k.p') }  (14)  
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for the unrenormalized vertex function in the Feynman gauge in the asymptotic limit. This coincides with the  

infrared singular exponential which factorizes in the vertex function for both spinor and the usual scalar QED. In  

the former it is obtained via perturbation theory'^ 1 , while in the later through an alternative laborious method'''.  
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We show that a complete covariantization of the chiral constraint in the Florcanini-Jackiw 
necessitates an infinite number of auxiliary Wess-Zumino fields otherwise the covariantiza-
tion is only partial and unable to remove the nonlocalit.y in the chiral boson operator. We 
comment on recent works that claim to obtain covariantization through the use of Batalin-
Fradkin-Tyutin method, that uses just one Wess-Zumino field. 

The quantization of chiral boson in two-dimensions is a very interesting theoretical problem, which has appeared 
originaly in the investigation of heterotic string [1], and became quite important in the study of fractional quantum 
Hall efect [2). This problem has a simple solution in the Hamiltonian language while it has been beset with enormous 
difficulties in the Lagrangian side. One of these problems is the covariantization of the second-class chiral constraint. 
i.e., the transformation from second to first-class, which is the object of investigation in this paper. 

In Ref.(3), the FJ chiral boson was iteratively changed to modify the nature of chiral constraint to render it. 
first-class. Following this route the modified Floreanini-Jackiw model with the original chiral field plus the set 
of Ness-Zumino fields will always have one left over second-class constraint that must as well be converted into 
first-class if a complete covariantization is desired. 

It is our intention in this paper to work out the possibility of stopping the constraint conversion process. 
mentioned above, at any (finite) stage, say after N iterations, even if a second-class constraint remains, and study 
its consequences. It is expected that in doing this we would destroy the possibility of obtaining the complete 
1Vess-Zumino Lagrangian, and the theory would only be partially covariantized. We plan to stop the constraint 
conversion process in two different ways and verify their equivalence. Firstly we will follow a constraint conversion 
method introduced by one of us some years ago in the context of the chiral Schwinger model [4). Another way of 
doing it is by a simple elimination of the left over second-class constraint using Dirac brackets for the variables 
involved. This can be done after an arbitrary N number of steps. It will then be clear that the results of the first 
method corresponds to choose to stop at N=1 in the second method. 

Let us consider now the case of Floreanini-Jackiw chiral boson. For the case of the (left mover) FJ chiral boson, 
described by 

L = / dx(pó'—p' z ) 	 (I) 

the Dirac Hamiltonian reads 

n = f dx [¢'= + 	— ¢11 

' CLOVISCURIIEP.PAS.ROCHESTER.EDU  
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f dr. trd' 	 (2)  

where r = bC / 64j is the canonical momentum of ¢(z) and a = d' has been determined from the consistency  

condition for the evolution of the chiral constraint S2 = ar — ó' - The modified (first-class) constraint is,  

S2^ 12=r — d'- 28'  

where 0 is the Wess-Zumino field,  

{B'(z), B'(y)) = 
2 
 b'(z — y)  

which shows that this auxiliary field is itself of chiral nature. The other brackets are canonical  

{¢(z),T(y)} = 6(z — y)  

{¢(x).8(y)} =  0 
{a(r),B(y)} =  o 

To compute N is now a pretty simple algebraic work.  

N = 1 dz(¢' = +1d'B'+B''- ) = 
 f 

 dz(ó'+0')'' 	 (G)  

We obtain a first-class algebra for the (modified) chiral constraint  

{f2(z),e2 (y)} =  o 
	

( 7 )  

We have thus succeeded in turning into first-class the original second-class constraint of the Floreanini-Jackiw  

model.  

In summary, we have worked the problem of covariantization of the hosonic chiral constraint following the  

methodology of Ref.[4]. Differently from the approach of [3] where an infinite number of auxiliary fields is necessary,  

this one only needs one Wess-Zumino field.  
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O estudo do decaimento em sistemas metaestáveis vem atraindo um número crescente de pesquisadores devido 

a sua aplicabilidade nas mais diversas áreas da Física [1, 2, 3, 4]. 0 método comumente utilizado para tal estudo 

consiste em forçar uma abordagem de equilíbrio com a intenção de obter um problema estacionário [5,6]. Contudo, 

começam a surgir na literatura abordagens mais realísticas que se utilizam de métodos de nã o-equilíbrio resultando, 

portanto, na obtenção de resultados explicitamente dependentes do tempo [7. 8, 9]. 

Neste trabalho, estamos interessados em obter a influência da inclusão de férmions, a uma certa temperatura e 

sujeitos a um dado potencial químico, sobre um sistema metaestável bosònico. Para tal, faremos uso de inúmeros 

resultados apresentados na referência [7], cuja leitura anterior é fortemente recomendada. 

Nosso problema é definido pela Lagrangeana (10, 11] C = 	pe,)(ô ) — [V(ó) — V((62)] + 	— 1A — 

gd) Wa + cF vi) Yo 4fr, sendo V(0) = Ç(¢ — ¢0 ) 1  (p + ¢o + ) 7  + 1P, ó-: o mínimo metaestável e cf• o potencial 

químico. Integrando sobre os férmions no funcional gerador. admitindo a existência de apenas dois estados ligados 

e adicionando os devidos contra-termos [9, 10, 12). podemos escrever a ação efetiva em termos dos dados de espal-

hamento [9, 10]. Extremizando a ação efetiva e utilizando a equação do gap, podemos obter a energia das soluções 

tipo "bolha" [8,9] como função de seu raio, e a taxa de decaimento como função do tempo (vide figs.). 

Notamos,  então, que no limite de baixa temperatura encontramos tanto estruturas do tipo "sphaleron" [7] quantv 

estruturas do tipo "bolha" metaestável [8,9]. 0 limite de alta temperatura forneceria apenas curvas de dissociação . 

E importante observarmos que o fator determinante no surgimento de "bolhas" metaestáveis é a ocupação relativa 

cios estados ligados fermiônicos [8,9]. 
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Influência das Condições de Contorno sobre o  
Momento Magnético Anômalo do Elétron  

Franz P. A. Farias, A.  Matos  Neto  
lnstituto de E•'isira, lhsioersidade• Federal  da Bahia  

Introdução  

Nas últimas décadas tem sido publicados diversos trabalhos [1.2] acerca das modificações nas correções radiativas  

às propriedades do elétron corno por exemplo, seu momento magnético e sua massa. Estas modificações tem origem  

na alteração das condições de contorno impostas sobre o campo de radiação.  

O problema de nosso interesse é o do cálculo das correções radiativas às propriedades mencionadas acima  

quando o elétron se encontra em interação corn urn campo magnético dado e corn o campo  de radiação quantizedo.  

Confinamos este campo em uma região delimitada por duas placas paralelas de naturezas distintas, urna sendo  

perfeitamente condutora e a outra infinitamente permeável.  

O cálculo das correções radiativas  

O método de abordagem consiste ern descrever o elétron como urna excitação elementar do  campo  elétron-

pósitron em interação coin o campo de radiação e ria presença de urn campo externo dado. O elemento básico neste  

tratamento é a equação de Dirac Generalizada [3]:  

(iy.0- e). ..-1,(r))'(r)+ J  d a r':1 1(r,.r 1 )0( ') =0.  
onde, Af (x, x') é o operador de massa cuja expressão em ordem arais baixa na constante de acoplamento é:  

A1 (z, r.') = rnpó(.r - r.') + ie  2 y"G(z, r')7„ D0 (+) (x - z ) , 	 (2)  

corn G(z, z'), a função de Green do elétron na presença do campo externo .1 e (z) e Do  (.0 é a função de Green do  

fóton livre [4].  
Na situação de interesse, ou seja, o confinemento do campo de radiação entre as duas placas. consideramos que  

a função de Green do elétron não se altera. Por outro lado, a função de Green do fóton se modifica. Esta função  

Green tem sido obtida através de diversos métodos [5,6].  

Temos obtido a função de Green do fóton através de rm método pie  faz uso explicito do fato de que o confine-

mento estabelece uma mudança de representação dos observáveis quanto-mecánicos [5]. Nestas condições altera-se  

o espaço de Fock associado ao sistema campo de radiação confinado coin relação àquele em que o campo de radiação  

encontra-se livre. A expressão da função de Green do fóton confinado é:  

N  

D( 	r— 	r.x ^ iria D 	r ü . r ( , r. 2 , r 3  + 2T rrd . d+1 ( •) — ^ 	 1 ^ 	] n(+)  ( 	 )  
m_-cv  

(3)  

Como um primeiro passo na verificação da expressão (3) calcularmos a pressão de Casimir entre duas placas de  
naturezas distintas:  

(1)  

P(d) = (+/8)(T 2/24 0(11 ), 	 (4)  
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resultado este que concorda com aquele conseguido por Boyer [7! por um outro método. 

Coin a função de Green (3) conseguimos uma expressão aproximada para o operador de Massa em (2) que, 

substituida em (1) permite reescrever a equação de Dirac Generalizada com: 

[7.(-0 — eA e (z))+ m — ii'(1/2)o F'J (x) = 0, 	 (5) 

sendo m e µ' expressos em função de mo, µo  e das correções radiativas respectivamente. Os resultados dessas 

expressões integrais serão apresentados posteriormente. 
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Efeito Casimir entre Placas de Materiais  

Distintos à Temperatura Finita  

J.C. da Sil va. Hebe Q. Plácido. Adeinir E. Santana, A.  Matos Neto  
Institute. de F'isica, Universidade Federal da Bahia  

I - Introdução  

Casimirltl em 1948, demonstrou que duas placas paralelas. neutras, condutoras atraem-se como resultado da  

energia (não nula) associada ao estado de vácuo do campo eletromagnético. Desde então o fenómeno tem sido abor-

dado sob uma diversidade de aspectos. Estudos variados sobre o Efeito Casimir cut diferentes geometrias, condições  

de contorno. etc ,  tem sido realizadosl 21 . Etn particular, efeitos dr. temperatura foram encorporados adequadamente  

por Mehra[ 31  

Estimulado por Casimir, Boycr[ 11  mostrou que para placas distintas, unia condutora e outra de material  

permeável a T = OK,  a força é repulsiva. Prosseguindo nesta linha de investigação, apresentaremos .tis correções  

introduzidas pela temperatura no resultado obtido por Boyer. Este será o objetivo deste trabalho.  

II - Correção de Temperatura ao Efeito Casimir  

Em analogia como método utilizado por f'lunien e t  al[ 21 . consideraremos  o campo eletromagnético confinado  

em caixas de volume R x L 2  constituidas de paredes infinitamente permeáveis. Numa delas inserimos uma placa  

condutora a uma distância d e noutra à distância Rh  da placa paralela oposta. Esta configuração se encontra imersa  

num banho térmico, na condição de equilibrio. Seguindo Mehra 131 , devemos obter a diferença entre as energias livres  

de Helmholtz dos sistemas considerados. Calcularemos, então, para cada cavidade o valor de  

lk  

	

F = E 	+^
^-t In[!—exp(-131iwk)]= lsc+ F`. 

	

k 	k  

(1)  

com as autofrequéncias dadas por  

(,) k  =  TC  
a  + 1'1 ri N 2 	r! 

} 

d 	+ ^l_/ +^ %./ 

t/2  

(2)  

O primeiro termo da eq.(1), independente da temperatura. foi calculado por lioyer 14 l. 0 segundo termo, F'.represent;  

a correção de temperatura desejada. Após efetuarmos  a subtraçao atinja referida, obtemos  

F'(d,T) _
ir
?

2  E J dr13 -1  In 1 —r,xp  [_r  ( 
	r

/1
J -  -p l 	r -{-

o 	JI  

- T1.2 J J dzdr'  ¡i  In {! — exp ^—Tltr. (2- 2 + r) I I `1 ) . 	 13)  

0  

Após efetuar as integrações desta eq.(3), a pressão é obtida derivand o- se o resultado cm relação à separação das  

placas. Tem-se, então,  

iI2  
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co 11 	( 
l — exp / 
	[ 	ll l

l 	2 
P — ï 

a=li
a Qd3 	̂n 2) In l 	(— QTd !n 	

45, 4 
 + 
	(hc)3. 	 (4) 8 240d 	 L` 	\\\ 	L  

0 primeiro termo na eq.(4) corresponde à pressão de radiação cm T = 0I ► 14)• O,1 terceiro termo é o usual de  
Stefan-Boltzmann.  

Para uma análise mais detalhada do comportamento da pressão, tomaremos os limites para baixas e altas  
temperaturas.  

a) No limite de baixas temperaturas, unia expansão do logaritmo, na eq.(4), é permitida. obtend o-se para a  

pressão total entre as placa  

7 7r2hc ;r 

[cxP 

 ¡ f^rlic 	1 	` 	¡ 	
ll 

PLT = 8 240d4 + .1^ds 	j 2d  j + 2  exp ^ —  Q  d c 
 J

+ 9 exp j i^ d ^ / J +  

45,64 (hc) 3  . 	
(5)  

Nesta equação, o segundo termo corresponde à correção devido its condições de contorno utilizadas.  

b) Em altas temperaturas, a fórmula da soma de Poisson é utilizada para calcular a soma na eq.(4). Desta  

Avaliação resulta  

0. 9kT 	kT 

^ 	

4 ,rkTd l  (47rkTdl "1 	¡ 4 akTd  
PflT = 	+ 	1 + 	+ 	

1 I exp ` 
47d3 	2rd

3 	
hc 	2 	hc 	 hc 

• 	 (6)  

Observa-se que, tanto o termo de Stefan-Boltzmann quanto o dc T = OK  são cancelados neste limite. Esta  

expressão é similar ao caso de placas iguais 131 , exceto pelo fator numérico 0,9 e pelo sentido repulsivo da força.  
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Considerations Related to the 
Aharonov-Bohm and Casimir Effects 

K. Dechourn, H. M. França 

Instituto de Física, Universidade de Sdo Paulo 

C.P. 20516. 01498-970. Sáo Paulo, SP, Brasil 

A.  M ai a Jr. 
Inst. dc .Sfatcniát:ca. Estatística e C.icricias da 

Go ►nputaçdo. Unir.  Estadual de Campinas. G.P. 6065 

13081-970, Campinas. SP, Brasil 

We discuss the interaction between a microscopic electric dipole oscillator and a long solenoid which are separated 

by a small distance. The zeropoint current fluctuations of the solenoid are taken into account. We describe how 

they affect the ground state and the excited states of the oscillator. thus providing a description of the Casimir 

interactions of the system. We conclude that the lifetime of the 'oscillator excited states are modified when the 

dipole is close enough to the solenoid. We also show that there is an enhancement in the spontaneous emission 

of the dipole oscillator and also an anysotropy which is related to the dipole orientations [1]. We show that this 

Casimir interaction always exists, that is. it occurs even when the macroscopic current. in the solenoid is zero. 'l'lie 

Aharonov-Bohm effect on the oscillator, is interpreted in terms of the solenoid electric field {cÉ, o t - —0.-1,o1/O1) 

which acts on the charged oscillating particle. This is possible because. from the microscopic and macroscopic 

point of view, the fields in the neighbourhood of the solenoid are always time varying due to the discreteness of 

the electronic charge, the transient behaviour of the macroscopic current and the zeropoint and thermal current 

fluctuations. We suggest experiments which can exhibit these effects related of the Aharonov-Bolitn and Casimir 

interactions. 

[1] 11.M. !'rança, T. W. Marshall and E. Santos, "Spontaneous emission in confined space according to stochastic 

electrodynamics". Phys. Rev. A45, 6436 (1992). 
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Lagrangianas Não-Polinomiais  
no Modelo de Skyrme  

Jorge Ananias Neto 
Centro Bmsileiro dc Pesquisas Físicas, D.C.P.  

R. Dr. Xavier Sigaud 150 22290-180 Rio de Janeiro, Brasil  

Received October, 1994  

Escolhendo diferentes constantes de acoplamento para termos de derivadas de ordem superior 
no Modelo de Skyrme, podemos somar a Lagrangiana final numa forma binomial, geométrica 
e logaritntica que por sua vez apresentam consideráveis melhoras na usual fenomenologia 
prevista. 

O modelo de Skyrme consiste em tratar os Bárions e suas interações através de soluções tipo sóliton num modelo 

que tem como base o Sigma Não-Linear mais o termo estabilizador de Skyrme. Neste trabalho pretendemos utilizar 

o quadrado do termo cinético como estabilizador e gerador da forma padrão de termos de derivadas de ordem 

superior, cuja a expressão final da Lagrangiana contendo todos os termos de derivadas de ordem superior é dada 

por t  

L= -ct  f d 3r [2M - ! Sp] - c 2  f d3r [2111 - I Sp]"'  

- c„ f d3r [2A1 - l Sp]" ,  (I)  

onde c t  T FR 16 16 . Escolhemos très diferentes relações, lí„ = - que permitem somar a Lagrangiaria (1) com termos 

de derivadas de ordem superior em formas não convencionais, que são:  

a) Forma Binomial,  

	

E  c„ 	( = 	
s ) 

 /(2e2Fx)„-I  

	

c t 	ri -  I 

onde s é a poténcia da forma binomial;  

b) Forma Geométrica,  

c„ _ 	I 
!1p - 

CI 
	

(2e'=G2)"—t  

c) Forma Logarítmica,  

c 	 l )
,r -1 

1i„= "= 	^ , 	ri=3,A..... 
C2 
	(n - 2)(2e=F 	_2  p )^  

t  Aqui nós já estamos usando o ansntz hedgehog dado por U = exp (ir.reF(r)) e expandindo a Lagrangianeatravés das eourderIadns  

coletivas U(r, t) = A(t)U(r)A+(t) sendo A = ao+u,.ri• M é dado por M = 2+ i nr r 
 +/;-(717,  I é 0 momento de inércia 1 = ã  siir2  1.  

e Sp  E Tr [00A80A — r] .  
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Definindo o Hamiitoniano Qúantico através da relação 11 = irei — L e utilizando as massas do Nucleon e da Delta 

como parámetros de entrada, obtemos os principais resultados físicos, que são mostrados na tabela 1. 

TABELA 1- Parimetros Físicos no modelo de Skvrtttc 

bin. geo. log. Adkins et al expt. 

F r (Meti) 143 152 14 1 129 186 

e  2 1.55 8.48 6.69 5.45 

<r2 >¡_ 0 (Jrrt) 0.61  0.61 0.60 0.59 0.72 

Np 1.75 1.75 1.74 1.87 2.79 

/1„ -1.20 -1.21 -1.21 -1.3:3 -1.91 

9a 0.70 0.84 0.76 0.61  1.23 

As trés formas da Lagrangiana do modelo de Skyrnie aqui apresentadas, binomial. geométrica c 

Iogaritmica.representam uma tentativa de se incluir a contribuição de todos os termos de derivadas dc urdem 

superior, numa forma específica. no cálculo de quantidades físicas. Sem dúvida nenhuma, a inclusão destes termos 

melhoram o espectro físico, cabendo ressaltar que a forma geométrica foi a que mais se aproximou dos resultados 

experimentais. Mais reférencias podem ser encontradas em Jorge Ananias Neto. Non-Polynomial Lagrangians 

the Skyrme Model, Preprint CBPF (1994). 
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Minijets, Inelasticity and Proton-Proton  

Total Cross Section  

A. L.  Godoi, .1. li+;liattcli ;  H .. .1. M . (.'.ovola.n and J. Montanha Neto  
1r+stituto de Física 'Glcb Watar¡hir+' Universidade Estadual de  Carnpinas. Urticamp  

13083- 970.  Campinas. Srio Paulo, Brasil  

Received  October 199•1  

Inelasticity, the fraction of energy released to the secondary particles produced in a hadronic collision, is an  

important quantity whose behavior has not been properly established yet. In this paper we show a reanalysis of  

the Akeno's data [1] on absorption cross section wherein inelasticity is considered to be alternatively an increasing  

or decreasing function of energy. Our main concern was to extract.. from these data. information about the proton-

proton total cross section. Iii our procedure we have used average iuelast.icities calculated by the Interacting Gluon  

Model [2], which has been corrected in order to include the air effect. [3]. Following results obtained previously [4].  

we carne to an expression that can be solved numerically for the total cross section.  

( _ airl, _. 
,,p

—air( .p .iir r_1 _ n^  Lf d2bpidol 
 ) = O. 

 

1 = t  J 	1 
In this equation a¡.  air  is given by the Glauber formula [5], f;, is the probability of n-fold collisions of the  

primary nucleon inside the nucleus, rt,,, ar  is the maximum number of collisions. ï = 2.22 is the slope of the primary  

flux and crab,  rr  is the absorption cross section given by Akeno's experiment. The results arc shown in the figure on  

the next page.  

In this figure. we show data of total cross section from accelerator (squares and circles) [6] and the cosmic-ray  

points are those obtained in the present analysis by decreasing inelasticity (squares) and increasing inelasticity  

(circles). The curves, which indicate different rates of increase for oi,,r,, were obtained from a combination of  

accelerator and cosmic-ray data. Curve A was obtained by fitting all accelerator data up to f = 90U Gel''. the  

CDF point at f = 1.8 Tell and the cosmic-ray data obtained with the < K > which decreases with energy  

(squares). Curve 13. instead, includes the E710 point at. f = l.8 Tel- and the cosmic-ray data obtained with the  

< K >, which increases with energy (circles). Thus, we have demonstrated t.o what. extent the change of inelasticity  

with energy can affect data of cáó+ extracted from cosmic-ray measurements.  

An extended version of this work will appear in ref.[7].  
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Black Hole Nucleation in 331 Model*  

C.B. Perestand F. Pisano  
instituto de Física Teórica - Unesp, S. Paulo, SP  

Received October, 1994  

Even though Hawking Radiation may seem a generic feature shared by any theory of gravi-

tation, the consequences that the evaporation of Primordial Black Holes (PBH) can have on  

our cosmological scenarios differ greatly on the theory assumed to describe the matter fields.  

Here we investigate some of these consequences on the light of the SU(3)c x SU(3)L x U(1),v  

gauge model for non-gravitational interactions. We reemphasize the peculiarities of this  

model and make an explicit calculation of the rate at which P1311 nucleate in this frame-

work. We contrast our results with the ones coming from the SU(5) GUT, the SUSY-SU(5).  

the SUSY-Standard Model, and finally from the Standard Model of elementary particles.  

Recently there has been a considerable interest in SU(3)c x SU(3)L x U(1)a• gauge extensions (from now on  

331 models) [1]-[4] of the 321 Standard Model (SM) of elementary particles. This kind of models brings lu re very  

interesting new phenomenology and on the theoretical point of view it allows us to give some answers to many  

fundamental questions which have been left without explanation within the 321 SM, such as the ferntion family  

replication problem [5], the relation between the color degrees of freedom and the flavors, and the possibilit . eel lief 

third family being different [6][7). Supersymmetric extensions have been also attempted [8].  

Here we are concerned with a preliminary attempt of making cosmological applications of a :131 model. In  

particular. we are interested in calculating the black hole nucleation rate in the very early universe taking into  

account the fields of the model and then to compare the results with the predictions of the four models: the SM.  

the SUSY SM, the SU(5) GUT model, and the SUSY GUT SU(5), reported recently in the literature [9].  

Let us display the fields of the model in the symmetric phase when the 331 symmetry is preserved. We define  

the electric charge operator of the theory as  

= 1( ^, — 15A8)+ N  
e 	l  

where 

Z3 = 2 
diag (1, —1.0); 	1°  _ 	d i ag (1. 1. —2) 	 (2)  

are the diagonal generators of the SU(3) (chiral flavor) group and N denotes U(1),N charges. We can identify the  

weak hypercharge of the SM as  

2= —tab +iv; í 7 _ T3+ 2 , 

where T3  is the diagonal generator of the SU(2) (chiral flavor) group. The gauge symmetry breaking hierarchy  

SU(3)c x SU(3)L x U(1)A  

SU(3)c x SU( 2 )1. x U(l )y 	 (I)  
1  

SU(3)c x U(1)Q  

where the first step of the breaking around 3 TcV [10] is due to the VEV of the neutral component. of the  \ •calar 
triplet. All masses of the fields in the model are generated with four multiplets of scalar fields with the following  
transformation properties under the 331 group  

rte-  (1,3,0). p 	(1.3, +1), x—(1 1 3.-1)  

(1,65,0) 	 ( e) 
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and in the symmetric phase of the theory they are parameterized by 30 real scalar fields.  

There are 17 spin-1 gauge fields:  

SU(3)c 	: g;,  ^- (8,1,0); i = 1,  ...,  8;  

SU(3)L 	: 	13'1, 	(1,  8,0);  j = 1, ..., 8;  

Li (lb;  : B ^ (1,  1 . 0 ) -  
(6)  

The spin-{,-fermions of the theory consist of three triplets of leptons,  

Lr -(1,3L,0), l=c,p,r 	 (7)  

which contain 9 fields. There are not right-handed leptonic SU(3) flavor singlets. There are also three families of  

quarks with the transformation properties:  

Q1L ^• (3, 3,+2/3),  

uR ^- (3, 1,  +2/3), dR -• (3, 1, -1/3), J1R -r (3, 1, +5/3) 	 (8)  

for the first family. and  

'QnL 
	(3 , 3• -1/3)  

Jon  ^- (3.1, -4/3), enR ^• ( 3 , 1 , +2/3). suit  ^ (3, 1. -1 /3), 	 ( 9 )  

where rA = 2.3 labels the second and third families. Taking into account the color degrees of freedom we have an  

amount of 54 quarks fields. In the model there are not any spin Rarita-Schwinger fields. Then the total number  

of massless fields in the 331 model is 110.  

The rate of primordial black hole nucleation per unit volume and unit time (with t = c = ko  = G = 1) is given  

by [11][12] 

(file
^ 	

7-

^) 
i'{T) = 0.87 T 

	

fi41-r3 exp 	1GT 

where T is the temperature of the thermal bath simulating the very early universe conditions. p  is a mass regulator  

parameter close to the Planck mass, and O is a numerical factor which depends on Nr , the number of spin fields  

accessible to the system:  

O 
 

=-
15 
 ( iv12  - 23,ti',-3/2 - 13rV,_1 + , ,V._,/^ + ^Veco

1 
 

Bellow we list for each theory considered here the number of relatively massless fields (including the graviton) and  

the associate parameter O [9]  

Theory ,\' e  
SM  62 3.083  
SUSY SM  132 3.656  
SUSY SU(5) 242 3.000  
SU(5) 104 0.283  

331-Model 111 4.361  

Now we will assume that physics holds beyond the Planck scale in order to obtain the behavior of the nucleation  

rate 1(T) for each of these models under this hypothesis. The results are presented in the graphics where the  

temperature is given in p = 1 unities of Planck temperature.  

(1 0)  
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C(T) 

SUSY SM 331-Model 

Therefore we summarize the following remarkable results: The nucleation rate for the SU(5) theory increases 
with the temperature but the rate is essentially the same for both the SM and the SUSY SU(5) model. Finally, in 
this . context the 331 Model provides the smallest nucleation rate. 
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We consider in the context of 331 model of the electroweak interactions the generation of the  
lepton masses by introducing a single neutral right-handed singlet in a radiatively corrections  
scheme. By adding a lepton-barion number violating term in the Higgs potential, we show  
that one can have the right mass spectrum for the leptons without introducing a sextet of  
Higgs fields which is present in the original model.  

Let us consider the electroweak sector of the model with full gauge symmetry {I]-[2] G331 =_ SU(3)c x SU(3)L x  

U( ON where the leptons transform under G331  as (1, 3,0) and the gauge invariant renormalizable Higgs potential  

is  

V(q, p,X ) - 

 (A'(gt  Ol t  p)+Ac' Jk rTlpj\'t + H.c.]  

+ liermitian terms 	 ( I  

for the Higgs rnultiplets q (1.3, 0), p (1, 3, I), and x 	(1, 3, -1). There is the global F-symmetry. F = B + L.  
which prevent the neutrinos to get. a mass. The A'-term violates the ,F-symmetry explicitly and contains interactions  
like p°L°q¡qt , q°p° q¡1+. Now, we introduce a single right-handed neutrino in the same fashion as the R.ef.(3].  
Two neutrinos and the electron are massless at zeroth order, while the other leptons - two neutrinos. the muon.  

and the tau - are massive. Fig.l shows the one-loop contribution to the charged leptons (1 ► '. r') mass matrix.  

with  

( tt
R! 

4 u .x'  

Cux  
rn (2)  

= 
A- 4S-r' r1 h+hnl'p'

v vpr► rp f t  dx [(m0 - 
rnd)x - n:P]3 	 (3)  

where mo  stands for a typical value of the scalar masses, u p  and vx  are the VEV's of the neutral components of the  

p-  and -triplets, and A 2  = h e2  + h^ + 1► r (h's have mass dimension). The neutrino mass nrp follows the see-saw  

relation m'F.rnp = A 2 .  

The eigenvalues of the -matrix in Eq. (2) are m ►, and rn r  such that rn, + rn r  = 2rn and rrr t  - rrr„ =  

- being rn = v„fN r (fr„ is an arbitrary dimensionless Yukawa parameter and u n  is the VEV of the neutral r1-triplet.  
component). With a reasonable choice of parameters. v,2 + ur x (246 GeV) 2 , v„10 GeV. that. is f„ 0.1: r n'p 30  
MeV and v x 	1 TeV. We can also choose the A parameter in such a way that h r,h7./(.1 2  + rn'p ) < 0.5 if h !, 	h r  

- and A' 0.5. We assume that in 	GO GeV, and evaluating the integral in Eq. (3), from the one-loop diagram in  

Fig.l we obtain rn 	105 MeV and rn r 	1777 MeV (4) when the trilinear mass scale A 	1064 GeV.  

The other two neutrinos get a finite Majorana mass from the diagram of the Fig.2. Finally, the electron get a  

mass from the diagram of Fig.3.  
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