1991 XII Encontro Nacional

Partículas e Campos Particles and Fields

Sociedade Brasileira de Física

1991 Brasil XII Encontro Nacional.

Partículas e Campos Particles and Fields

SOCIEDADE BRASILEIRA DE FÍSICA

530.06

 P273 Partículas e Campos = Particles and Fields / Sociedade Brasileira de Física - São Paulo : A Sociedade, 1993
 242 p.
 XII Encontro Nacional de Física de Partículas e Campos, conline

XII Encontro Nacional de Física de Partículas e Campos, realizado em Caxambu, entre 18 e 22 de setembro de 1991 Texto em português e inglês

1.Física - Congressos. 2.Partículas 3.Teoria de Campos (Física). I.Sociedade Brasileira de Física. II.Encontro Nacional de Física de Partículas e Campos (12. : 1991 : Caxambu) III.Título: Particles and Fields

XII ENCONTRO NACIONAL DE FÍSICA DE PARTÍCULAS E CAMPOS

Caxambu, 18-22 de setembro de 1991

Esta publicação contém os trabalhos apresentados durante o XII Encontro Nacional de Física de Partículas e Campos, realizado em Caxambu, MG, entre 18 e 22 de setembro de 1991.

Como aconteceu nos anos anteriores, a reunião contou com cerca de 150 participantes, entre eles pesquisadores estrangeiros convidados especialmente a participar na reunião com palestras de revisão.

Também contamos nesta oportunidade com o financiamento da FAPESP e do CNPq. Aproveitamos a oportunidade para agradecer o apoio destas instituições de fomento à pesquisa. Agradecemos em particular à FAPESP pela concessão de auxílio para aquisição do material usado na confecção destes anais e ao Instituto de Física da UNICAMP que possibilitou sua impressão.

A realização destes Encontros e a posterior publicação dos anais são parte de uma tradição estabelecida nos anos anteriores e, por ser uma amostra representativa do esforço da produção científica no pais, esperamos que tenha continuidade nos anos seguintes.

No final deste volume apresentamos a relação nominal dos participantes aos quais estendemos nossos agradecimentos.

Comissão Organizadora Antonio Lima Santos (IFUSP) Eugênio Ramos Becerra de Mello (UFPb) José Antonio Martins Simões (UFRJ) José Augusto Chinellato (UNICAMP) Vicente Pleitez (IFT/UNESP)

XII NATIONAL MEETING ON PARTICLE PHYSICS AND FIELDS

Caxambu, 18-22 Setember 1991

This volume collects most of the material presented in the XII National Meeting on Particle Physics and Fields, which was held in Caxambu, MG, from 18 to 22 Setember 1991.

As in previous occasions there were about 150 participants, some of them visiting scientists invited to give review lectures.

The Meeting was sponsored by brazilian financial agencies FAPESP and CNPq and we express here our gratitude to them. We are grateful to FAPESP (for financial support) and to the Instituto de Física, Universidade Estadual de Campinas (printing facilities), whose support made possible the publication of this volume.

The Meeting and the publication of its Proceedings are already a tradition that, we hope, will continue in the future.

The full list of the participants appears at the end of this book. To all of them we are very grateful.

ORGANIZING COMMITEE

Antonio Lima Santos (IFUSP) Eugênio Ramos Becerra de Mello (UFPb) José Antonio Martins Simões (UFRJ) José Augusto Chinellato (UNICAMP) Vicente Pleitez (IFT/UNESP)

ÍNDICE

I. PALESTRAS DE REVISÃO E SEMINÁRIOS

1.	Osvaldo M. Moreschi "Fixing the gauge at future null infinity"	1
2.	Roberto Percacci "Mean field approach to quantum gravity" Publicado em "The Higgs phenomenon in quantum gravity" R. Percacci, Nucl. Phys. B353, 271 (1991) "Coleman Weinberg effect in quantum gravity" R. Floreanini, R. Percacci e E. Spallucci Class. And Quantum Gravity 8, L193 (1991)	
3.	S. P. Sorella "Finiteness in gauge field theories"	24
II.	CONTRIBUICÕES CIENTÍFICAS	
A.	Cosmologia e Gravitação	
1.	C. Romero e A. Barros "A presença da constante cosmológica na teoria de Brans-Dicke e a solução geral para o vazio"	36
2.	Patricio S. Letelier "On gravitational waves, vortices and sigma models"	40
3.	M. D. Maia "A constante cosmológica na cosmologia de membranas"	45
4.	V.B. Bezerra and I.B. dos Santos "Topological effects due to a cosmic string"	48
5.	J.A.S. Lima and J.M.F. Maia "Some cosmological consequences of a A-term varying as	
	$\beta H^2 + \alpha R^{-n}$ (β , α and n constants)"	52

7.	Manoelito Martins de Souza "Gauge e integrabilidade em equações lineares e não lineares" 66
8.	Manoelito Martins de Souza "Formalismo para sistemas de estatísticas generalizadas"
9.	Cesar A. Linhares e Juan A. Mignaco "Sobre a equação de Dirac em tres dimensões"
10.	Cesar A. Linhares e Juan A. Mignaco "A relação entre a equação de Dirac e as álgebras de grupos unitários para qualquer dimensão do espaco-tempo"
11.	Rudnei O. Ramos and G. C. Marques "Bubbles in the early universe"
в.	Fenomenologia
12.	F. Pisano e V. Pleitez "SU (3) \otimes U (1) model for electroweak interactions and neutrinoless double beta decay"
13.	Patricia Ball, H.G. Dosch e Erasmo Ferreira "Form factors of the charmed meson decays $D^+ \to \overline{K}^{o*} e^+ \nu$
14.	J. Bellandi, R.J.M. Covolan, C. Dobrigkeit, C.G.S. Costa e L.M. Mundim "Estudo da distribuição lateral da cascata nucleonica induzida por um único nucleon na atmosfera"
15.	V. E. Herscovitz e F. M. Steffens "Skyrmions não vibrantes e vibrantes"
16.	Juan A. Mignaco e Stenio Wulck "Os solitons do modelo de Skyrme com o termo de massa do pion" 103
17.	Juan A. Mignaco e Stenio Wulck "Sobre o conteudo físico do Modelo de Skyrme"
18.	G. Krein "Massa hadrônicas num modelo com confinamento e simetria quiral" 109
19.	C.E. Navia, F.A. Pinto, H. Portella, H.V. Pinto, R.H. Maldonado "Mini-Jets scen in cosmic ray interaction with carbon target chamber" . 118
20.	R. Simonetti e C. Escobar "Alguns aspectos da detecção de neutrinos cosmológicos e matéria escura"

٩

•

•

21.	A.S. de Castro, H.F. de Carvalho e A.C.B. Antunes	
	"Espectro de Massas de Bárions no modelo quark-diquark"	126
С.	Teoria de Campos	
22.	H. Aratyn, C.P. Constantinidis, L.A. Ferreira, J.F. Gomes, A.H. Zimmermann "Simetrias de Spins mais Altos do Modelo de Toda Conforme Afim"	130
23.	M.E.V. Costa e H.J. de Vega "Quantum string scattering in shock waves backgrounds"	136
24.	Rudnei O. Ramos, E.C. Marino, G.C. Marques, J. S. Ruiz "Correlation function and mass spectrum of quantum vortices"	140
25.	Elso Drigo Filho e Regina Maria Ricotta "Supersimetria, algebrização parcial e o potencial V (x) = $x^2 + \lambda$ ($x^2/(1 + g x^2)$)"	144
26.	Elso Drigo Filho "Resolução da equação de Schroedinger com potencial bi-dimensional usando supersimetria"	148
27.	Álvaro de Souza Dutra "Cálculo das funções de Green do modelo de Schwinger generalizado pelo método de integração funcional"	152
28.	S.A. Dias e A. de Souza Dutra "An alternative prescription for gauging Floreanini-Jackiw chiral bosons"	156
29.	Carlos Alberto S. Almeida e J. Abdalla Helayel-Neto "Acoplamento Yang-Mills/modelo sigma (2,0) em variedades com torção"	1 6 4
30.	H. Boschi-Filho "A expansão do heat kernel no espaco-tempo curvo a temperatura finita"	168
31.	B.M. Pimentel, A.T. Suzuki and J.L. Tomazelli "Radiative corrections in (2 + 1) - dimensional QED"	172
32.	J.R.S. Nascimento and E.R. Bezerra de Mello "Fermions and O (3) - nonlinear sigma model in a three-dimensional space-time"	176
33.	Jambunatha Jayaraman, Rafael de L. Rodrigues e A.N. Vaidya "O espectro do oscilador de Dirac via álgebra de oscilador generalizado de Wigner Heisenberg"	184

.

.

•

.

188
192
196
200
209
214
218
222
226
230
234
239
241

•

FIXING THE GAUGE AT FUTURE NULL INFINITY

Osvaldo M. Moreschi FAMAF Facultad de Matemáticas Astronomía y Física Universidad Nacional de Córdoba Laprida 854 5000 Córdoba Argentina

ABSTRACT

After a review of the fundamental concepts around the notion of isolated systems in curved spacetimes, we analyze the problem of the ambiguities of the supertranslations at future null infinity. We propose a tool that provides a clean way to fix the gauge problem; namely the notion of "nice sections". We conclude with some resent results on "nice sections" on a particular class of radiating spacetimes.

*

Member	ર્ભ	Consejo	Nacional	de	Investigaciones	Cieptificas	y	técnicas
CONICET.								

1 INTRODUCTION

Among the interactions defined by physicists, gravitation appears as the weakest of them. And since the source of gravitational interactions is the presence of matter, physically interesting gravitating systems normally involve large concentration of it.

There are two types of physical systems where the use of the general relativistic picture of the gravitational interactions is essential, they are the systems that involve very compact objects and the systems that involve all known matter, namely the universe. We will next be concerned with the first type of systems.

In the study of very compact objects it is generally the case that we can neglect the influence of the rest of the universe on them. In this case we say that the system can be modeled by an isolated system. In the Newtonian picture an isolated system is normally represented by a gravitational potential that goes to zero at large distance as 1/r. In a relativistic theory of gravity one expects that at large distances from the central object the spacetime will approach more and more the characteristics of Minkowski space; more precisely, the discussion of isolated systems is made in terms of the class of spacetimes which have their curvature going to zero when one recedes to infinity, these are called *asymptotically flat spacetimes*.

The notion of asymptotically flat spacetimes (that we will discuss in the second part of our talk) introduces a partial boundary for the spacetime, that is very convenient for studying the asymptotic physical fields. However a new ingredient appears (in comparison with what happens in Minkowski spacetime), now the gauge group at infinity is much larger than the Poincaré one; in fact it has infinite dimension. This has as a consequence that it is much more difficult to handle the physical fields in this case. We will later propose a solution for the gauge problem.

2 ASYMPTOTIC FLATNESS

2.1 WHAT SHOULD WE LOOK FOR?

Since isolated systems in relativistics theories of gravity should be modeled by asymptotically flat spacetimes, we should have a precise idea of the meaning of this concept. A definition of an asymptotically flat spacetime should include somehow the statement that the curvature tensor tends to zero when one recedes from the central region where the sources are placed. However in a Lorentzian spacetime there are three types of distinct direction which one could take to move away from the central region; besides, one should be very careful with the idea of a tensor tending to zero since in principle, the notion of the limit of a tensor is not geometrically clear. Comparison of components with respect to some particular chart will not work. Another problem that should also be considered is the one of having to expressed the conditions *in the limit to infinity*.

Since we would like to take into account the effects of radiation, it turns out that it is more convenient to discuss these phenomena when one recedes along null directions; therefore we should search for the notion of asymptotic flatness at null infinity.

Although the notion of isolated systems is very frequent in physics, we note that there is a great difference whether the theory one is considering involves the very structure of the spacetime or not. For example in Maxwell theory in Minkowski spacetime, the notion of isolated system does not introduce any problem. In this case if one have a localized distribution of charges, and the electromagnetic field goes to zero at infinity (in an appropriate way) one says to have an isolated system. In contrast in general relativity the spacetime structure is not given *a priori*, in fact using Einstein equation, it depends on the matter distribution. In this case instead it is much more difficult to figure out which are the appropriate boundary conditions to be imposed on the spacetime and which are also consistent with the field equation.

In order to deal with the difficulties of taking the limits of tensor along asymptotic regions, it has been convenient the use of the conformal techniques, by which one introduces a conformal metric

$$\tilde{g}_{ab} = \Omega^2 g_{ab}$$

Since to get to infinity one needs to cover an infinite distance, with respect to the metric g_{ab} , one may think that if one makes an appropriate choice of Ω , infinity will be at a finite distance with respect to \tilde{g}_{ab} . The function Ω should go to zero as we approach infinity. Also in these techniques one usually attaches new points to the spacetime manifold, so that the region where $\Omega = 0$ is included in a new enlarged manifold. By doing this

one could replace limits to infinity by statements on these boundary points.

In the definitions of spacetimes representing isolated systems, one has to specify the precise asymptotic behavior of the geometry as Ω goes to zero. The choice of appropriate asymptotic conditions for a spacetime is a delicate one, since conditions too strong will rule out solutions that clearly represent isolated physical systems, and conditions too weak will allow for too many cases in which useful aspects of the asymptotic behavior of physical fields are messed up with unnecessary bad behavior.

It is interesting to consider the possibility of separating the notion of isolated system in general relativity from a particular field equation. This is suggested by the following fact. Taking into account that any physically meaningful gravitational theory has to have Newton theory as a weak field limit, one can deduce from the geodesic hypothesis that in such a limit the time component of the metric should have the following asymptotic behavior:

$$g_{00} = 1 + \frac{m}{r} + O(\frac{1}{r^2})$$

Then, assuming some *uniform smoothness condition* (that we will not discuss here), one could expect that all physically meaningful theories of gravity should admit the notion of asymptotic flatness.

However, in studying this kind of ideas it is good to recall a statement appearing in the literature¹: "so far no firm arguments have been presented either in favour of or against the conjecture that nonstationary isolated systems can really be described by asymptotically flat spacetimes, in the sense in which this concept has been made precise up to now".

We can deal partially with this situation by working with a notion of isolated system which is independent of a particular field equation; in this way one should see later whether the theory one likes admits this notion. We will next present a definition of an asymptotically flat spacetime which does not refer to any field equation.

2.2 GENERAL FUTURE ASYMPTOTICALLY FLAT SPACETIMES²

Let M be a C^{∞} manifold and g a C^3 metric in M. We define the orientable spacetime (M,g) to be general future asymptotically flat (GeFAF) if there exists a manifold \tilde{M} with boundary g^+ , metric \tilde{g}_{ab} and a function Ω on \tilde{M} such that \tilde{M} is diffeomorphic to (and therefore identified with) $M \cup g^+$ and

a) on M: Ω is C^{∞} , $\Omega > 0$ and $g_{ab} = \Omega^2 g_{ab}$;

b) at \mathfrak{I}^+ : $\Omega = 0$ and Ω is \mathbb{C}^0 ; \mathfrak{I}^+ is diffeomorphic to $\mathbb{S}^2 \times \mathbb{R}$; at every point of \mathfrak{I}^+ there end future directed null geodesics of \tilde{M} , and \tilde{g} is non-degenerate; and finally

c) the leading behavior of the Riemann tensor for $\Omega \rightarrow 0$ can be expressed by

$$R_{abc}^{d} = f(\Omega) \hat{R}_{abc}^{d} + \delta R_{abc}^{d}$$
 (2.1)

where there exists $\Omega_0 > 0$ such that for $\Omega < \Omega_0$, $\frac{df}{d\Omega} > 0$, $\lim_{\Omega \to 0} f = 0$; \mathbb{R}_{abc}^d is a regular tensor at \mathfrak{I}^+ , and $\delta \mathbb{R}_{abc}^d$ is a tensor that goes to zero faster than $f(\Omega)$ for $\Omega \to 0$. Condition (2.1) must be understood as saying that every component of the Riemann tensor \mathbb{R}_{abc}^d with respect to an orthogonal tetrad of \tilde{g}_{abc} , which is regular at \mathfrak{I}^+ , behaves like eq. (2.1).

Note that from condition b) one can see that we are implicitly requiring g_{ab} to be C¹ at \mathfrak{I}^* , since we can write and solve the geodesic equation up to \mathfrak{I}^* itself[†]. Also observe that in general the tensor \hat{R} is unrelated to the curvature of the metric g.

This definition of asymptotic flatness along null directions is clearly more general that former ones; in particular it is clear that implies a flatness condition, and also has the property that it does not refer to any field equation.

2.3 DISCUSSION OF GEFAF SPACETIMES

Since the definition of GeFAF spacetimes involves metric conditions along with curvature conditions, it seems that a direct way of obtaining information is to introduce a tetrad, if naturally available, in order to study everything with respect to it. The use of null tetrads for the study of gravitational radiation has proved to be quite useful over the years. Here we will use the G.H.P. notation³ for the spin coefficients.

Using these technic one can prove for example that future null infinity is a null hypersurface. Also that the components Ψ_4 and Ψ_3 of the curvature tensor (in the above notation) behave like radiation field, although one has not mentioned any field equations yet!

[†]9⁺ is pronounced "seri plus".

In what follows we give the explicit asymptotic behavior of the spacetime implied by the definition of asymptotic flatness. We make use of the fact that the conformal factor Ω can be taken as the inverse of a radial coordinate that measures affine distance along outward null geodesics; that is:

$$\Omega = \frac{1}{r} ;$$

and we also take the physical asymptotic behavior described by:

$$f(\Omega) = \Omega$$

For completeness we write down next all the quantities that can be defined in our formalism.

In the framework we are considering, the most basic object is the tetrad. Each vector of the tetrad can be expressed in terms of the coordinate system $(x^0 = u, x^1 = r, x^2, x^3)$ by the equations

$$f^{a} = \left(\frac{\partial}{\partial r}\right)^{a}$$

$$m^{a} = \left(\xi^{\frac{1}{2}} \frac{\partial}{\partial x}\right)^{a} \qquad \underline{i} = 2,3$$

$$n^{a} = \left(\frac{\partial}{\partial u} + U \frac{\partial}{\partial r} + X^{\frac{1}{2}} \frac{\partial}{\partial x^{\frac{1}{2}}}\right)^{a};$$

where m^4 is a complex vector, and it is satisfied that

$$l^{a} n_{a} = 1$$
$$m^{a} \overline{m}_{a} = -1$$

and all other contractions give zero.

The torsion free metric conditions on the connection provide equations that relate the spin coefficients, as defined by G.H.P., and the tetrad components². These equations can be used to express the spin coefficients in terms of the tetrad components as described in ref. [2].

The definition of asymptotic flatness impose conditions on the behavior of the metric and the curvature tensor explicitly. Using these conditions and after a long calculation⁴ one can obtain the leading behavior of the different fields.

The spin coefficients with spin-boost weight have the following asymptotic behavior

$$\rho = -\frac{1}{r} + 0 - \frac{\sigma^{0} \overline{\sigma}^{0}}{r^{3}} + O(r^{4})$$

$$\sigma = \frac{\sigma^{0}}{r^{2}} + 0 + O(r^{4})$$

$$\tau = \frac{\overline{\delta}_{0} \sigma^{0}}{r^{2}} - \frac{(\psi_{1}^{0} + 2 \sigma^{0} \overline{\delta}_{0} \overline{\sigma}^{0})}{r^{3}} + O(r^{4})$$

$$\kappa = 0$$

$$\rho' = \frac{1}{2r} + \frac{(\psi_{2}^{0} + \sigma^{0} \overline{\sigma}^{0} + \delta_{0}^{2} \overline{\sigma}^{0})}{r^{2}} + O(r^{-3})$$

$$\sigma' = -\frac{\overline{\sigma}^{0}}{r} + \frac{(\overline{\delta}_{0} \delta_{0} \overline{\sigma}^{0} - \frac{1}{2}\overline{\sigma}^{0})}{r^{2}} + O(r^{-3})$$

$$\tau' = -\overline{\tau}$$

$$\kappa' = O(r^{2}) \quad .$$

The spin coefficients ρ and σ express also the expansion, shear an twist \cdot of the congruence of null geodesics generated by the vector field f.

The leading behavior of the curvature components is given by

where the ψ 's are the components of the Weyl tensor, and A and the Φ 's are the components of the Ricci tensor.

One often deals with the case of Einstein vacuum field equation, that is the case of zero Ricci tensor. The behavior of the Weyl tensor in this case is usually called peeling behavior.

In analogy with the case of Maxwell field in Minkowski spacetime one associates the component Ψ_4 to the notion of radiation. So $\Psi_4 = 0$ means absence of radiation. In fact, neglecting divergent asymptotic behavior of the Weyl tensor, one can actually prove that $\Psi_4 = 0$ implies that all the other components are constant in time. This reinforce the interpretation of Ψ_4 as the gravitational radiation content of the spacetime.

It is also observed that ψ_3 refer to radiation content, since when there is no radiation $\psi_3 = 0$.

We will later refer to the physical meaning usually attached to the components ψ_2 , ψ_1 and ψ_0 .

3 ASYMPTOTIC SYMMETRIES

3.1 THE BMS GROUP

The asymptotic structure of an asymptotically flat spacetime singles out a preferred set of coordinate systems and tetrads at null infinity. This is analogous to the case of Minkowski space in which the metric gives preference to the orthogonal Cartesian coordinates along with their associated tetrads.

A set of coordinates at future null infinity are said to be of Bondi type if the restriction of the conformal metric to the boundary of the spacetime is given by the metric of the unit sphere; that is:

$$\widetilde{g}\Big|_{g^+} = -dS^2 = -\frac{4}{(1+\zeta \overline{\zeta})^2} ;$$

where we have used stereographic coordinates.

Transformations among these coordinates system form a group; the so called BMS^{5.6} group.

The following is a representation of the Lie algebra of the BMS group in terms of the generators acting on \mathfrak{s}^* :

$$R_{z} = i \left(\zeta \frac{\partial}{\partial \zeta} - \overline{\zeta} \frac{\partial}{\partial \overline{\zeta}}\right) \qquad B_{z} = \frac{(\zeta \overline{\zeta} - 1)}{(1 + \zeta \overline{\zeta})} u \frac{\partial}{\partial u} - \zeta \frac{\partial}{\partial \zeta} - \overline{\zeta} \frac{\partial}{\partial \overline{\zeta}}$$

$$R^{+} = - \left(\zeta^{2} \frac{\partial}{\partial \zeta} + \frac{\partial}{\partial \overline{\zeta}}\right) \qquad B_{z} = \frac{2\zeta}{(1 + \zeta \overline{\zeta})} u \frac{\partial}{\partial u} + \zeta^{2} \frac{\partial}{\partial \zeta} - \frac{\partial}{\partial \overline{\zeta}}$$

$$R^{-} = \overline{R^{+}} \qquad B^{-} = \overline{B^{+}}$$

$$p_{\rm hea} = Y_{\rm hea} \frac{\partial}{\partial u} \quad ;$$

where $Y_{\rm bm}$ are the spherical harmonics, and 1 as usual is any non-negative integer, while $|m| \leq 1$. In Minkowski space one can chose the Bondi frame so that the generators $R_{\rm g}$, R^+ and R^- coincide with the Killing rotations, the generators $B_{\rm g}$, B^+ and B^- coincide with the boosts symmetries, and the generators $p_{\rm l_1m}$ with $l_{\rm l} \leq 1$ coincide with the generator of translations. The rest of the infinite family of generators $p_{\rm l_2m}$ with $l_{\rm g} > 1$ do not have a Minkowskian analog and are associated to the notion of the so called supertranslations.

The appearance of the supertranslations constitutes the main difference

between the asymptotic symmetries of an isolated system and the symmetries of Minkowski space; and because of this it is difficult in general to extend the physical concepts of flat space to the boundary \mathcal{I}^* of an asymptotically flat spacetime.

3.2 PHYSICAL QUANTITIES AT FUTURE NULL INFINITY

One of the main reasons for introducing the notion of isolated systems is that one would like to have access to physical concepts, like total momentum or total angular momentum of the system, in order to simplify the description of the system.

Therefore having defined the notion of asymptotically flat spacetime, we would like now to know what is the appropriate notion of *total momentum* at null infinity.

Let us recall that in flat spacetime the total momentum is given as an integral over a spacelike hypersurface, where the integrand contains the translational Killing vectors as argument. We also know that this integral is equivalent to an integral on the boundary of the hypersurface, that is on a 2-dimensional surface.

To each generator of Bondi transformations one can associate an integral on a section of 9^{*} . Following the approach of Geroch and Winicour⁷, as described by Walker⁸, we define de components of the supermomentum with respect to a section u=constant of scri, by the equation

$$P_{\rm im}(u) \equiv -\frac{1}{\sqrt{4\pi}} \int_{u} Y_{\rm im} (\psi_2^0 + \sigma^0 \, \overline{\sigma}^0 + \delta_0^2 \, \overline{\sigma}^0) \, dS^2$$

Only the P_{bn} with $1 \le 1$ have an invariant meaning since only the four generator of translation generate an invariant subgroup of the BMS group. It is because of this reason that the *Bondi momentum*, defined by:

$$(P^{0},P^{1},P^{2},P^{3}) = (P_{00}, \frac{1}{\sqrt{6}}(P_{11} - P_{1\cdot 1}), -\frac{i}{\sqrt{6}}(P_{11} + P_{1\cdot 1}), \frac{1}{\sqrt{3}}P_{10})$$

is a physically meaningful object.

The Bondi mass is given by P_{00} ; from which it can be seen that when we take a frame for which the spacelike components of the Bondi momentum are zero, the Bondi mass gives the total energy content of the spacetime.

The fact that translations form a normal subgroup of the BMS group, permits to relate the Bondi momentum defined on two different sections of

scri. In fact one can express a flux law.

Since there is no Poincaré subgroup of the BMS group, it is not simple to extend the definition of total angular momentum to asymptotically flat spacetimes. In fact, there are several inequivalent definitions of angular momentum at null infinity. The usual problem with these definitions is that they depend³ too much on the section in which they are calculated; and so it is very difficult to relate the corresponding angular momentum values which belong to two different cuts. A further difficulty in standard approaches is the supertranslation ambiguity, since even if one had succeeded in relating a definition for two different cuts, one is still left with the supertranslation gauge freedom. The only definition of angular momentum which is free of supertranslation ambiguities is the one introduced in reference [9]. In order to get rid of the supertranslation gauge dependence, a unique Bondi system was defined by imposing some conditions in the limit of the retarded time ugoing to -.... This kind of construction has advantages? and disadvantages. One natural criticism is that we think of an astrophysical observer as residing at future null infinity, which we assume has complete information on the local properties of the spacetime. This observer, using the local information, should be able to make a physical description of the system. If we were forced to define a Universal center of mass system by using the properties of the spacetime at the retarded time $u = -\infty$, then, this would imply going against the idea of local information description.

Since the definition of angular momentum at future null infinity is a difficult task, one can imagine that the definition of multipole moments will be even worse. As usual the difficulty has to do with the supertranslation problem, since one does not know in general what to do with it. In \mathfrak{I}^* Janis and Newman¹⁰ have argued on a interpretation of data at null infinity and multipole moment structure of the sources. In relation to this, a personal interpretation is that: the teading behavior of Ψ_2 is associated with the monopole structure which in turn has to do with the dipole structure which in turn has to do with the dipole structure which in turn has to do with the dipole structure which in turn has to do with the angular momentum aspect of the sources, and the leading behavior of Ψ_0 is associated with the higher multipole structure which in first order would describe the quadrupole aspect of the sources. For the cases of static and stationary spacetimes Geroch¹¹ and Hansen¹² have introduced a definition of multipole moments; however their construction is done at spacelike infinity. In other words, there is still lacking a Systema-

tic study of multipole moments at future null infinity.

4. SUPERCENTER OF MASS SYSTEM

4.1 "NICE" SECTIONS OF FUTURE NULL INFINITY

The fact that the group of symmetries of null infinity, of an asymptotically flat spacetime, is not the Poincaré group but the infinite dimensional BMS group, has been a difficulty in the physical understanding of the geometric asymptotic fields.

Over the years a number of trials have been made in order to restrict this infinite dimensional freedom to a more convenient one. Some of these efforts included conditions of a global character, as has been mentioned, in which a unique Bondi system was singled out by imposing conditions in the limit for the retarded time u going to $+\infty$, or $-\infty$.

Let us recall that in Minkowski space, every point singles out a Lorentz group, which leaves that point intact (those are the Lorentz rotations around that point). Analogously, in a general future asymptotically flat spacetime, any section S of \mathcal{F}^* singles out a set of fix generators of the BMS group that leave S intact. For a general space, S will not be the intersection of the future null cone of a point with \mathcal{F}^* .

Is there any invariant way we can fix a family of sections at future null infinity?

We present here a choice of retarded time which is local in character, in contrast to the previous ones, and which has a clear geometrical meaning.

We define¹³ a section S to be *nice* if the G-W supermomentum P_{im} satisfies

 $P_{im} = 0 \quad \text{for} \quad i \neq 0 . \tag{4.1}$

Let us study next this definition in the simple case of a stationary isolated system.

4.2 THE CASE OF STATIONARY ASYMPTOTICALLY FLAT SPACETIMES

When there is no radiation content in the spacetime, we can prove¹³ that it is possible to find a section S that satisfies

$$\tilde{P}_{L}(\tilde{S}) = 0 \quad \text{for} \quad I \neq 0;$$

which is our condition of nice section.

If we now make a translation from \overline{S} , we will still get a *nice* section. In other words, there is a 4-parameter family of *nice* sections in stationary isolated systems.

In order to determine a unique set of sections, we select a family of them that *follows* the system, as we now explain. Using the construction of reference [9], we can define an asymptotic section for the retarded time $u \rightarrow -\infty$, by the requirement that the angular momentum coincides with the intrinsic angular momentum. Then, if we allow only for translations that are parallel to the Bondi momentum, we will get a unique set of sections on g^+ which, in this particular case, agrees with the set of sections given by u = constant of the Center of Mass Bondi system⁹.

The question arises: can we carry out this construction in the presence of radiation?

4.3 THE CASE OF "NICE" SECTIONS IN RADIATING ISOLATED SYSTEMS

It was pointed out in ref. [9] that in any asymptotically flat spacetime admitting the notion of angular momentum, one could single out a Center of Mass Bondi system, which in particular contains an asymptotic sphere in the limit $u \rightarrow -\infty$ which satisfy the property of *nice* spheres. As was mentioned in the previous section, when there is no radiation content, we can obtain a unique set of *nice* sections by performing timelike translations which are parallel to the Bondi momentum. Since we know that physically reasonable astronomical systems will radiate gravitational energy very slowly, we expect to be able to find a consecutive section from the original one, which will still be *nice* even in the general radiating case.

More concretely in ref.[13] it was shown that if the time derivative of

$$\psi \equiv \psi_2^0 + \sigma^0 \, \dot{\overline{\sigma}}{}^0 + a_0^2 \, \overline{\sigma}{}^0$$

is less than one; that is

ψ́<1;

then given an initial nice section S, there exists a local family of nice sections around S.

At this point two questions remain open: a) is the condition $\dot{\psi} < 1$ physically reasonable?, and b) can we find an original *nice* section S in a non-trivial radiating spacetime?

Question a) was answered in ref. [13]. It turns out to be a reasonable condition; since even studies on systems including collapsing black holes have

In the next subsection we refer to question b).

4.4 RESULTS ON "NICE" SECTIONS IN THE ROBINSON-TRAUTMAN METRICS

A very important example of radiative spacetimes is the one of Robinson-Trautman metrics¹⁴ (R-T). These are spacetimes which are solutions of the vacuum Einstein equation, and which contain a congruence of null geodesics, with vanishing shear and twist, but diverging.

We will specialize our study to those (R-T) spacetimes whose null congruence reaches future null infinity and has no angular singularities.

From the assumption that the twist is zero, it can be deduced that the congruence is hypersurface-orthogonal; that is, by hypothesis, there exists a family of null hypersurfaces which contain shear-free null geodesics. This fact allows us to introduce a coordinate system as follows. Let u be a parameter which labels these null hypersurfaces with u=const. We can associate an affine parameter r for the null geodesics of the congruence.

To complete the coordinate system we introduce a pair of complex stereographic coordinates ζ and ζ for the 2-surfaces $S_{u,r}$ defined by u=const., r=const., which are topologically 2-spheres. The pair (ζ, ζ) labels the geodesics in the hypersurface u=const.

With this choice of coordinates, the Robinson-Trautman line element takes the form:

$$ds^{2} = \left(-2 H r + K + 2 \frac{\Psi_{2}^{0}(u)}{r}\right) du^{2} + 2 du dr - \frac{r^{2}}{P^{2}} d\zeta d\overline{\zeta} ;$$

where P is a function of u, ζ and ζ , and the functions H and K are related to P through:

where (.) stands for $\partial/\partial u$, and Δ is the 2-dimensional Laplacian for the 2-surfaces $S_{\mu\nu}$ with line element

$$dS^2 = \frac{1}{P^2} d\zeta d\overline{\zeta}$$

The function Ψ_2^0 is the coefficient of the leading term in an expansion in powers of (1/r) of Ψ_2 , which represents a component of the Weyl tensor in the spin coefficient formalism.

The vacuum condition becomes an equation for P as follows,

$$-2 \Psi_2^0 + 6 \Psi_2^0 H = \frac{1}{2} \Delta K ;$$

which is called the Robinson-Trautman equation.

An immediate solution to this equation is V = constant, which when V = 1 characterizes the Schwarzschild metric. In several works^{15,16,17,18} it has been indicated that the R-T metrics of the spherical type tend asymptotically to the Schwarzschild form. More concretely, in ref.[16] it was established that the Schwarzschild solution is asymptotically stable in the Lyapunov sense.

This means that when the retarded time u tends to ∞ the R-T spaces cease to radiate, since they tend to the Schwarzschild spacetime which is static. Then this suggests that probably in this asymptotic regime, one can find *nice* sections (which we know exists in stationary spacetimes).

In fact in the Appendix it is proved that in the R-T spaces one can find nice sections in the asymptotic region of g^+ for $u \longrightarrow \infty$.

In this way we answer question b) of section 4.3, on the existence of *nice* section for non-trivial radiating spacetimes.

5 FINAL COMMENTS

Whether one is interested in asymptotically flat spacetimes because one wants to tackle problems of celestial relativistic mechanics, or the quantization of the gravitational degrees of freedom, one is always faced with the gauge problem at null infinity. We have here presented, by a clear geometric and physical construction, a way of fixing this gauge problem.

ACKNOWLEDGMENT

The calculations described in the Appendix were done in collaboration with Simona Frittelli.

APPENDIX

The Robinson-Trautman equation

$$-2 \Psi_2^0 + 6 \Psi_2^0 H = \frac{1}{2} \Delta K ;$$

can be simplified by noting that the function Ψ_2^0 can be made constant by redefining u without involving other coordinates; more concretely, by a transformation of the form u' = f(u).

It is convenient to make use of the GHP notation³, where the differential operators edth and edth bar are defined; and which in our case, for a function f of spin weight s, become⁴

$$\delta f = \frac{\sqrt{2}}{r} P^{1-\epsilon} \frac{\partial}{\partial \zeta} (P^{\epsilon} f)$$

and

$$\overline{\theta}_{f} = \frac{\sqrt{2}}{r} P^{1+*} \frac{\partial}{\partial L} (P^{*}_{f})$$

respectively. Furthermore, we define the function $V(u,\zeta,\zeta)$ and P₀ by

$$P_0 \equiv \frac{(1+\zeta\overline{\zeta})}{2}$$

. and

With this conventions, the Robinson-Trautman equation can be put in the following form:

$$- \mu \dot{V} = V^4 \dot{\sigma}^2 \overline{\sigma}^2 V - V^3 \dot{\sigma}^2 V \overline{\sigma}^2 V , \qquad (1)$$

where

$$\mu = -3 \Psi_2^0 > 0$$

and $\overline{\sigma}$ and $\overline{\overline{\sigma}}$ are defined with respect to the unit sphere; that is

Originally the edih operator is denoted by $\overline{\partial}$, which however we are going to use to represent the edih operator for the unit sphere, since it will appear frequently. For this reason we here denote the original edih operator by $\overline{\partial}_{\perp}$.

$$\delta f = \sqrt{2} P_0^{1-\epsilon} \frac{\partial}{\partial \zeta} (P_0^{\epsilon} f)$$

and

$$\bar{d}f = \sqrt{2} P_0^{1**} \frac{\partial}{\partial u} (P_0^{-1}f) \\ \delta \bar{\zeta}$$

The natural coordinate system adapted to the R-T family of spacetimes, which we have already used in the last section to express the line element of the Robinson-Trautman metrics, does not coincide with a Bondi system; instead, it belongs to a more general class of coordinate systems that we could call NU (Newman-Unti) type.

The induced conformal metric on scri in terms of a NU system will be

$$d\tilde{s}^2 = -2dud\omega - \frac{1}{P^2} d\zeta d\bar{\zeta}$$

where one has taken $\omega = 1/r$ and $P = P(u,\zeta,\zeta)$ is smooth and positive. Among NU coordinates there exists the freedom in the choice of the coordinate u at future null infinity, given by

$$u^* = G(u,\zeta,\overline{\zeta})$$
;

where one should also change accordingly the conformal factor $\Omega = r^{-1}$ and the radial affine coordinate r by

and

$$\Omega^* = \dot{\Omega} \Omega$$

for some smooth function G such that G is also smooth and positive. In this way one obtains another coordinate system (u, r, ζ, ζ) in a neighborhood of future null infinity which is also of the NU type; for which

$$\mathbf{P}^* = \mathbf{G}^{\mathsf{I}} \mathbf{P}$$

A Bondi coordinate system can be characterized in these terms by those which have the property that

$$\mathbf{P} = \mathbf{P}_0 = \frac{(1 + \zeta\zeta)}{2}$$

system follows coordinate adapted It that (u.r.Č.Č). 8 to the Robinson-Trautman metrics, is related coordinate lo 8 Bondi system $(u^{B}, r^{B}, \zeta^{B}, \overline{\zeta}^{B})$ by a transformation for which

More explicitly the relating transformation has the asymptotic form

$$u^{B} = \int_{u_{0}}^{u} V(u^{*}, \zeta, \overline{\zeta}) du^{*} + u_{0}^{B}(\zeta, \overline{\zeta}) + o(1/r)$$
$$r^{B} = V^{-1} r + o(1)$$
$$\zeta^{B} = \zeta \quad ;$$

where $u_0^B(\zeta, \overline{\zeta})$ is an arbitrary smooth function. Note that u^B and u have the same origin, that is they define the same section $u = u^B = 0$, if one chooses $u_0^B(\zeta, \overline{\zeta}) = 0$ and $u_0 = 0$.

In ref. (19) it was shown that in the asymptotic future one can expressed the function V by

$$V = 1 + \left(\sum_{\substack{i=1\\j=1\\i \le m \le 1}}^{\infty} \delta_a^{im}(u)\right) Y_{im}(\zeta, \overline{\zeta}) ;$$

where the δ 's have the following asymptotic behavior

$$\delta_{n}^{lm}(u) = \exp \left(\frac{-6}{\mu} n u\right) q_{n}^{lm}(u) ,$$

in which the q_n^{lm} are polynomials of order s, with s < n.

Therefore one can write the transformation from RT coordinates to Bondi coordinates in terms of this expansion

$$u^{B} = \int_{u_{0}}^{u} \left(1 + \sum_{n} \delta_{n}^{1m}(u^{*}) Y_{kn}(\zeta, \overline{\zeta}) \right) du^{*} + u_{0}^{B}(\zeta, \overline{\zeta})$$
$$= u - u_{0} + \left(\sum_{n} \int_{u_{0}}^{u} \delta_{n}^{1m}(u^{*}) du^{*} \right) Y_{kn}(\zeta, \overline{\zeta}) + u_{0}^{B}(\zeta, \overline{\zeta})$$

and carrying out the integration, one obtains

$$u^{B} = u - u_{o} + \left(\sum exp^{\left(\frac{-6}{\mu} - n - u\right)} p_{n}^{Im}(u)\right) Y_{Im} - \left(\sum exp^{\left(\frac{-6}{\mu} - n - u_{0}\right)} p_{n}^{Im}(u_{0})\right) Y_{Im} + u_{0}^{B}(\zeta, \overline{\zeta}) \quad (4.*)$$

where again $p_n^{lm}(u)$ is a polynomial of degree s < n.

It is observed in the last expression that the departure of the RT coordinate system from a Bondi coordinate system is given in terms of an asymptotic expansion of the form

$$\Delta = \sum_{\substack{n \\ i \\ j \\ -1 \le m \le 1}}^{\infty} \varepsilon_{a}^{1m}(u) Y_{bm}(\zeta, \overline{\zeta}) ;$$

where the $\varepsilon_n^{Im}(u)$ have similar behavior as the $\delta_n^{Im}(u)$; in particular they are governed by the exponential exp(-6nu/ μ). We can then carry out a sum, up to certain order n=N to make an approximation of this expression with error of order N+1. All the discussion on the asymptotic behavior of the δ_n of ref. [19] are applicable to this expansion also.

The first order calculation

Let us assume that the section $u^B = 0$ coming from the above transformation does not coincide with a *nice* section; then we can try to reach one of them by a further Bondi transformation

$$\widetilde{u}^{B} = K (u^{B} - \gamma)$$

$$\zeta^{B} = \frac{a \zeta^{B} + b}{c \zeta^{B} + d}$$

Then the supermomentum in the new section $\tilde{u}^B = 0$, with respect to the new Bondi system, is given by

$$\tilde{P}_{lm}(\tilde{u}=0) = -\frac{1}{\sqrt{4\pi}} \int_{\tilde{S}=(\tilde{u}=0)} \tilde{P}_{lm}(\zeta,\zeta) \Psi(\tilde{u}=0) d\tilde{S}^2$$

where we are using the definition

$$\Psi \equiv \Psi_2 + \sigma \,\overline{\sigma} + \sigma^2 \overline{\sigma} ,$$

in order to simplify the expression.

If we set $u_0^B = 0$, then the section $u^B = 0$ coincide with the section $u = u_0$ of the original RT coordinate system. Then, since the RT metrics tends in the asymptotic future to the Schwarzschild space, for which the sections u = constant are *nice*, we expect that if we take u_0 very big the section $u^B = 0$ will be very close to a *nice* section. More concretely we expect γ to be small, in some appropriate measure, and K to be almost the identity.

We can also express the supermomentum in the new section \overline{S} with respect to the original Bondi system, giving

$$\tilde{P}_{im}(\tilde{u}^{B}=0) = -\frac{1}{\sqrt{-4\pi}} K_{im}^{i'm'} \int_{\tilde{S}=(u=\gamma)} Y_{i'm'}(\zeta, \bar{\zeta}) [\Psi^{B}(u^{B}=\gamma) - \vartheta^{2}\bar{\vartheta}^{2}\gamma] dS^{2};$$

where the matrix $K_{lm}^{l'm'}$ is the transformation matrix of the generators of supertranslations, that is

$$\tilde{p}_{\rm im} = K_{\rm im}^{\rm l'm'} p_{\rm l'm'};$$

and where the generators are given by

$$p_{\rm lm} = Y_{\rm lm}(\zeta,\overline{\zeta}) \frac{\partial}{\partial u}$$

The quantity Ψ^{8} can be expressed by

$$\Psi^{\mathsf{B}}(\mathsf{u}^{\mathsf{B}}=\gamma) = \int_{\infty}^{\mathsf{u}^{\mathsf{B}}=\gamma} \Psi^{\mathsf{B}} d(\mathsf{u}^{\mathsf{B}}) + \Psi_{\infty}^{\mathsf{B}}$$

where Ψ^{B}_{∞} is the limit of Ψ^{B} for $u^{B} \rightarrow \infty$ and denotes now $\partial/\partial u^{B}$.

Calculating Ψ^{B} in terms of the Bondi quantities, it is obtained

$$\Psi^{\mathbf{B}} = \dot{\sigma}^{\mathbf{B}} \ \bar{\sigma}^{\mathbf{B}}$$

and $\ddot{\sigma}^{B}$ can in turn be expressed in terms of the function V characterizing the RT metrics as follows

$$\dot{\sigma}^{B} = V^{-1} \sigma^{2} V$$

$$\sim (1 - \delta_{1} + ...) (\sigma^{2} \delta_{1} + \sigma^{2} \delta_{2} + ...)$$

$$\sim \sigma^{2} \delta_{1} + ...$$

Therefore the first order of the asymptotic behavior of $\dot{\sigma}^{B}$ is given by

$$\dot{\sigma}^{B} = \sqrt{3} A_{1}^{2m} \exp^{\left(\frac{-6}{\mu} u\right)} {}_{2}Y_{2m}(\zeta,\bar{\zeta}) + O(n=2) ;$$

where the A_{1}^{2m} are constants determining the space; and so the first order of the asymptotic expansion of Ψ^B is

$$\Psi^{B} = 3 \exp^{\left(\frac{-12}{\mu} u\right)} \Sigma_{m,m} \cdot A_{1}^{2m} A_{1}^{2m'} \cdot Y_{2m} \cdot Y_{2m'} + \dots$$
$$= 3 \exp^{\left(\frac{-12}{\mu} u\right)} \Sigma_{L,M} B_{2}^{LM} Y_{LM} + \dots$$

for $0 \le L \le 4$ y -L $\le M \le L$. The coefficients B_2^{LM} are given by:

$$B_2^{LM} = 5 \left[4\pi (2l+1) \right]^{(-1/2)} \Sigma (-1)^{m'} A_1^{2m} \bar{A}_1^{2(-m')} < 22mm' |LM>$$

where the sum is over all values of -2 < m and m' < 2 such that m + m' = M. Explicit calculation of B_2^{1m} and B_2^{3m} show that they are zero. Working up to second order in the calculation of the supermomentum, we

Working up to second order in the calculation of the supermomentum, we can replace du^B by du, since they differ by first order terms. In fact one has the relation

$$du^{B} = \left(1 + \sum_{\alpha} \delta^{Im}_{\alpha}(u) Y_{Im}(\zeta, \overline{\zeta})\right) du$$

Let us define the quantity

$$\omega = \exp\left(\frac{-6}{\mu} u_0\right)$$

:

and assume that the function γ is $\mathcal{O}(\omega)$; then we can express Ψ^B evaluated at the new section by

$$\Psi^{B}(u^{B}=\gamma) = \Psi^{B}_{\infty} + \int_{\infty}^{u_{0}+\gamma+\dots} exp^{\left(\frac{-12}{\mu} \ u\right)} du \ 3 \ B^{1m}_{2} \ Y_{im} + \dots$$

$$= \Psi^{B}_{\infty} + exp^{\left(\frac{-12}{\mu} \ u_{0}\right)} \left[1 - 12\frac{\gamma}{\mu}\right] \left[-\frac{\mu}{4} \ B^{1m}_{2} \ Y_{im}\right] + \dots$$

$$= \Psi^{B}_{\infty} + exp^{\left(\frac{-12}{\mu} \ u_{0}\right)} \left[-\frac{\mu}{4} \ B^{1m}_{2} \ Y_{im}\right] + O(\omega^{3}) \dots$$

Let us define

$$\chi = \exp \left(\frac{-\frac{12}{\mu}}{u_0} u_0\right) \left[-\frac{\mu}{4} B_2^{lm} Y_{lm}\right] ;$$

and let us express γ by

$$\gamma = \gamma_1 + \gamma_2$$

where γ_l contains only spherical harmonics with l = 0, 1 and γ_{ll} is expressed in terms of spherical harmonics with $l \ge 2$. Then if γ_{ll} satisfies

one has

$$\Psi^{\mathsf{B}}(\mathfrak{u}^{\mathsf{B}}=\gamma,\zeta,\overline{\zeta}) - \sigma^{2}\overline{\sigma}^{2}\gamma(\zeta,\overline{\zeta}) = \Psi^{\mathsf{B}}_{\infty} + C + o(\omega^{3}) ;$$

where C is a constant term of order ω^2 .

Therefore, for $1 \neq 0$ the expression

$$\int_{S(u^{B}=\gamma)} [\Psi^{B}(u^{B}=\gamma,\zeta,\overline{\zeta}) - \delta^{2}\overline{\delta}^{2}\gamma(\zeta,\overline{\zeta})] Y_{Im}(\zeta,\overline{\zeta}) dS^{2}$$

vanishes up to order ω^2 .

A Lorentz transformation of order ω^3 induces a transformation of the

form

$$K = 1 + O(\omega^3)$$
;

which does not alter the present result.

We conclude then that it is possible to determine a *nice* section in order $O(\omega^2)$ by finding γ_{II} from the above condition and choosing some γ_{I} (which should be $O(\omega)$).

It is important to note that in this order of approximation $\gamma_{||}$ is independent form the proper translation part $\gamma_{||}$. This is so because an $O(\omega)$ $\gamma_{||}$ induces variation in $\gamma_{||}$ of $O(\omega^3)$.

REFERENCES

- B. G. Schmidt in: Isolated gravitating systems in general relativity, Ed. J. Ehlers, North-Holland Pu. Co., (1979).
- [2] O. M. Moreschi, Class. Quantum Grav., 5, 1063, (1987).
- [3] R. Geroch, A. Held and R. Penrose, J.Math.Phys., 14, 874, (1973).
- [4] O. M. Moreschi, S.I.S.S.A. report 37/86/A.
- [5] H. Bondi, M.G.H van der Burg and A.W.K. Metzner, Proc, R., Soc., A 269,21,(1962).
- [6] R.K. Sachs, Proc., R., Soc., A 270, 103, (1962).
- [7] R. Geroch and J. Winicour, J.Math.Phys., 22,803, (1981).
- [8] M. Walker in: Gravitational Radiation, Eds. N. Deruelle and T. Piran, North-Holland Pub. Co., p. 145,(1983).
- [9] O. M. Moreschi, Class. Quantum Grav., 3, 503, (1986).
- [10] A.I. Janis and E.T. Newman, J.Math.Phys.,6,902,(1965).
- [11] R. Geroch, J.Math.Phys., 11, 2580, (1970).
- [12] R.O. Hansen, J.Math.Phys., 15, 46, (1974).
- [13] O. M. Moreschi, Class. Quantum Grav., 5, 423, (1988).
- [14] I. Robinson and A. Trautman, Proc.R.Soc.Lond., 265A, 463, (1962).
- [15] J. Foster and E.T. Newman, J.Math.Phys., 8, 189, (1967).
- [16] B. Lukacs, Z. Perjes, J. Porter and A. Sebestyen, Gen.Rel.Grav., 16, 691, (1984).
- [17] B.G. Schmidt, Gen. Rel. Grav., 20, 65, (1988).
- [18] A.D. Rendall, Class.Quantum Grav., 5, 1339, (1988).
- [19] S. Frittelli and O.M. Moreschi, Study of the Robinson-Trautman metric in the asymptotic future, to appear in Gen. Rel. Grav.

FINITENESS IN GAUGE FIELD THEORIES

by

S. P. Sorella

Universidade Católica de Petrópolis I.C.E.N. Rua Barão do Amazonas, 124. 25685 Petrópolis - R.J. - Brasil

Abstract

Finiteness properties of gauge field theories are discussed by means of a functional differential equation which holds in the Landau-gauge and which allows to estabilish the non-renormalization of the ghost field c and of the composit operator (trc^3) .

(Talk given at "XII Encontro Nacional Física de Partículas e Campos", Caxambu (MG), Brasil, 18-22 September 1991)

1. Introduction

It is known since many years, mainly through direct inspection of Feynman graphs [1], that the Landau-gauge [2,3] exibilits remarkable finiteness properties.

Recently [4], a general renormalization scheme independent proof of these finiteness properties has been done by means of a functional differential equation which holds to all orders of perturbation theory.

This equation, which represents the integrated equation of motion of the ghost field, can be imposed (among the class of linear renormalizable covariant gauges) only in the Landau-gauge and turns ont to be very powerful for studying the quantum properties of a large class of models as, for instance, the Yang-Mills theories and the recently proposed topological field theories in three and four space-time dimensions [4,5].

In these notes, which are close related to a work [4] done in collaboration with A. Blasi and O. Piguet, I will limit myself to discuss in details the example of the non-abelian gauge theories in four space-time dimensions.

We will see that, thanks to the ghost-equation, the model turns out to be described only by two independent parameters which can be associated with the renormalization of the gauge coupling constant and of the gauge field-amplitude; in other words the ghost field c is not renormalized.

A second important consequence of the ghost-equation is related to the proof of the finiteness of the gauge-invariant composit operator (trc^3) , whose importance is due to its relation with the U(1) axial anomaly [1]. Indeed, as it is well known (see for instance [6]), the anomalies in a gauge theory can be characterized by means of a set of descent equations whose solutions are given by gauge invariant polynomials in the ghost-fields. It is not strange, then, that the finiteness of (trc^3) plays a crucial role for the non-renormalization theorem of the U(1) axial anomaly.

The work is organized as follows: in section 2. we establish the classical ghost-equation and the non-linear algebraic constraints which will be the starting point for the quantum analysis. In section 3. we discuss the quantum extension of the ghost-equation and we show the non-renormalization of the ghost field c. Finally, in section 4. we present the proof of the finiteness of the composite operator (trc^3) .

2. The ghost-equation

Let us start with a purely massless gauge theory quantized in the Landau-gauge:

$$S = -\frac{1}{4g^2} \int d^4x \left(F^a_{\mu\nu} F^{a\mu\nu} \right) + \int d^4x \left(b^a \partial A^a + \overline{c}^a \partial^\mu (D_\mu c)^a \right) , \qquad (2.1)$$

where b, c, \bar{c} are respectively the Lagrangian multiplier, the ghost, the antighost and

$$(D_{\mu}c)^{\bullet} = \left(\partial_{\mu}c^{a} + f^{abc}A^{b}_{\mu}c^{c}\right)$$

is the covariant derivative with f^{abc} the structure constant of a compact semisimple gauge group G. The action (2.1) is invariant under the nilpontent BRS transformations [7]:

$$sA^{a}_{\mu} = -(D_{\mu}\epsilon)^{a}$$

$$sc^{a} = \frac{f^{abc}c^{b}c^{c}}{2}$$

$$s\bar{c}^{a} = b^{a} , \quad sb^{a} = 0$$

$$s^{2} = 0$$
(2.2)

To write down the Slavnov identity corresponding to the s-invariance we couple [7] the non-linear transformations of (2.2) to external sources Ω , L:

$$S_{*} = \int d^{*}x \left(-\Omega^{a\mu} (D_{\mu}c)^{\mu} + L^{a} \frac{f^{abc} c^{b} c^{c}}{2} \right)$$
(2.3)

Then, the complete action

$$\Sigma = S + S_s \tag{2.4}$$

obeys to the classical Slavnov identity

$$\mathcal{B}(\Sigma) = \int d^4x \left(\frac{\delta \Sigma}{\delta \Omega^{a\mu}} \frac{\delta \Sigma}{\delta A^a_{\mu}} + \frac{\delta \Sigma}{\delta L^a} \frac{\delta \Sigma}{\delta c^a} + b^a \frac{\delta \Sigma}{\delta \overline{c}^a} \right) = 0$$
(2.5)

Let us introduce, for further use, the linearized nilpotent operator \mathcal{B}_{Σ}

$$\mathcal{B}_{\Sigma} = \int d^4x \left(\frac{\delta \Sigma}{\delta \Omega^{a\mu}} \frac{\delta}{\delta A^a_{\mu}} + \frac{\delta \Sigma}{\delta A^a_{\mu}} \frac{\delta}{\delta \Omega^{a\mu}} + \frac{\delta \Sigma}{\delta L^a} \frac{\delta}{\delta c^a} + \frac{\delta \Sigma}{\delta c^a} \frac{\delta}{\delta L^a} + b^a \frac{\delta}{\delta \overline{c}^a} \right)$$
(2.6)

 $\mathcal{B}_{\Sigma}\mathcal{B}_{\Sigma} = 0$

The dimensions and the ghost numbers of the fields and the sources are (see table 1):

	A	b	C.	កី	Ω	L
dinı	1	2	0	2	3	4
Φπ	0	0	1	-1	-1	-2

Table 1. Dimensions and Chost annihers

The Landau-gauge, being linear in the Lagrangian-multiplier, allows us to impose [S] the equation of motion of the *b*-field:

$$\frac{\delta \Sigma}{\delta h^{\mu}(x)} = \partial A^{\mu}$$
 (2.7)

Commuting (2.7) with the Slavnov identity (2.5) one obtains the usual constraint [8]:

$$G^{a}(x)\Sigma = \left(\frac{\delta}{\delta\bar{r}^{\mu}(x)} + \partial^{\mu}\frac{\delta}{\delta\Omega^{a\mu}}\right)\Sigma = 0$$
(2.8)

which is nothing but the equation of motion for the antighost field 7(x).

The action (2.4) is also invariant under the rigid gauge transformations:

$$\mathcal{H}^{q}_{rra}\Sigma = 0 \tag{2.9}$$
where

$$\mathcal{H}^{a}_{rig} = \sum_{\varphi} \int d^{4}x f^{abc} \varphi^{b} \frac{\delta}{\delta \varphi^{c}} \qquad (2.10)$$
$$\varphi = A_{\mu\nu} c, \bar{c}, b, L, \Omega$$

i. e., all the fields belong to the adjoint representation of the gauge group \mathcal{G} . Let us look now at the equation of motion of the ghost field c:

$$\frac{\delta\Sigma}{\delta c^a} = -\partial^2 \bar{c}^a - \partial\Omega^a - f^{abc} L^b c^c + f^{abc} \Omega^{b\mu} A^c_{\mu} + f^{abc} \left(\partial^{\mu} \bar{c}^b\right) A^c_{\mu}$$
(2.11)

Integrating on space-time and using the gauge condition (2.7) we get the ghost functional equation:

$$\mathcal{G}^a \Sigma = \Delta^a \tag{2.12}$$

where

$$\overline{\mathcal{G}} = \int d^4 x \left(\frac{b}{\delta c^a} + f^{abc} \overline{c^b} \frac{b}{\delta b^c} \right)$$
(2.13)

and

$$\Delta^{a} = \int d^{4}x f^{abc} \left(\Omega^{b\mu} A^{c}_{\mu} - L^{b} c^{\nu} \right)$$
 (2.14)

The ghost-equation (2.12) is peculiar of the Landau gauge and, as we will see in the next sections, imposes strong constraints on the structure of the Slavnov-invariant counterterms. The breaking Δ^a , being linear in the quantum fields A_{μ} and c is a classical breaking and allows us to try the quantum extension of the ghost-equation.

The Slavnov identity (2.5), the gauge condition (2.7) and the ghost-equation (2.12) form a non-linear algebra whose relevant part takes the form:

$$\mathcal{B}_{\gamma}\mathcal{B}(\gamma) = 0$$

$$\overline{\mathcal{G}}^{a}\mathcal{B}(\gamma) + \mathcal{B}_{\gamma}\left(\overline{\mathcal{G}}^{a}\gamma - \Delta^{a}\right) = \mathcal{H}^{a}_{rig}\gamma$$

$$\frac{\delta\mathcal{B}(\gamma)}{\delta b^{a}(x)} - \mathcal{B}_{\gamma}\left(\frac{\delta\gamma}{\delta b^{a}(x)} - \partial A^{a}\right) = \mathcal{G}^{a}(x)\gamma$$

$$\frac{\delta}{\delta b^{a}(x)}\left(\overline{\mathcal{G}}^{b}\gamma - \Delta^{b}\right) - \overline{\mathcal{G}}^{b}\left(\frac{\delta\gamma}{\delta b^{a}(x)} - \partial A^{a}\right) = 0$$

$$\overline{\mathcal{G}}^{a}\mathcal{G}^{b}(x)\gamma + \mathcal{G}^{b}(x)\left(\overline{\mathcal{G}}^{a}\gamma - \Delta^{a}\right) = f^{abc}\left(\frac{\delta\gamma}{\delta b^{c}} - \partial A^{a}\right)$$

$$\left[\mathcal{H}^{a}_{rig}, \overline{\mathcal{G}}^{b}\right] = -f^{abc}\overline{\mathcal{G}}^{c} \qquad (2.15)$$

where γ is a generic functional with even ghost number. It is interesting to note that the rigid gauge invariance is a consequence of the Slavnov identity and of the ghost-equation.

3. Stability and Renormalization

To promote the previous classical equations to the quantum level, let us begin by showing that the ghost-equation (2.12) holds to all orders of perturbation theory. The proof is based by assuming the existence of a quantum vertex functional

$$\Gamma = \Sigma + 0(h) \tag{3.1}$$

which obeys:

i) the Slavnov identity [7]:

$$\mathcal{B}(\Gamma) = 0 \tag{3.2}$$

ii) the gauge-condition (2.7) [8]:

$$\frac{\delta \Gamma}{\delta b^a} = \partial A^a \tag{3.3}$$

iii) the rigid gauge invariance [8]:

$$\mathcal{H}^a_{\mu\nu}\Gamma = 0 \tag{3.4}$$

Let us write, now, a broken ghost-equation:

$$\bar{\mathcal{G}}^{\bullet}\Gamma = \Delta^{*} + \Xi^{*} \tag{3.5}$$

where Ξ^{n} represents the breaking induced by the radiative corrections. According to the Quantum Action Principle [9] the lowest-order nonvanishing contribution to the breaking \cdot of order \hbar at least \cdot is a local integrated field functional of dimensions 4 and ghost number -1.

.

The most general expression for Ξ^a reads:

$$\Xi^{a} = \int d^{4}x \left(w^{abc} \Omega^{b\mu} A^{c}_{\mu} + \tau^{abc} L^{b} c^{c} + \sigma^{abc} \left(\partial^{\mu} \bar{c}^{b} \right) A^{c}_{\mu} + \lambda^{abc} \bar{c}^{b} \bar{r}^{c} c^{d} + \xi^{abc} \bar{c}^{b} b^{c} \right) \quad (3.6)$$

where w^{abc} , τ^{abc} , σ^{abc} , λ^{abcd} , ξ^{abc} are arbitrary coefficients. From the non-linear algebra (2.15) it follows that the breaking Ξ^a must satisfy the consistency conditions:

$$\mathcal{B}_{\Sigma} \Xi^{a} = 0$$

$$\frac{b \Xi^{b}}{b b^{a}} = 0$$

$$\mathcal{G}^{a}(x) \Xi^{b} = 0$$

$$\mathcal{H}^{a}_{rig} \Xi^{b} = -f^{ab} \Xi^{r}$$

$$\bar{\mathcal{G}}^{a} \Xi^{b} + \bar{\mathcal{G}}^{b} \Xi^{a} = 0$$
(3.7)

from which it follows that:

$$w^{abc} = r^{abc} = \sigma^{abc} = \lambda^{abcd} = \xi^{abc} = 0 \tag{3.8}$$

Equation (3.8) proves the ghost equation (2.12) at the order considered, hence to all orders by induction.

For what concerns the stability [4], let us perturb the classical action Σ by an integrated local functional $\tilde{\Sigma}$ of dimensions 4 and zero ghost number and let us impose that the perturbed action

$$\left(\Sigma + \epsilon \widetilde{\Sigma}\right)$$
 (3.9)

satisfies, to the order ϵ , the same equations of Σ , i. e.:

$$\mathcal{B}\left(\Sigma + \epsilon \widetilde{\Sigma}\right) = 0 + 0(\epsilon)$$

$$\frac{\delta\left(\Sigma + \epsilon \widetilde{\Sigma}\right)}{\delta b^{a}} = \partial A^{a} + 0(\epsilon) \qquad (3.10)$$

$$\mathcal{G}^{a}(x)\left(\Sigma + \epsilon \widetilde{\Sigma}\right) = 0 + 0(\epsilon)$$

$$\overline{\mathcal{G}}^{a}(x)\left(\Sigma + \epsilon \widetilde{\Sigma}\right) = \Delta^{a} + 0(\epsilon)$$

To the first order in ϵ one gets:

$$\beta_{\Sigma} \tilde{\Sigma} = 0 \tag{3.11}$$

$$\frac{\delta \tilde{\Sigma}}{\delta \lambda_{a}} = 0 \tag{3.12}$$

$$\mathcal{G}^{a}(x)\widetilde{\Sigma} = 0 \tag{3.13}$$

$$\overline{\mathcal{G}}^{a}\overline{\Sigma}=0 \tag{3.14}$$

The conditions (3.12) and (3.13) imply that $\tilde{\Sigma}$ is *b*-independent and that the field \bar{c} and the source Ω^{μ} enter only through the combination

$$\gamma^{a\mu} = \Omega^{a\mu} + \partial^{\mu} \overline{c}^{a} , \qquad (3.15)$$

i. e.:

$$\widetilde{\Sigma} = \widetilde{\Sigma}(A, c, \gamma, L)$$
.

From the condition (3.11) one has:

١

$$\widetilde{\Sigma} = -\frac{\zeta_g}{4g^2} \int d^4x \left(F^a_{\mu\nu} F^{a\mu\nu} \right) + \mathcal{B}_{\widetilde{\Sigma}} \int d^4x \left(-\zeta_c L^a c^a + \zeta_A \gamma^{a\mu} A^a_\mu \right)$$
(3.16)

where

$$\hat{\Sigma} = \Sigma - \int d^4 x \left(b^a \partial A^a \right) \tag{3.17}$$

and

$$\mathcal{B}_{\widehat{\Sigma}} = \int d^4 x \left(\frac{\delta \widehat{\Sigma}}{\delta A^a_{\mu}} \frac{\delta}{\delta \gamma^{a\mu}} + \frac{\delta \widehat{\Sigma}}{\delta \gamma^{a\mu}} \frac{\delta}{\delta A^a_{\mu}} + \frac{\delta \widehat{\Sigma}}{\delta L^a} \frac{\delta}{\delta r^a} + \frac{\delta \widehat{\Sigma}}{\delta c^a} \frac{\delta}{\delta L^a} \right)$$
(3.18)

is the restriction of the linearized operator \mathcal{B}_{Σ} to b-independent functionals obeying to equation (2.8).

As it is well known [8], the expression (3.16) shows that the most general local solution of the Slavnov identity (2.5) compatible with the gauge-condition (2.7) contains three arbitrary parameters ζ_g , ζ_c , ζ_A which, in the parameterization of the classical action (2.4), can be identified with a renormalization of the coupling constant g (given by ζ_g), a renormalization of the gauge field A (given by ζ_A) and a renormalization of the ghost field c (given by ζ_c).

Finally, from the ghost condition (3.14), it follows that

$$\zeta_{\ell} = 0 \tag{3.19}$$

which means that the ghost field c is not renormalized.

4. Non-renormalization of (tre³)

To study the BRS invariant composite operator (trc^3) we couple it to an invariant external field ρ of dimension 4 and ghost number -3, i. e. we add to the classical equation (2.4) the term

$$S_{\rho} = \int d^4x \left(\frac{\int^{abc} c^a c^b c^c}{6} \right) \rho(x)$$
(4.1)

It is not difficult to see that the action

$$\Sigma_{\rho} = S + S_s + S_{\rho} \tag{4.2}$$

satisfies:

i) the Slavnov identity

$$\mathcal{B}(\Sigma_{\mu}) = 0 \tag{4.3}$$

ii) the gauge-condition

$$\frac{\delta \Sigma_{p}}{\delta b^{a}} = \partial A^{*} \tag{4.4}$$

iii) the modified ghost-equation

$$\int d^4x \left(\frac{\delta \Sigma_{\rho}}{\delta c^a} + f^{abc} \bar{c}^b \frac{\delta \Sigma_{\rho}}{\delta b^c} + \rho \frac{\delta \Sigma_{\rho}}{\delta L^a}\right) = \Delta^a$$
(4.5)

The possible invariant connterterms allowed by the Slavnov identity (4.3) and by the gauge-condition (4.4) are the same as before (see expr. (3.16)) with in addition one local counterterm of the form

$$\alpha \int d^4x \left(\frac{f^{dee}_e^{-\mathbf{a}}e^{\phi}e^{e}}{6}\right) \rho(x)$$
(4.6)

where α is an arbitrary parameter. However, preservation of the modified ghost-equation (4.5) implies that

This means that the external field ρ is not cenormalized or, in other words, the composite field (tre^3) is finite.

Acknowledgements

I would like to thank the organizers of the conference for the invitation and the Faperj of Rio de Janeiro for financial support.

I am especially grateful to my friends and colleagues Eliane. Fernando, Jorge, José and Renato with whom I have had the pleasure of sharing the beautiful and stimulating atmosphere of the "Casina" of Petrópolis.

REFERENCES

- [1] C. Lucchesi, O. Piguet and K. Sibold, Int. J. Mod. Phys. A2 (1987) 385;
- [2] T. E. Clark, Nucl. Phys. B 90 (1975) 484;
- [3] C. Becchi, "The renormalization of gauge theories", in Proc. Les Houches Summer School 1983, ed. B. S. Dewitt and R. Stora. (North - Holland, Amsterdam 1984);
- [4] A. Blasi, O Piguet, S. P. Sorella, Nucl. Phys. B 356 (1991), 154;
- [5] N. Maggiorc and S. P. Sorella, "Finiteness of the Topological Models in the Landau Gauge", Preprint LAPP - TH - 328, 1991;
- [6] B. Zumino, Nucl. Phys. B253 (1985) 477;
- [7] C. Becchi, A. Rouet and R. Stora, Ann. Phys. (N. Y.) 98 (1976) 287;
- [8] O. Piguet and K. Sibold, Nucl. Phys. B253 (1985) 517;
- Y. M. P. Lam, Phys. Rev. D6 (1972) 2145 and 2161.
 T. E. Clark and J. H. Lowenstein, Nucl. Phys. B 113 (1976) 109.

C. Romero e A. Barros Departamento de Física / UFPb 58059 J Pers a Pb BRASIL

1. Introdução.

A teoria da gravitação de Brans-Dicke, surgida em 1961, desfrutou de grande popularidade nos anos sessenta, ocasião em que foi considerada uma séria alternativa à Relatividade Geral [ref.1]. Tendo como principal característica a presença de um campo escalar ϕ na lagrangiana de ação acopiado não-minimalmente à geometria, a teoria de Brans-Dicke pertenco à classe das teorias da gravitação com G variável [ref.2], sendo C a constante gravitacional Newtoniana. Entera e inta cureçam de confirmação experimental, esta classe de teorias vem apresentando recentemente grande interesse teórico, especialmente em conexão com a questão cosmológica.

As equações de campo da teoria de Brans-Dicke c/constante cosmológica provém da lagrangiana total

 $L = \sqrt{-g}(\phi R + \frac{1}{2}\phi_{-}\phi^{-} + 2\Lambda\phi) + L_{m}$

onde w é un parâmetro adimensional, ...ser determinado a posteriori e Lm é a lagrangiana da matéria. Dados observacionais impõem o limite inferior w>500 e se fizermos w $\rightarrow \infty$ e ϕ = const. as equações de campo se reduzem às equa;ões le Einstein.

En 1969, Dicke [ref.3] obteve uma solução cosmológica, a partir desta teoria, que representava um modelo de universo espacialmente homogèneo e isotrópico. com seção espacial euclidiana, e que evoluía a partir de uma singularidade inicial. Curiosamente, esta solução era a mesma que havia sido proposta em 1933 por Dirac [ref.4] através de argumentos heuristicos que partiam da hipótese de G ser variável. A genera ização do modelo de Dicke foi posteriormente obtida por Nariai (1968)[ref.5].

A inclusão da constante cosmológica na teoria original deu origem a diversos trabalhos na literatura, em particular, citamos os de Uehara e Kim (1982), Lorenz-Petzold (1984), os quais consideraram um fluido perfeito como fonte da curvatura [refs.6,7].

For outro lado, soluções para o vazio de matéria foram obtidas por vários autores, destacando-se o trabalho de O'Hanlon e Tupper (1972) [ref.8], os quais encontraram a solução geral para no caso de geometria do tipo Friedman-Robertson-Walker com k=o, demostrando também a não-existência de soluções para w <-3/2. Os resultados de O'Hanlon e Tupper foram reobtidos num contexto bem mais geral por Romero, Oliveira e Melio Neto (1989) [ref.9], os quais aplicando métodos da teoria de sistemas dinâmicos, também investigaram exaustivamente as propriedades de modelos isotrópicos com homogeneidade espacial e k=O para fluido perfeito com equação de estado p = $\lambda \rho$ na teoria de Brans-Dicke.

Em 1983, Cerveró e Estévez propuseram uma teoria na qual o termo cosmológico aparece modificado comparando-se com a la rangiana usual e encontraram soluções para o vazio de matéria (ref. 10).

Mantendo a lagrangiana original da teoria de Brans-Dicke

e incluindo o termo cosmológico A da maneira usual. Romero e Barros (1991) [ref.11] abordaram o problema do vazio e obtiveram a solução para modelos isotrópicos espacialmente homogéneos com secão euclidiana.

Neste trabalho, mostramos como as propriedades destas soluções podem ser estudadas através dos chamados diagramas de fase definidos pelas equações de campo. As expressões analíticas das soluções estão contidas na ref.11.

II. Representação das soluções através dos diagramas de fase. Partindo-se da métrica ds²= $dt^2 - R^2(t)[dx^1 + x^2(d\theta^2 + iu^2\theta d\psi]]$ isto é, tipo FRW com k=0, as equações de campo para o vazio de matéria e constante cosmológica A na teoria de Brans-Dicke são dadas por: ^(K)

$$R_{\mu\nu} = -2\Lambda[(\omega+1)/(2\omega+3) + \frac{\omega}{\phi^2} \phi_{\mu} \phi_{\mu} + \frac{1}{\phi} \phi_{\mu}, (1,a)$$

$$\Box \phi = 2\Lambda \phi/(2\omega+3) \qquad (1,b)$$

 $\Box \phi = 2 \Lambda \phi / (2 \omega + 3)$

Definindo 🕸 = 🍬 🖕 as equações acima podem ser postas na seguinte forma:

$$\dot{\psi} = -\theta_{3}^{2} - \dot{\psi} = (\omega_{1})\psi_{1}^{2} + 2\Lambda(\omega_{1})/(2\omega_{1}+3),$$
 (2A)

$$\dot{\Theta}_{e} = \Theta^{2} - \psi \Theta + 6\Lambda(w+1)/2w+3),$$
 (2b)

$$\psi = -\psi - \psi \theta + 2\Lambda /(2w+3)$$
, (2)

onde 0 = 3R/R descreve a expansão do modelo. Como na teoría de Brans-Dicke o campo escalar ϕ é identificado a G⁻¹, $\psi = \dot{\phi}/\phi$ é, na verdade, uma variável aspociada a variação no tempo da constante gravitacional Newtoniana G. Estas equações conduzem a uma relação àlgébrica entre as variáveis 0 e ψ :

 $\theta_3^2 + \theta \psi - \frac{\psi}{2} \psi^2 = \Lambda$, que funciona como uma espécie de vincuio do sistema dinâmico definido por 2b e 2c.

Os diagramas que se seguem representam as soluções das equações de campo expressas nas variáveis 0 e ৶. Podemos, assim ter uma visão da evolução dos modelos com relação à variação desses dois parâmetros, conforme o valor da constante de acoplamento w.

QX) Ko. presente trabalho ostazos considerando Aso. Para caso A<Q ver ref.11.

Comentemos brevemente alguns desses diagramas. Em primeiro lugar, com exceção do caso em que -3/2 ≤ w ≤ -4/3, verificamos em todos os diagramas a presença dos pontos de equilibrio A e B, os quais correspondema a soluções $(\theta, \psi) = (\theta_0, \psi_0) = \text{const.}, \text{ descrevendo},$ portanto, modelos cosmológicos do tipo de Sitter. Esses pontos de equilibrio realizam uma rotação no plano de fase 00 à medida que w varia no intervalo (-∞,+∞) (ver figuras 1a-11). Quando w =-1, vemos que A e B representam duas soluções estáticas (0=0), configuração que corresponde a uma geometria de Minkowski, porém com a constante gravitacional G variando no tempo (crescendo num caso e decrescendo no outro). Nestes modelos constatamos que a dinâmica de G é determinada unicamente pela presença da constante cosmológica A uma vez que não existem campos de matéria e devido ao fato de a geometria ser estática. Estas considerações nos levam naturalmente a indagar a respeito da existência de uma relação cósmica entre G e A, idéia que já foi levantada em contextos diferentes (ver refs. 12 e 13, por exemplo).

A conjectura formulada por Dirac de que G deveria decrescer em nosso Universo à medida que este expandisse pode ser encontrada nos diagramas de fase como uma propriedade exibida por algumas soluções desde que $w \ge 0$. Estas soluções são representadas pelo ponto A e pelas curvas que tendem a A com $\psi > 0$.

Com relação à existência de singularidades, uma simples inspeção dos diagramas nos mostra que não existem soluções singulares para w < -3/2. Por outro lado, quando w >-4/3 as únicas soluções não-singulares são as representadas pelos pontos de equilíbrio A e B.

Finalmente, no limite en que w --->+ ∞ (ver diagrama) obtenos quatro soluções: os pontos de equilibrio A e B, e, também, as duas curvas que tendem a estes pontos. A e B correspondem exatamente ao modelo de de Sitter p/ o vazio na Relatividade Geral com G = $1/\phi$ = constante. As outras duas soluções, todavia, não satisfazem as equações de Einstein p/ o vazio com constante cosmológica, correspondendo , na verdade, a configurações da Relatividade Geral geradas por uma distribuição de matéria equivalente a um fluido perfeito com equação de estado p = ρ .

Referências

- 1. Brans, C. and Dicke, R. : 1961, Phys. Rev. 124, 925
- 2.Will, C.: 1981, Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge.
- 3. Dicke, R. H.: 1968, Astrophys. J. 154, 892.

4. Weinberg, S.: 1972, Gravitation and Cosmology, John Wiley and Sons, New York.

5. Nariai, H.: 1968a, Prog. Theor. Phys. 40, 49.

6. Uehara, K. and Kim, C.W.; 1982, Phys. Rev. D28, 2575.

7. Lorenz-Petzold, D.: 1984, Phys. Rev. D29, 2399.

8.0'Hanlon, J. and Tupper, B.O.J.: 1972, Nuovo Cimento, 7, 305.

9. Romero, C., Oliveira, H. P. and de Mello Neto, J.T. : 1989, Astrophys. Space Sci. 158, 229.

10. Cerveró, J. M. and Estévez, P. G.: 1983, Gen. Rel. Grav. 15, 351.

11. Romero, C. and Barros, A.: 1991, Astrophys. Space Sci. (a ser publicado)

12. Pollock, M. D.: 1984, Phys. Lett. 148B, 287.

13. Tomasek, F.: 1965, Lett. Nuovo Cimento, 44, 241.

ON GRAVITATIONAL WAVES, VORTICES AND SIGMA-MODELS

Patricio S. Letelier

Departamento de Matematica Aplicada-IMECC Universidade Estaduai de Campinas 13081 Campinas, S.P., Brazii

We find that the existence of either vortices or cosmic, strings solutions is not affected by the presence of gravitational plane fronted waves and that curvature singularities appear due to the interaction between the wave and either the string or the vortex.

The metric associated to a finite number of parallel cosmic strings and its generalization for a continuum of parallel cosmic strings was found by the author without making reference to its field theory origin. Since cosmic strings are produced by symmetry breaking in early stages of the evolution of the Universe a consistent way to define cosmic strings is to consider the Einstein equations coupled the Yang-Milis-Higgs fleid tO equations.² A solution to the previous equations that can be interpreted as a finite number of parallel vortex lines, or a finite number of parallel cosmic strings was considered by Linet. A similar solution was studied by Comtet and Gibbons⁴ together with solutions to the Einstein equations coupled with σ -model type of field theories. The existence of the above mentioned solutions, as well as the multiple vortex solutions, relays on the fact that

40

in a particular curve spacetime, albeit sufficiently general to contain the cosmic strings, the Bogomol'nyi equations⁵ obtained in the Bogomol'nyi limit are essentially the same equations that in Minkowski spacetime^{3,4}.

The purpose of this communication is to study the Einstein equations coupled with either an Abelian gauge field interacting with a charged scalar field in presence of the usual symmetry breaking potential or a nonlinear σ -model type of field equations for the metric

$$ds^{2} = 1 du^{2} + 2 du dv + 2 A du dx + 2 B du dy - e^{-4 V} (dx^{2} + dy^{2}),$$
 (1)

where H, A and B, are functions of u, x, and y; V is a function of x, and y only. In particular, we shall be interested in the solutions that can be interpreted as cosmic strings. In Refs. 3 and 4 the existence of cosmic strings solutions were studied for the special case of a spacetime (1) with H=A=B=0. We shall consider the case in which the functions A, B, and H are restricted by

$$A_{,y} = B_{,x} = 0, \qquad A_{,x} + B_{,y} = 0, \qquad H_{,xx} + H_{,yy} = 0.$$
(2)

When V = 0 the metric (i) with the restrictions (2) represents a plane fronted wave⁶ with a constant wave vector k^{μ} . The metric (1) is a particular case of the general metric that admins a null vector with zero covariant derivative?

The Einstein tensor for the metric (i) with the restrictions (2) can be cast as

$$G_{\mu\nu}^{2} = -2e^{4\nu} (V_{,xx}^{+} + V_{,yy}^{-}) (i_{\mu}k_{\nu}^{+} + l_{\nu}k_{\mu}^{-}), \qquad (3)$$

where $k_{\mu} = (H/2)\delta^{u}_{\mu} + \delta^{v}_{\mu} + A\delta^{\pi}_{\mu} + B\delta^{y}_{\mu}$, $l_{\mu} = \delta^{u}_{\mu}$, $m_{\mu} = e^{-2V}\delta^{x}_{\mu}$, and $n_{\mu} = e^{-2V}\delta^{y}_{\mu}$ is and orthonormal vierbein.

The Lagrangean for the U(1) gauge field that we shall consider is the the covariant generalization of the Ginzgurg-Landau model,

$$L = -(1/4) F^{\mu l'} F_{\mu \nu} + (1/2) (\partial_{\mu} \phi - leA_{\mu} \phi) (\partial^{\mu} \phi^{\bullet} + ieA^{\mu} \phi^{\bullet}) - \lambda (|\phi|^2 - \eta^2)^2, \quad (4)$$

where $F_{\mu\nu} = \partial_{\mu}\Lambda_{\nu} - \partial_{\nu}\Lambda_{\mu}$; e, λ , and μ are three coupling constants. Assuming that $A_{\mu} = (0,0,A_{\mu})$, and that $A_{\mu} = (A_{\mu},A_{\mu})$, and $\Phi = \phi_{\mu} + i\phi_{\mu}$ are functions of $x^{I} = (x,y)$ only, we get

$$L = -(1/4) \gamma^{III} \gamma^{JII} F_{IJ} F_{III} - (1/2) \gamma^{IJ} D_{II} \varphi_{a} D_{J} \varphi_{a} - \lambda (|\Phi|^{2} - \eta^{2})^{2}, \qquad (5)$$

where $\gamma^{ij} = e^{4V} \delta^{ij}$, and $D_i \varphi_a \equiv \partial_i \dot{\varphi}_a - cc_a A_i \varphi_b$, with $c_{12} = c_{21} = 1$, and $c_{11} = c_{22} = 0$.

When the coupling constant are related by $e^2=8\lambda$ and the fields by

$$F_{ij} = e \eta_{ij} (|\psi|^2 - \eta^2)/2, \quad D_j \varphi_a = \eta_{jk} \epsilon_{ab} \gamma^{ki} D_i \varphi_b, \quad (6)$$

where $\eta_{jk} = e^{-4V}c_{ij}$, the Lagrangean (5) is a total divergence and in consequence the solutions of the first order equations (6) (Bogomol'nyl equations) are solutions of the second order Euler-Lagrange field equations derived from (5). Furthermore, by direct substitution one can verify that $T_{ij} = 0$. In this case we can cast the EMT associated to (5) as⁸

$$\Gamma_{\mu\nu} = -L(I_{\mu\nu} + I_{\nu\mu}), \qquad (7)$$

with $-L = (1/4)e^{4\nu}\delta^{ij}\partial_{l}\partial_{j}(-|\Phi|^2 + \eta^2 in |\Phi|^2)$. Defining the orthonormal vectors $\sqrt{2t^{\mu}} = k^{\mu} + l^{\mu}, \sqrt{2z^{\mu}} = k^{\mu} - l^{\mu}$, we can put (7) in

the form of the EMT that represents a cloud of strings,

$$1^{\mu\nu} = \rho(t^{\mu}t^{\nu}-z^{\mu}z^{\nu}), \qquad (8)$$

with ρ =-L. When -L>O, ρ represents the density of the cloud. For multiple vortex solutions ρ is a distribution with support on straight lines. From (3), and (7) we have that the Einstein equations reduce to the Laplace equation and can be explicitly integrated. Moreover, one can show for the field equations (6) the existence of solutions for the boundary conditions that define one or several vortices^{3,4,9}.

Now we shall consider a σ -model with target metric on a Kahler manifold. Let $\phi^{A}(x^{1})$ a map from S into a 2n-dimensional Kahler manifold M with metric $G_{AB}(\phi)$ and complex structure $J_{B}^{A}(\phi)$, A=1,2,...,n,. The Lagrangean for this 2-dimensional model is

$$L^{n} - (1/2) \mu^2 G_{AB} \partial_{I} \phi^{A} \partial_{J} \phi^{B} \gamma^{IJ}.$$
 (9)

The quantity r' is another coupling constant. When the fields are related b $\partial_{\mu}\phi^{A} = J_{C}^{A} \eta_{\mu}^{k} \partial_{\mu}\phi^{C}$, the Lagrangean is a topological invariant and in consequence the Euler-Lagrange equations associated to (9) are identically satisfied. Again, one can show by direct substitution⁸ that $T_{\mu}=0$. Thus, when the field are holomorphic the EMT for the σ -model (9) can be cast as (7), i.e., as a cloud of cosmic strings.

Since in the interaction of cosmic strings with plane fronted gravitational waves the spacetime can develop nontrivial curvature singularities¹⁰ we have that in the cosmic string limit the vortex and the holomorfic σ -model solutions will present the same singular behavior. In other words we have proved that the singularities studied in Ref. 10 have a physical origin.

REFERENCES

- I. P.S. Letelier, Class. Quantum Grav. 4, L75 (1987).
- 2. For a review see A. Vilenkin, Phys. Rep. 121, 263 (1985).
- 3. B. Linet, Gen. Rei.Grav. 20, 451 (1988).
- 4. A. Contet and G.W. Gibbons, Nucl. Phys. B 299, 719 (1989).
- 5. E.B. Bogomol'nyi, Sov. Journ. Nucl. Phys. 24, 449 (1977).
- 6. W, Kundt, Z. Phys, 163, 77 (1961).
- See for instance, P.S. Leteller Gen. Rei. Grav. 11, 367 (1979) and references therein.
- 8. P.S. Letelier, Class. Quantum Grav. 8, L137-L140 (1991).
- 9. C.H. Taubes, Comm. Math. Phys. 72, 277 (1980).
- 10. P.S. Letelier, Phys. Rev. Lett. 66, 268 (1991).

A Constante Cosmológica na Cosmologia de Membranas

M. D. Maia*

Universidade de Brasília, Departamento de Matemática 70.919 Brasílía, DF., Brasil

Setembro de 1991

Abstract

D problema da constante cosmológica é examinado em uma cosmologia de volume mínimo. Nesta cosmologia a constante cosmológica é o quadrado da curvatura extrinseca do espaço-tempo.

O aparecimento da constante cosmológica em relatividade geral é uma consegência da geometria riemanniana adotada para a descrição do espaço-tempo e da estrutura das equações de Einstein. De fato, o tensor mais geral, construido com a métrica e suas derivadas até ordem 2 e satisfazendo a condição $G^{i}_{\ ij} = 0$ é o tensor de Einstein com a constante A (já que $g_{ij,ik} = 0$):

$$G_{ij} = R_{ij} + \frac{1}{2}Rg_{ij} + \Lambda g_{ij}.$$
 (1)

lsto resulta da integral de ação

$$A=\int (R+\Lambda)\sqrt{-g}dv,$$

onde o termo em A é dinâmico e assume o papel da densidade de energia do vácuo. As estimativas atuais da astrofísica sugerem o valor A $\approx 10^{-47}$ GeV⁴ e consequentemente o termo em A pode ser desprezado em considerações clássicas. For outro lado, se levarmos em conta a teoria quântica de campos em espaços curvos, este termo de vácuo com uma constante de proporcionalidade A₀, sofre uma correção δ A resultante das flutuações quânticas do campo, resultando em um valor efetivo para a constante cosmológica

$$\Lambda_{eff} = \Lambda_0 + \delta \Lambda$$

^{&#}x27;E mail MDM, @LNCC.IIITNET

Tomando o exemplo do campo escalar obtem-se [1] $\delta \Lambda \approx 10^{74} GeV^4$. Assim, devese proceder uma regularização do campo de modo que Λ_{ϕ} compense o $\delta \Lambda$ para comparar Λ_{eff} com o valor observado. Como isto deverá ser repetido a cada interação e como o universo se expande continuamente, o processo de regularização nunca cessa, persistindo mesmo nos dias atuais. Assim,o problema da constante cosmológica pode ser resumido como sendo um problema de "sintonia fina" em teoria de campo, rolativamente ao valor observado de Λ [2]. A mera substituição de Λ por uma função escalar como sugerido em [3] e outros, não resolveria o problema pois de qualquer forma teriamos uma constante Λ em (1), a menos que se altere a geometria de modo que $g_{if,i} \neq 0$.

Nesta nota, explorames a possibilidade de que A possa ser interpretada como um campo escalar de natureza geométrica (já que a mesma está no lado esquerdo das equações de Einstein), sem contudo modificar a geometria riemanniana. Para implementar isto, considere o espaço-tempo como uma hipersuperficie de um espaço plano D-dimensional M_D . As coordenadas de imersão X^{μ} satisfazem as equações¹

$$g_{ij} = X^{\mu}_{,i} X^{\nu}_{,j} \eta_{\mu\nu}, \ N^{\mu}_{A} X^{\nu}_{,i} \eta_{\mu\nu} = 0, \ g_{AB} = N^{\mu}_{A} N^{\nu}_{B} \eta_{\mu\nu}.$$
(2)

onde N_A são vetores ortogonais ao espaço-tempo e $g_{AB} = \pm 1$. As condições de integrabilidade de (2) são as equações de Gauss-Codazzi-Ricci para subvariedades. Para as nossas considerações é suficiente tomar a equação de Gauss

$$R_{ijkl} = 2g^{AB}K_{i[kA}K_{l]jB}$$
(3)

que relaciona a curvatura riemanniana com os coeficientes da segunda forma fundamental K_{ijA_i} definidos por

$$K_{ijA} = X^{\mu}_{,ij} N^{\nu}_{A} \eta_{\mu\nu}. \tag{4}$$

Por contração tensorial em (3) obtemos

$$R_{ij} - \frac{1}{2}Rg_{ij} = K_{imA}K_i^{mA} - H_AK_{ij}^A - \frac{1}{2}(K^2 - H^2)g_{ij}$$
(5)

onde denotamos as cuvaturas extriseca e média respectivamente por

$$K^{2} = g^{AB} K_{miA} K^{mi}_{\ \ B} = K_{miA} K^{miB} e H^{2} = g^{AB} H_{A} H_{B}, \ H_{A} = g^{ij} K_{ijA}.$$

Assumindo agora que g_{ij} satisfaz as equações de Einstein para um dado tensor de energia-momento T_{ij}

$$R_{ij} - \frac{1}{2}g_{ij}R = T_{ij} - \Lambda g_{ij}$$
 (6)

¹Os índices latinos pequenos varíam de 1 à 4 e os índices latinos mainisculos variam de 5 à D. Todos os índice gregos variam de 1 à D.

e comparando esta equação com com (5), resulta

$$K_{imA}K_{j}^{mA} - H_{A}K_{ij}^{A} - \frac{1}{2}(K^{2} - H^{2})g_{ij} = T_{ij} - \Lambda g_{ij}.$$
 (7)

Estas equações dizem que a segunda forma fundamental K_{ijA} deve ajustar-se com a fonte dada e a constante cosmológica. Note que (7) é uma equação algébrica em K_{ijA} , cujo traço é

$$(K^2 - H^2) = 4\Lambda - T \tag{8}$$

Para determinar a geometria associada à constante cosmológica, considere o caso do vácuo $T_{ij} = 0$, obtendo de (8)

$$K_{imA}K_{j}^{mA} - \frac{1}{2}K^{*}g_{ij} = -\Lambda g_{ij} \quad \text{e} \quad K^{2} - H^{2} = 4\Lambda \tag{9}$$

Vemos que A esta associado á curvatura extrinsec K^2 e a curvatura média H^2_1 as quais devem se ajustar de forma a compensar o pequeno valor observado de A.

Uni caso particularmente interessante é aquele em que o espaço-tempo possui volume mínimo[4], caracterizado por H = 0, de forma que o espaço-tempo comporta-se como uma membrana de 4 dimensões imersa em M_D . Neste caso e obtenos de (9) $\Lambda = \frac{K^2}{4}$, permitindo descrever a constante cosmológica exclusivamente em termos da curvatura extrinseca K^2 . Como esta curvaturas extrinseca não é acessivel ao observador riemanniano classico, interpretamos este resultado afirmando que a adoção da geometria riemanniana é correta ao nivel clássico da teoria. Por outro lado em teoria quântica, Λ comporta-se como um campo escalar devidamente inserido na geometria, o qual deve ser sintonizado.

References

- I. Klebanov, Wormholes & The Cosmological Constant Problem. Princeton U. PUPT-1153, Novembro (1989).
- [2] S. Weinberg, The Cosmological Constant Problem. U. Texas UTTG-12-88.
- [3] M. Ozer & M.O. Taha, Nucl. Phys. B287, 777 (1987)
- [4] M.D. Maia & W.L. Roque. Phys. Lett. Vol. A139, 121 (1989)

TOPOLOGICAL EFFECTS DUE TO A COSMIC STRING *

V. B. Bezerra and I. B. dos Santos Departamento de Física, Universidade Perioral da Parafia 58059 João Pesson, Pb, Brazil.

Topological defects of spacetime can be characterized by a spacetime metric with null lifernau-Christoffel corvature tensor everywhere except on the defects, that is, by coole type of curvature singuimities. Herent attempts to marry the grand unified theories of particle physics with general relativistic models of the early evolution of the universe have predicted the existence of such topological defects. One example of these topological defects are the cosmic strings¹ which appear naturally is more theories with spontaneous symmetry breaking.

Consistings are expected to be created during the phase transitions. Some may still exist and may even be observable; others may have collapsed long ago, get have served as the seals of the galaxies^{1,2}.

The line element of the spacetime described by an infinite, straight and static cylindrically symmetric cosmic string?, lying along the z-axis, is given by³

$$ds^{2} = dt^{2} - d\rho^{2} - \alpha^{2} \rho^{2} d_{z}^{2} - dz^{2}$$
(1)

In a cylindrical coordinate system (t,ρ,φ,z) with $\rho \ge 0$ and $0 \le \varphi \le 2\pi$, the hypersurface $\varphi = 0$ and $\varphi = 2\pi$ being identified. The parameter α is related to the linear mass density μ of the string by $\alpha \neq 1 - 4\mu$. This metric describes the spacetime which is locally flat (for $\rho \neq 0$) but has conelike singularity at $\rho \neq 0$ with the angle deficit $8\pi\mu$. Then, the spacetime around an infinite straight and static cosmic string is locally flat but of course not globally flat, it does not differ from Minkowski spacetime locally, it does differ globally. There is no Newtonian gravitational potential around the string, however we have some very interesting gravitational effects associated with the non-trivial topology of the space-like sections around the cosmic string. Among these effects, a cosmic string can acta as a gravitational lens² and can induces a repulsive force on an electric charge at rest⁴. Others effects include pair production by a high energy photon when it is placed in the spacetime around a cosmic string⁵ and a gravitational analogue⁶ of the electromagnetic Aharonov-Bohan effect⁷.

In this paper we study some effects of the global features of the spacetime of a straight cosmic string on quantum particles. To do this we use the Klein-Gordon and Dirac equations in covariant forms.

Let us consider a scalar quantum particle imbedded in a classical background gravitational field. Its behavior is described by the covariant Klein Gordon equation

$$\left\{\frac{1}{\sqrt{-\tilde{g}}}\partial_{\mu}(\sqrt{-\tilde{g}}\,g^{\mu\nu}\partial_{\nu}) + m^{2}\right]\psi = 0 \tag{2}$$

where *m* is the mass of the particle and A = c = 1 units are chosen.

The spacetime corresponding to a counic string is time independent, so the time dependence of the wave function that solves Eq(2) may be separated as e^{-iEt} and one is led to a stationary problem at fixed energy *E*. Moreover, rotational invariance and invariance along the *z*-axis of the metric allow as *u* separate the *g* and *z* dependences. In view of these we choose the solutions of Eq(2), $\psi(t, \rho, \varphi, z)$ in the form

$$\psi(t,\rho,\varphi,z) = \exp(-iBt + il\varphi + ikz) ll(\rho)$$
(3)

 We wish to acknowledge Consellio Nucleard de Desenvolvimento Científico e Tecnológico (CNP4) for portial financial support. where E,C and k aré constants,

In the spacetime corresponding to a cosmic string, the Klein-Gordon equation [Eq (2)] takes the form

$$\left\{\rho\partial_{\rho}(\rho\partial_{\rho}) + \left[E^2 - (k^2 + m^2)\right]\rho^2 - \frac{\ell^2}{\alpha^2}\right\}R(\rho) = 0$$
(4)

where we have used the ansatz given by Eq(3).

Equation (4) is a Bessel differential equation with the general solution given by

$$R_{\nu k}(\rho) = C_{\nu k}^{(1)} J_{[\nu]}(\lambda \rho) + C_{\nu k}^{(2)} N_{[\nu]}(\lambda \rho)$$
(5)

where $\lambda^2 = E^2 - (k^2 + m^2)$, $\nu = \ell/\alpha_i C_{\nu k}^{(1)}$ and $C_{\nu k}^{(2)}$ are normalization constants, and $J_{[\nu]}(\lambda \rho)$ and $N_{[\nu]}(\lambda \rho)$ are Bessel functions of the first and second kind, respectively.

We assume that the scalar quantum particle is restricted to move in a region bounded by the cylindrical surfaces $\rho = a$ and $\rho = b$, where b > a. The boundary conditions

$$R(a) = R(b) = 0 \tag{6}$$

determine the energy levels of the particle. This condition yields the following equation for the energy spectrum of the particle

$$J_{[\nu]}(\lambda a) N_{[\nu]}(\lambda b) - J_{[\nu]}(\lambda b) N_{[\nu]}(\lambda a) = 0$$
⁽⁷⁾

In order to obtain the spectrum explicitly we will consider a situation in which $\lambda a >> 1$ and $\lambda b >> 1$. Then using Hankel's asymptotic expansion when ν is fixed, we get

$$E = \sqrt{m^2 + k^2 + \frac{\ell^2}{a^2 a^2}}$$
 (8)

From Eq.(8) we see that the energy spectrum depends on the factor α (as well as the wave function) relative to the Minkowski case. But the spacetime is locally flat; the Riemann curvature tensor vanishes everywhere outside the string. So, the fact that this spacetime is locally flat but not globally (it is conical with deficit angle $2\pi\alpha$) deforms the energy spectrum respect to α .

Now let us cousider the Dirac equation in a curved spacetime, which is taken to be

$$\left[i\gamma^{\mu}(x)\frac{\partial}{\partial x^{\mu}}-i\gamma^{\mu}(x)I_{\mu}(x)\right]\psi(x)=m\psi(x)$$
(9)

where $\gamma''(x)$ are the generalized Dirac matrices and are given in terms of the standard flat spacetime gammas $\gamma^{(a)}$ by the relation

$$\gamma^{\mu}(x) = c^{\mu}_{(a)}(x) \ \gamma^{(a)} \tag{10}$$

where $e_{(a)}^{\mu}(x)$ are vierbeins defined by the relations

•••

$$c^{\mu}_{(a)}c^{\nu}_{(b)}\eta^{(a)(b)} = g^{\mu\nu}$$
 (11)

The product $\gamma^{\mu} I_{\mu}^{\nu}$ that appears in the Dirac equation can be written as⁹

$$\gamma^{\mu} I_{\mu} = \gamma^{(a)} \left(A_{(a)}(x^{\mu}) + i \gamma^{\beta} B_{(a)}(x^{\mu}) \right)$$
(12)

where $\gamma^{5} = i\gamma^{(6)}\gamma^{(1)}\gamma^{(2)}\gamma^{(3)}$ and $\Lambda_{(a)}$ and $B_{(a)}$ are given by

$$A_{(a)} = \frac{1}{2} \left(e^{\mu}_{(a),\mu} + e^{\rho}_{(a)} I^{\mu}_{\mu\mu} \right)$$
(13)

$$B_{(a)} = \frac{1}{2} \epsilon_{(a)(b)(c)(d)} e^{(b)\mu} e^{(c)\nu} e^{(d)}_{\nu,\mu}$$
(14)

where $x_{(0)(0)(0)}$ is the completely antisymmetric, fourth-order unit tensor, and the communication $\theta/\theta x \mu$

For the metric corresponding to a cosmic string we shall use the following set of vierbeins:

$$c_{(9)}^{\mu} = \delta_{9}^{\mu}, \ c_{(1)}^{\mu} = \cos\varphi \ \delta_{(1)}^{\mu} - \frac{1}{\alpha_{\mu}} \sin\varphi \ \delta_{2}^{\mu}$$

$$c_{(7)}^{\mu} = \sin\varphi \ \delta_{(1)}^{\mu} + \frac{1}{\alpha_{\rho}} \cos\varphi \ \delta_{2}^{\mu}, \ c_{(3)}^{\mu} = \delta_{3}^{\mu}$$
(15)

which yields the propertial spacetime limit ($\alpha = 1$). Using Eqs.(12)(13) and (14) and the above set of vierbeins we get,

$$l_0 = l_1 = l_3 = 0$$
 and $l_2 = \frac{1}{2}(1 - v)\gamma^{(1)}\gamma^{(2)}$ (16)

Choosing the ansatz

$$\psi = \begin{pmatrix} \sqrt{E+m} & u_1(\rho) \\ i\sqrt{E-m} & u_2(\rho)e^{i\varphi} \end{pmatrix} e^{\pi p} (-i\beta t + i\xi\varphi)$$
(17)

The Direceptotions become

$$\begin{pmatrix} (E - m) & i \left[(\partial_{\rho} + \frac{1}{2\rho}) + \frac{1}{\alpha \rho} (\ell + \frac{1}{2}) \right] \\ i \left[-(\partial_{\rho} + \frac{1}{2\rho}) + \frac{1}{\alpha \rho} (\ell + \frac{1}{2}) \right] & -(E + m) \end{pmatrix} \cdot \begin{pmatrix} \sqrt{E} + m & u_1 \\ \\ \\ i \sqrt{E} - m & u_2 \end{pmatrix} = 0$$
(18)

The general solutions of the above equations are given by

$$u_{i}(\rho) = C_{i,\ell}^{(1)} J_{[\nu_{1}(i-1)]}(\lambda \rho) + C_{i,\ell}^{(2)} N_{[\nu_{1}(i+1)]}(\lambda \rho)$$
(19)

where i = 1, 2, $\lambda^2 = B^2 - m^2$ and $\nu = \frac{l+1}{n} - \frac{1}{2}$, $C_{ij}^{(1)}$ and $C_{ij}^{(2)}$ are normalization constants and $J_{[\nu+(i-1)]}(\lambda \nu)$ and $N_{[\nu+(i-1)]}(\lambda \nu)$ are Bessel functions of the first and second kind, respectively.

Now, let us compute the current. If ψ is a massive field, j^{μ} can be written as

$$j^{\mu} \doteq \frac{1}{2m} \left(\psi \sigma^{\mu\lambda} \psi \right)_{\lambda} + \frac{i}{4m} g^{\mu\lambda} \overline{\psi} \overrightarrow{\partial}_{\lambda} \psi + \frac{i}{4m} \overline{\psi} \left(\left[\gamma^{\lambda}_{\lambda} \gamma^{\mu} \right] + \left[\gamma^{\lambda}_{\lambda} \gamma^{\mu}_{\lambda} \right] \right) \psi + \frac{i}{2m} \overline{\psi} \left[\gamma^{\lambda}_{\lambda} I_{\lambda} \gamma^{\mu}_{\lambda} \right] \psi$$

$$(20)$$

or, writing in components, in this case, we have

$$j^{0} = \nabla \cdot \mathbf{P} \cdot \mathbf{$$

bita

$$j_{(i)} = -\partial_i \Gamma_{(i)} + (\nabla \times \mathbf{M})_{(i)} + j_{(i),\text{convective}}$$

where the convective parts are derived from $\frac{1}{4\pi}g^{\mu\lambda}\vec{\psi}\vec{\partial}_{\lambda}\psi$, the polarization densities are given by

$$P_{(r)} = \frac{i}{2m} \overline{\psi} \gamma_{(0)} \gamma_{(r)} \psi$$

$$P_{(r)} = \frac{i}{2m} \overline{\psi} \gamma_{(0)} \gamma_{(r)} \psi$$

$$P_{(r)} = \frac{i}{2m} \overline{\psi} \gamma_{(0)} \gamma_{(r)} \psi$$
(22)

and

and the components of M are given by

$$M_{(\varphi)} = \frac{i}{4m} \overline{\psi}[\gamma_{(\varphi)}, \gamma_{(z)}] \psi$$

$$M_{(\varphi)} = \frac{i}{4m} \overline{\psi}[\gamma_{(z)}, \gamma_{(\varphi)}] \psi$$

$$M_{(z)} = \frac{i}{4m} \overline{\psi}[\gamma_{(1)}, \gamma_{(z)}] \psi$$
(23)

and

inegatic field. Note the dependence of j^{μ} , thought the component $j_{(\mu)}$, on the parameter α . Then, the current

differs from the Minkowski spacetime case by a term containing a dependence on $-\alpha$. So, the fact that the aparetime corresponding to a cosmic string is locally flat but not globally is also coded into the probability current. There is a physical effect on the current relative to Minkowski spacetime which comes out from the topological features of the spacetime surrounding a cosmic string.

References

- Ya. Zeklovich, J.Yu. Kohzarev and L. B. Okun, Zh. Eksp. Theor. Fiz. 67, 3 (1974) [Sov. Phys. JETP 40, 1 (1975)]
- 2. Å. Vilcokin, Phys. Rev. 121, 263 (1985)
- J. R. Gott III, Astrophys. J. 288, 422 (1985); W. A. Hiscock, Phys. Rev. D31, 3288 (1985); B. Linet, Ge. Rel. Grav. 17, 1109 (1985).
- 4. B. Linet, Phys. Rev. D35, 1833 (1986);
- 5. Diego D. Harari and Viadindr D. Skarzblusky, Phys. Lett. B240, 322 (1990).
- 6. J. S. Dowker, Nuovo Chmento. B52, 129 (1967); L. H. Ford and
- J. Audretsch and C. Lämmerzahl J. Phys. A16, 2457 (1983);and V. B. Bezerra J. Math. Phys. 30, 2895 (1989).
- 7. Y. Aheromov and D. Bohm, Phys. Rev. 115, 485 (1959);
- 8. C. G. Oliveira and J. Tionno, Nuovo Cimento 24, 672 (1962).

SOME COSMOLOGICAL CONSEQUENCES OF A A-TERM VARYING AS $\beta H^2 + \alpha R^{-n}(\beta, \alpha \text{ and } n \text{ constants})$ J. A. S. Lima and J. M. F. Maia Departamento de Física Teórica e Experimental 59072 CP1641 Natai, RN - BRASIL

ABSTRACT - A phenomenological decay law for the cosmological A-term is proposed and its influence on the standard universe model is examined. As a general feature, singular and nonsingular solutions are present and the age universe problem can be solved. It is also shown that kinematic expressions such as the luminosity distance and angular diameter versus red-shift relation are significantly modified.

I. INTRODUCTION

In the framework of the quantum field theories, the cosmological A-term present in Einstein's equations can be interpreted as the vacuum energy density. On the other hand, the cosmological estimatives of such a term $(\Lambda/8\pi G \leq 10^{-47} \text{GeV}^4)$ is smaller than the limits derived from gauge theories by at least forty orders of magnitude. Such a puzzle is the essence of the so-called cosmological constant problem¹.

Some physical mechanisms have been proposed to explain the current small value of the cosmological constant. Recently, several authors have argued that the vacuum energy density, coupled with the other fields, is a time dependent quantity²⁻⁶ in this way the A-term is small today because the universe evolves. From a phenomenological point of view, the problem reduces to determine the dependence of A on the scale factor R and its first derivatives, taking into account the cosmological data.

in this article we examine some consequences of an effective A-term varying as

$$\Lambda = 3\beta H^2 + 3\alpha R^{-n}, \qquad (1)$$

where α , β and n are constants, R is the universal scale function, H=R/R is the Hubble parameter with the factor 3 being introduced by mathematical convenience.

2. THE MODELS

We start writing the Einstein's equations for the FRW line element with a comoving perfect fluid plus a Λ -term as source of curvature (a dot means time derivative)

$$8\pi G\rho + \Lambda = 3 \frac{\dot{R}^2}{R^2} + 3 \frac{k}{R^2},$$
 (2)

$$8\pi Gp - \Lambda = -2 \frac{\ddot{R}}{R} - \frac{\dot{R}^2}{R^2} - \frac{k}{R^2}.$$
 (3)

By considering the " γ -law" equation of state $p=(\gamma-1)\rho$, and the A-term defined in eq.(1), one obtains the following differential equation for the scale factor

$$R\ddot{R} + \Delta_{j}\dot{R}^{2} + \Delta k - \frac{3\alpha\gamma R^{2}}{2} = 0, \qquad (4)$$

the first integral of which is given by

$$\dot{R}^{2} = AR^{-2\Delta_{1}} + \frac{3\alpha\gamma R^{-n}}{2\Delta_{1}+2-n} - \frac{\Delta k}{\Delta_{1}}; \quad (\Delta_{1} \neq 0, \frac{n-2}{2}), \quad (5)$$

where

 $\Delta_{i} = \frac{3\gamma(1-\beta)-2}{2}$, $\Delta = \frac{3\gamma-2}{2}$ and A is a γ -dependent constant.

From eqs. (1)-(3) one obtains for ρ and ρ_v , the matter and vacuum energy densities, the following expressions:

$$\frac{8\pi G\rho}{3} = (1-\beta)AR^{-2\Delta_{1}-2} + \frac{3\gamma(1-\beta)+n-2\Delta_{1}-2}{2\Delta_{1}+2-n} \frac{\alpha}{R^{n}} + \frac{\Delta_{1}-(1-\beta)\Delta}{\Delta_{1}} \frac{k}{R^{2}}, \qquad (6)$$
$$\frac{8\pi G\rho}{3} = \beta AR^{-2\Delta_{1}-2} + \frac{3\beta\gamma+2\Delta_{1}+2-n}{2\Delta_{1}+2-n} \frac{\alpha}{R^{n}} - \frac{\beta\Delta k}{\Delta_{1}R^{2}}. \qquad (7)$$

For $\alpha=\beta=0$, the dynamic equation and the energy density of the standard FRW models are recovered⁷. Universes with A constant can also be described putting $\beta=n=0$. Further, recent models with variable A are simple particularizations of eqs. (4)-(7), namely: Ozer and Taha²($\beta=0$, $\alpha=k=1$ and n=2), Freese et al³ ($\alpha=k=0$, $\beta=\rho_{\nu}/\rho+\rho_{\nu}$), Gasperini⁴($\beta=0$, 9/5<n<2), Chen and Wu⁵ ($\beta=0$, n=2), Carvalho et al⁶ (n=2). It is easy to see that singular and nonsingular solutions are present in our equations. If we put A<0 the singularity can be avoided for generic choices of the constants α,β and n. This happens, for instance, in the Ozer and Taha model. Such solutions are, in fact, compatible with the weak and dominant energy conditions. Conversely, taking A>0 singular solutions are obtained as in the Chen and Wu model. It is worth mentioning that the several phenomenological laws analysed by the mentioned authors are grounded in different arguments which will not be critically discussed here. Formally, the behaviour assumed in eq.(1) is the simplest generalization of the above considered particular cases.

3. SOME PHYSICAL RESULTS

(i) Universe Age

Defining the present time quantities $q_0 = -R\ddot{R}/\dot{R}^2|_{t=t0}$ and $H_0 = \dot{R}/R|_{t=t0}$ one obtains from eqs.(4)-(5) the following expression for the universe age

$$t_{o} = H_{o}^{-1} \int_{0}^{L} \frac{dx}{f(x)} , \qquad (8)$$

where $x=R/R_{a}$ and the function f(x) is defined by

$$f(x) = 1 - \frac{2q_0}{1-3\beta} + \frac{2q_0}{(1-3\beta)x^{1-3\beta}} + (1 - \frac{2q_0}{1-3\beta}) \left[\frac{(n-2)(1-x^{3\beta-1}) - (1-3\beta)(1-x^{2-n})}{3-3\beta-n} \right]$$
(9)

In general, the above integral cannot be exactly solved in terms of elementary functions. However, some interesting particular cases emerge from eqs. (8) and (9). If n=2, the expression derived in ref. (7) is recovered. Moreover, if $n-2=1-3\beta$ then, $t_0 \simeq 2H_0^{-1}/(3-3\beta)$ showing that ages greater than H_0^{-1} can be obtained from eq.(8). The same result holds for n=2 and k=0 (see ref. (7)).

(ii) Matter Creation

For models with variable A the energy conservation law $(T^{\mu\nu} = 0)$ takes the following form

$$\dot{\rho} + 3 \frac{\dot{R}}{R} (\rho + p) = - \frac{\dot{\Lambda}}{8\pi G}$$
 (10)

Thus, if $\Lambda < 0$ energy is transfered from decaying vacuum to the material component. In the present matter dominated phase, the matter creation rate can be written as

$$\frac{1}{R_0^3} \frac{d}{dt} (\rho_0 R_0^3) = 3\rho_0 H_0 \left[\frac{n}{3} \left(\frac{1 - \Omega_0}{\Omega_0} \right) + \beta \frac{(\Omega_0 - \frac{11}{2})}{\Omega_0} \right],$$
(11)

where $\Omega_0 = \rho_0 / \rho_{cr}$ is the present value of the density parameter. For n=2, this expression reduces to the case studied by Carvalho et al⁶. The factor $3\rho_0 H_0$ is exactly the creation rate of the steady state universe⁸.

(iii) Luminosity Distance (d) and Angular Diameter Distance (d)

The kinematical relation distances must be confronted with the observational data in order to put limits on the free parameters of the model. Using the canonical procedure to compute the luminosity and diameter angular distances⁹, analytical expressions are obtained in the following cases:

a) k=0 and n-2=1-3 β

$$d_{L} = \frac{2H_{0}^{-1}}{1-3\beta} (1+z) \left(1 - (1+z)^{-\frac{1-3\beta}{2}}\right)$$
(12)

b) ____ 1.__0 +1

$$d_{L} = \frac{R_{0}^{(1+2)}}{\sqrt{k}} \sin\left[\frac{2\sqrt{k}}{1-3\beta}\left(\frac{2q_{0}}{1-3\beta} - 2\right)^{-1/2} (\sin^{-1}\alpha_{1} - \sin^{-1}\alpha_{2})\right], \quad (13)$$

where

$$\alpha_{1} = \left[\frac{1}{(1+2)^{1-3\beta}} \left(1 - \frac{1-3\beta}{2q_{0}} \right) \right]^{1/2}, \ \alpha_{2} = \left(1 - \frac{1-3\beta}{2q_{0}} \right)^{1/2}.$$
(14)

For both cases $d_A = d_L (1+z)^{-2}$, so that the distance relations are modified by the presence of the β parameter. As one should expect, if $\beta \rightarrow 0$ the results of the FRW universes are recovered.

4. CONCLUSION

We investigate some physical consequences of a decaying vacuum energy density. It was implicitly assumed that the vacumm couples only with the dominant component in each phase. Note also from eq. (5) that the recollapse conditions are strongly modified. In fact, models with k>0 may expand forever regardless the value of the parameters β and n. Alternatively, universes with k≤0 may recollapse in a finite time interval. Finally, we call atention that the Landau-Lifshits fluctuation theory was applied by Pavón⁹ to study the physical consistency of the several phenomenological laws for the A-term. Such a paper was recently generalized in the spirit of the present article by Salim and Waga¹⁰.

Acknowledgements: We thank J. Carvalho and I. Waga for helpful discussions. We also are grateful to the Brazilian research agencies CNPq and CAPES for financial support.

References

1. For a review see S. Weinberg; Rev. Mod. Phys. 61, 1 (1989)

2. M. Ozer and M. O. Taha; Phys. Lett. B171, 363 (1986); Nucl. Phys. B287, 776 (1987).

3. K. Freese, F. C. Adams, J. A. Frieman and M. Mottola; Nucl. Phys. B287, 797 (1987).

4. M. Gasperini; Phys. Lett. Bi94, 347 (1987).

5. W. Chen and Y-S. Wu; Phys. Rev. D41, 695 (1990).

6. J. C. Carvalho, J. A. S. Lima and i. Waga; to be published.

7. M. J. D. Assad and J. A. S. Lima; Gen. Rei. Grav.21,527 (1988).

8. S. Weinberg; Gravitation and Cosmology, Wiley (1971).

9. D. Pavón; Phys. Rev. D43, 375 (1991).

10.J. M. Sailm and I. Waga; oral communication at this meeting.

New Baryonic Force for the Universe

Mário Everaldo de Souza,

Departamento de Física - CCET, Universidade Federal de Gersipo, Campus Universitário, 49000 Aracajo, Sergipe, Brazil

It has been established, beyond any doubt, that the Universe is ondergoing an expansion. Recent data of several investigators show that galaxies form gigantic structures in space. De Lapparent et al.¹(also, other papers by the same authors) have shown that they form bubbles which contain huge voids of many megapareness of diameter. Broadhurst et al.² probed deeper regions of the universe and showed that there are (hubble) walls up to a distance of about 2.5 billion light-years from our galaxy. Even more disturbing is the apparent regularity of the walls with a period of about $130h^{-1}$ Mpc. Recent data³ show, however, that the bubble, walls are not so regularly spaced and, therefore, the medium formed by them is rather a liquid than a solid. We may call this medium the 'galactic liquid'.

At the other end of the distance scale, in the fermi region, it appears now, that the quark is not elementary after all. This can be implied just from their number, which, now, stands at 18. Theorists in particle physics have already begun making models addressing this compositeness⁴.

In the past, science has utilized specific classifications of matter which have revealed hidden laws and symmetries. Two of the most known classifications are the Periodic Table of the Elements and Gell-Mann's classification of particles (which paved the way towards the quark model).

Let us attempt to achieve a general classification of matter, including all kinds of matter, and by doing so we may find the links between the elementary particles and the large lodies of the universe. This classification, although empirical, is surprisingly consistent.

It is well known that the different kinds of matter of nature appeared at different epochs of the universal expansion, and that, they are imprints of the different sizes of the universe along the expansion. Taking a closer look at the different kinds of matter we may classify them as belonging to two general states. One state is characterized by a single entity with angular momentum, and we may call it, the 'whirling' state. The angular momentum may be either the intrinsic angular momentum, spin, or the orbital angular momentum. The other state is characterized by collective interactions and may be called the 'soup' state. In the whirling states we find the fundamental matters that make the soups. The different kinds of fundamental matter are the building blocks of everything, stepwise. In what follows we will not talk about the weak force since it does not form any stable matter. Later on we will include it in the discussion. The whirling state is formed by only one kind of fundamental force. In the soup state one always finds two types of fundamental forces, i.e., this state is a link between two whirling states. Due to the interactions among the bodies (belonging to a particular whirling state) one expects other kinds of forces in the soup state. In this fashion we can form a chain from the quarks to the galactic superstructures.

The kinds of matter belonging to the whirling states are the nucleons, the atom, the galaxies, etc. The 'et cetera' will become clearer later on in this article. In the soup state one finds the quarks, the nuclei, the gases, liquids and solids, and the galactic liquid. Let us, for example, examine the sequence nucleon-nucleus-atom. A nucleon is made out of quarks and held together by means of the strong force. The atom is made out of the nucleus and the electron(we will talk about the electron later), and is held together by means of the electromagnetic force. The nucleus, which is in the middle of the sequence, is held together by the strong force and by the electromagnetic force. In other words, we may say that the nucleus is a link between the atomg and the electromagnetic forces. Let us, now, turn to the sequence atom-(gas,liquid,aolid) galaxy. The galaxy, fiquids and

solids form the link between the electromagnetic force and the gravitational force because they form big clumps of matter, which are all, part of the biggest individual chungs, the galaxies. In the same fashion as with nuclear matter, one expects other kinds of forces in the gases, liquids and solids due to collective interactions. We arrive again at a single fundamental force that holds a galaxy together, which is the gravitational force. There is always the same pattern: one goes from one fundamental force which exists in a single entity(mcleon, atom, galaxy) to two fundamental forces which coexist in a medium. The interactions in the medium form a new entity in which the action of another fundamental force appears.

By placing all kinds of matter together in a table in the order of the universal expansion we can construct the two tables below, one for the states and another for the fundamental forces.

In order to make the atom we need the electron besides the nucleus. Therefore, just the clumping of nucleons is not enough in this case. Let us just borrow the electron for now.

In order to keep the same pattern, which should be reinted to an underlying symmetry, the tables reveal that there should be another force, other than the strong force, holding the quarks together, and that this force alone should hold together the prequarks. Let us name it the superstrong force. Also, for the galactic liquid, there must be another fundamental force at play. From the enormous distances involved(and thus, the very slow transmission of this force at the present epoch) we expect it to be a very weak force. Let us call it the superweak force.

Summing up all fundamental forces forming the single entities we arrive at five forces. The electron, apparently, belongs to a separate class. Adding the weak force to the other five we obtain siz forces. Placing all five forces at the corners of an hexagon(Fig.1) in the order in which they appeared in Table 2(the order of the expansion), and adding the weak force to the missing corner we obtain very interesting relationships among the forces. For example, we find that the electromagnetic and the weak forces are coupled(as they should be); the superstrong force is coupled to the gravitational force; and, the strong force is coupled to the superweak force. These relationships indicate that in the Planck era there are three forces, not one: 1) The electroweak force; 2) The superstrong-gravitational force; 3) The strong-superweak force. This would explain the unexplained "threenesses" of the standard model(in particle physics) as discussed by Fritzsch¹¹. If the "threenesses" are related to the number of forces 'in the beginning of the universe', then the number of quark generations should be 3l where l is an integer larger or equal to one. Therefore, three would be the minimum number of generations.

The ultimate superstructure formed out of the galactic liquid is the universe, of course. There should exist only one universe otherwise there would still exist mother fundamental force involved in the interaction among universes.

Let us now consider the 'soups' and let us focus our attention in the forces which form neutral ordinary matter (gases, liquids and solids) and in the nuclear force. There is one type of force which is common to both cases. It is known that the nuclear force can be represented in terms of the Seyler-Blanchard interaction^{5,6} which is a type of Van der Waals equation of state. The Van der Waals interaction is also very common in ordinary matter and is described by several kinds of equations depending on the nature of the dipoles.

In order to have the galactic liquid it is also necessary to have a sort of Van der Wurds interaction. Therefore, we need another force with a repulsive character(at present).

As we saw above, the superweak force is coupled to the strong force and they must have been unified 'in the beginning of the universe'. Let us now try to find a possible mathematical expression for this force. There have been reports of a fifth force inferred from the reanalysis of the Eötvös experiment and from the mine-gravity data (Fischbach 1987). The discrepancies auggest the existence of a composition dependent intermediate-range force. The potential energy of such hypothetical force is usually represented by a Yukawa potential which, when added to the standard Newtonian potential energy, becomes⁷

$$V(\mathbf{r}) = \frac{Gm_1m_2}{r} (1 + \alpha \exp(-r/\lambda)), \qquad (1)$$

where α is the new coupling in units of gravity and λ is its range. The dependence on composition can be made explicit by writing $\alpha = q_i q_j \zeta$ with

$$q_i = \cos\theta (N + Z)_i / \mu_i + \sin\theta (N - Z)_i / \mu_i, \qquad (2)$$

where the new effective charge has been written as a linear combination of the baryon number and nuclear isospin per atomic mass unit, and ζ is the coupling constant in terms of G.

Until now the results confirming the existence of such a force have been inconclusive⁸, although they do not rule it out because its coupling constant(s) may be smaller than previously thought. It is worth noting that the experiments performed until now did not involve very large masses(i.e., a large number of baryons.)

The superweak force proposed in this paper, although being a long range force, has the same character as the one of the proposed fifth force does. Since it should be unified with the strong force at short distances, it may be connected with baryon number or isospin. From the above expression for the fifth force potential we may express the potential of the superweak force in terms of the baryon numbers and isospins of two bodies i and j as

$$V(r, N, Z) = (A_B(N+Z)_i(N+Z)_j + A_I(N-Z)_i(N-Z)_j + A_{IB}((N+Z)_i(N-Z)_j + (N+Z)_j(N-Z)_i))g^2 - \frac{\exp(-r/\lambda)}{r}$$
(3)

where A_B and A_I are the force coupling constants of the baryon number and isospin terms, respectively, and A_{IB} represents the mixing coupling of isospin and baryon number, and g is the strong force charge. Let us assume that the constants A_B , A_I and A_{IB} are positive. Taking into account the homogeneity of the universe we may disregard the distinction between i and j and the formula becomes simplified somewhat,

$$V(r, N, Z) = \left(A_B(N+Z)^2 + A_I(N-Z)^2 + 2A_{IB}(N+Z)(N-Z)\right) g^2 \frac{\exp\left(-r/\lambda\right)}{r}.$$
 (4)

. .

The superweak force is given by minus the derivative of the above potential with respect to r, which is a function of time(along the expansion). Taking into account conservation of baryon number we have

$$F(r, N(r), B) = -4 \frac{dN(r)}{dr} (A_I(2N(r) - B) + A_{IB}B) g^2 \frac{\exp(r/\lambda)}{r} + \left(\frac{1}{\lambda} + \frac{1}{r}\right) V(r, N(r), B)$$
(5)

where B is the baryon number of any of the two portions. The number of baryons of these two portions has to be extremely large, otherwise we would already have clearly identified this force on **Earth**.

With the above expression for the superweak force we will be able to explain the expansion of the universe itself and its cyclic behavior. At some time in the 'beginning' of the universe N was equal to Z. Let us name it t = 0. For t > 0, N decreases (from B/2) with respect to Z via the weak interaction. Therefore, the asymmetry begins and the repulsive part of the superweak force increases. Asymmetry here means the asymmetry in the number of neutrons with respect to the number of protons. Let us call it nucleonic asymmetry. During the next epoch, the lepton era, the nucleonic asymmetry increased and the repulsion outpaced gravity easily, for, during this era N decreased drasticaly. At the end of the lepton era the neutrons made up only 13% of all baryons, the remaining 87% being protons. Therefore, at the end of this era the repulsion attained its maximum value. After this point the repulsion decreased due to the combined effect of the dependence of the superweak force with rand to the halt in the production of protons. As the universe ages the stars become white dwarfs, neutron stars and black holes (not observed yet). During the aging process the core density of a star increases and the high electron Fermi energy drives electron capture onto nuclei and free protons. This last process, called neutronization⁹, happens via the weak interaction. The most significant neutronization reactions are electron capture by nuclei and electron capture by free protons.

Of course, neutronization takes place in the stars of all galaxies, and thus, the number of neutrons increases relative to the number of protons as the universe ages. For example, a white dwarf in the slow cooling stage(for $T \le 10^7$ K) reaches a steady proton to neutron density of about 1/8, and takes about 10^9 years to cool off completely. At a later time one expects that the neutrons will decay via the weak interaction and the number of protons will increase again (with respect to the number of neutrons). Therefore, we expect to have N and Z as a function of time as shown in Fig.2. The end of the lepton era is represented by $t = t_L$, and t_e is the time when N and Z become equal again. According to the arguments above, there is a time which is the inverse of the end of the lepton era, with much more neutrons than protons. Let us name it $t = t_n$. In this way, the attractive terms of the equation of the superweak force above become more dominant than the repulsive term(s) and the force closes the universe. It will be shown that this force drives the expansion and contraction of the universe and behaves overall as a spring-like force. In Fig.3 H_0^{-1} is the present age of the universe(H_0 is the Hubble constant). The two turning points, where the force changes sign are t = 0 and $t = T_t$, and T_y is the maximum age of the universe including expansion and contraction.

From the arguments presented above, the superweak force should be zero at t =: 0 and at $t = T_t$. Moreover, around $t = T_t$, this force must be a restoring force. Let us expand the potential around $t = T_t(r = r_T)$ and find the condition for a minimum(in the potential). Up to third order in $r - r_T$ the potential is given by

$$\frac{V(r)}{(Bg)^{3}} = \frac{1}{r_{T}} \left(A_{B} + 2A_{IB}(2\eta_{T} - 1) + A_{I}(2\eta_{T} - 1)^{2} \right) + \frac{1}{r_{T}} \left(4a_{T}A_{IB} + 4a_{T}A_{I}(2\eta_{T} - 1) \right) (r - r_{T}) + \frac{1}{r_{T}} \left(4b_{T}A_{IB} + 4a_{T}^{2}A_{I} + 4b_{T}A_{I}(2\eta_{T} - 1) \right) (r - r_{T})^{2} + \frac{1}{r_{T}} \left(4c_{T}A_{IB} + 4c_{T}A_{I}(2\eta_{T} - 1) + 8a_{T}b_{T}A_{I} \right) (r - r_{T})^{3}$$
(6)

where a_T , b_T and c_T are the first, second and third derivatives of $\eta(r)$ with respect to r. The linear term in $r \cdots r_T$ should be zero so that we have a minimum at $r \cdots r_T$. This leads to the condition $\eta_T = \frac{1}{2}(1 - A_{IB}/A_I)$. Using this condition and the condition $h^* =: 0$, at t =: 0 and $t = T_i$ we obtain $A_B A_I = A_{IB}^2$ and $\frac{d\eta}{dr} = -\frac{1}{4r_0}(A_B/A_I)^{1/2}$ where r_0 is the distance between the two bodies in consideration at t = 0.

Taking into account that $A_B A_I = A_{III}^2$, η_T becomes $\eta_T = \frac{1}{2} \left(1 - \sqrt{\frac{A_B}{A_I}}\right)$ from which we obtain $A_B < A_I$.

Considering that $A_B A_I = A_{IB}^2$, the expressions for the potential and for the force become

$$\frac{V(r)}{(Bg)^2} = \frac{\left(\sqrt{A_{\mu}} + \sqrt{A_{\mu}}(2\eta(r) - 1)\right)^2}{r}$$
(7)

and

$$\frac{F(r)}{(Bg)^2} = \frac{4}{r} \frac{d\eta(r)}{dr} \left(A_I(2\eta(r) - 1) + \sqrt{A_{IJ}A_I} \right) + \frac{1}{r} \frac{V(r)}{(Bg)^2}.$$
 (8)

The potential around $r = r_T$, up to third order in $r = r_T$ becomes

$$\frac{V(r)}{A_I(Bg)^2} = \frac{1}{r_T} \left(a_T^2 (r - r_T)^2 + 8 a_T b_T (r - r_T)^3 \right). \tag{9}$$

One can easily notice that V = 0 at $r = r_T$. Let us analyze in some detail the point $r = r_T$ (or $t = T_t$).

The expression for the force around $t = T_t$ up to first order in $r - r_T$, is given by

$$\frac{F(r)}{A_I(Bg)^2} = -\frac{2a_T^2}{r_T}(r-r_T).$$
(10)

From this expression we obtain

$$\frac{dF}{dt}|_{t=T_{t}} = -\frac{2A_{I}(a_{T}Bg)^{2}}{r_{T}v_{T}}, \qquad (11)$$

which shows that v_T can not be zero.

Now, let us show that the contraction begins at $t = t_e$ (when $\eta = 1/2$). At $t = t_e$ we have

$$\frac{d\eta}{dt}|_{t=t_e} = \frac{\dot{\eta}_e}{v_e} \tag{12}$$

and

$$\frac{F_{e}}{(Bg)^{3}} = -\frac{4\sqrt{A_{B}A_{I}}}{r_{e}}\frac{\dot{\eta}_{e}}{v_{e}} + \frac{A_{B}}{r_{c}^{2}}.$$
 (13)

Since $F_{e} < 0$, we can not have $\dot{\eta}_{e} > 0$, for, in that case v_{e} would have to be positive, and so we would just leave the question of the contraction to a later time, but the shape of $\eta(t)$ would not allow it to happen. We can have a contraction at $t = t_{e}$ if we have $\dot{\eta}_{e} = 0$, because in this case we must also have $v_{e} = 0$. Let us show that we have a maximum for $\eta(t_{n})$ and a minimum for $\eta(t_{L})$, and by doing so we justify the shape of the curve shown in Fig.(2). Taking the derivative of the force as expressed by Eq.(5), and considering that it must be zero, and $\frac{d\eta}{dr} = 0$ at $t = t_{L}$ and at $t = t_{n}$, we obtain

$$\frac{d^2\eta}{dr^2} = -\frac{Q}{2r} \frac{1}{2r} \frac{2\eta}{2r}$$
(14)

at these two times, where $Q = (A_H/A_I)^{1/2}$. At $t = t_n$, $2\eta - 1 > 0$, and therefore, $\frac{d^2\eta}{dt^2} < 0$, and thus $\eta(t)$ has a maximum at $t = t_n$. At $t = t_L$, we may rearrange the above expression as

$$\frac{d^2\eta}{dr^2} = \frac{\eta(t_L)}{r_L} \quad \eta(T_l) \tag{15}$$

where we have used the relation $\eta(T_t) = \frac{1}{2}(1 - \sqrt{\frac{A_B}{A_I}})$. Because $\eta_L < \eta_T$, the second derivative is positive, and so at $t = t_L$, $\eta(t)$ has a minimum. This is consistent with the qualitative shape of η shown in Fig.2.

We can also show that around t = 0 the superweak force is given by an expression identical to the strong force. By expanding the potential around $r + r_0$ up to first order in $r - r_0$, and calculating F, we have

$$|F(r\approx r_o)| = \frac{A_B(Hg)^2}{r_o^2}.$$
 (16)

This is, of course, the expression for the strong force at t = 0. Therefore, the strong force and the superweak force are unified at t = 0. This result is consistent with Fig.1.

We represent in Fig.4 the potential of the superweak force according to our calculations and considerations. According to this figure the universe spends most of its time at the bottom of the potential, where it is more stable.

Expressing the expansion rate as $\frac{1}{R(t)} \frac{dR(t)}{dt} = f(t) = H(t)$ where H(t) is Hubble's constant, and making $L(\eta) = A_B + A_I(2\eta - 1)^2 + 2(A_IA_B)^{1/2}(2\eta - 1)$ we obtain (disregarding gravity)

$$\dot{H} = \frac{B^2 g^2 |\dot{L}(\eta)|}{m_p r_o^3 H R^3} + \frac{B^2 g^2 L(\eta)}{m_p r_o^3 R^3} - H^2$$
(17)

where $R(t) = r(t)/r_0$, $r_0 = r(0)$ and m_p is the mass of the proton. In the range between $t = t_L$ and $t = t_0$, $\eta > 0$, $\eta < 1/2$, and therefore \dot{L} is negative. H^{-1} is the time of expansion between t_L and t. $|\dot{L}|/H$ and L may have the same order of magnitude for times close to T_t . Let us consider t as being the present epoch of the universe. If the expansion is slowing down we must have $\dot{H} < 0$, L > 0 in this range. Solving the cubic equation in \dot{H} for $\dot{H} < 0$, we obtain

$$H(t) > \left(\frac{B^2 g^2 |\dot{L}|}{2m_p r_o^3 R^3} + \sqrt{-\frac{B^6 g^6 L^3}{27m_p^3 r_o^9 R^9} + \frac{B^4 g^4 |\dot{L}|^2}{4m_p^3 r_o^6 R^6}}\right)^{1/3} - \left(\frac{B^2 g^2 |\dot{L}|}{2m_p r_o^3 R^3} - \sqrt{-\frac{B^6 g^6 L^3}{27m_p^3 r_o^9 R^9} + \frac{B^4 g^4 |\dot{L}|^2}{4m_p^2 r_o^6 R^6}}\right)^{1/3}$$
(18)

which means that H is positive.

If we include the gravitational force, we add an extra negative term to H which makes the expansion to slow down more.

In the range $t_n < t < T_U + t_L$, taking into account special relativity and gravity and considering that the two bodies are identical, we obtain

$$\frac{c^{3}r_{o}}{(c^{3}-H^{2}R^{2}r_{o}^{2})^{3/2}}(HR+H^{2}R) = \frac{B^{2}g^{2}\dot{L}(\eta)}{m_{\mu}r_{\sigma}^{2}R^{2}H} + \frac{B^{2}g^{2}L(\eta)}{m_{\mu}r_{o}^{2}R^{2}} - \frac{B^{2}g^{2}L(\eta)}{r_{o}^{2}R^{2}} = \frac{B^{2}g^{2}L(\eta)}{r_{o}^$$

We can calculate how H(t) depends on time around t = 0 if we make some assumptions on the relative proportions of neutrons to protons provailing bround t = 0. The nuclear reactions which must be considered in determining the proton-neutron ratio are the following:

$$\mathbf{n} \leftarrow \mathbf{p} + \mathbf{c} + \mathbf{v}_{e}, \quad |\mathbf{n} + \mathbf{v}_{e} \leftarrow \mathbf{p} + \mathbf{c}_{+} + |\mathbf{n} + \mathbf{c}^{\dagger} \leftarrow \mathbf{p} + \mathbf{v}_{e}. \tag{20}$$

By considering that the temperature is not very high so that $\omega_e c^2 \approx kT$, Alpher et al.¹⁰ have shown(in another context) that, among the reactions above, free neutron decay is the dominant reaction. Taking this into account and considering the condition that we found at $t = 0(F \pm 0)$, $\frac{dx}{dt} = -\frac{dx}{dt \ln t}$, we have

$$H(t) = 2\sqrt{\frac{A_{f}}{A_{B}}} \frac{t}{100}$$
(21)

where t is given in seconds.

We can explain the (flat)rotational curve of galaxies, v versus r in the following way: We expect that, since the time of its formation, a galaxy experiences an overall repulsion, which must be stronger between its bulge and its outskirts. Since the gravitational force is responsible for holding all the galaxy's stars together, the repulsion must cause a small effect, only observable over a long time. This repulsion is consistent, for example, with the outward motion of two large expanding arms of hydrogen gas which have been observed close to the center of the Milky Way¹¹. This phenomenom is not particular to our galaxy, and similar outbursts are happening in many other galaxies. Let us take a look at Fig.(3). Galaxy formation happened at a time $t = t_G > t_L$. From t_G up to the present epoch, a galaxy is subjected to the repulsive force shown as the first hump in Fig.(3).

Because of the repulsion the tangential velocities of the stars of a galaxy (out of the bulge) are kept constant due to the positive work performed by the repulsion on a particular star. This work is done against the gravitational potential and the star gains gravitational energy and moves outward. Therefore, the star's tangential velocity does not change.

Let us consider a star in an orbit(1) at a distance R_1 . The total energy, E, of the system (inner galactic region)-star, is

$$E = K_1 + U_1 + V_1 \tag{22}$$

where K_1 is its kinetic energy, U_1 is its gravitational energy, and V_1 is its superweak potential energy. The inner galactic region includes the bulge of the galaxy and the stars up to the radius R_1 . In the orbit with radius R_2 , the energy E, is given by

$$E = K_2 + U_2 + V_2. \tag{23}$$

Because the gain in gravitational energy, $U_2 - U_1$, was obtained at the expense of the superweak potential energy released, $V_1 - V_2$, the kinetic energy remains the same, i.e., $K_2 = K_1$. Therefore, $v_2 = v_1$. Since the star moves outwards and keeps the same tangential velocity its angular momentum increases. The increase is given by

$$\Delta L = mv(R_2 - R_1) \tag{24}$$

where m is the mass of the star, v is its tangential velocity, R_1 is its original orbital radius and R_2 is its final(at a particular time) orbital radius. Because v remains constant its angular velocity decreases with respect to the central part of the galaxy.

Because of conservation of angular momentum the galactic bulge must decrease its angular momentum by the same amount, ΔL . If we consider that the angular velocity of the bulge does not diminish (which is more plausible than otherwise), then its mass must diminish, i.e., the central hub sheds more matter outwards. This fact has been observed in many galaxies. Thus, matter is shed outwards because of repulsion and because of angular momentum conservation. Therefore, as
the galaxy ages, its nucleus diminishes in size. The opposite happens to the arms which become bigger and bigger. This helps us understanding the formation of arms in galaxies

REFERENCES

- 1. V. de Lapparent, M. J. Geller, and J. P. Huchra, Astrophys. J. (Letters), 365, 14(1986)
- 2. T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay, Nature, 343,726(1990)
- 3. H. Kurki-Suonio, G. J. Mathews, and G. M. Fuller, Astrophys. J.(Letters) 356, 15(1990)
- 4. H. Fritzsch, in Proceedings of the twenty-second Course of the International School of Subunctear

Physics, 1984, ed. by A. Zichichi (Plenum Press, New York, 1988)

5. W. Küpper, G. Wegmann, and E. R. Hilf, Ann. Phys. 88, 454(1974).

6. D. Bandyopadhyay, J. N. De, S. K. Samuddar, and D. Sperber, Phys. Lett. B 246, 391

7. E. Fischbach, in Proceedings of the NATO Advanced Study Institute on Gravitational Measurements, Fundamental Metrology and Constants, 1987, ed. by V. de Sabbata and V. N. Melnikov(I). Reidel Publishing Company, Dordrecht, Holland, 1988).

8. R. Cowsik, N. Krishnan, S. N. Tandon, and S. Unnikrishnan, Phys. Rev. Lett. 62, 336(1990).

9. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars, Wiley, New York (1983).

10. R.A.Alpher, J.W.Follin, Jr., and R.C.Herman, Phys. Rev. 95, 1347-1361, 1953.

11. W.J.Kaufmann,III, in Galaxies and Quasars(W.H.Freeman and Company, Sa. Prancisco, 1979)

ł	derit)	inschage.	
potion.	nutre	Alta,	
tion.	وهي البيط اللبي	galan)	
galary	galactic Squid	I	

1	l dint fore	strant facts
strong force	strong force	electromagnetic fore-
	Concentration of Date	
electromagnetic force	electromagnetic force gravitational force	وروز أعسناماريون
gravitational fotes	gravitational forts	1
	1	

Table 1. The two general states which make everything its the universe, stepping. The table is arranged in a way to show the links between mediums and single entities. The inplome are not included because they belong to a steparate class

Table II. Three of the fundamental forces of nature. Each force appears three times and is linked to another force through a medium. Compare with Table 1

.

.

.

Fig.1. Diagram of the forward partness. J grands for anywlar momentum. SSI's baye values funct; SI's Survey force; EV - Kinetungangentis force; GP - Generational force; SWI -Bayers and house; WI's Wook force.

Fig.3. A qualitative sheps of the supermask force on a function of time. It is expective from t=0 up to $t=T_t$ and effective from $t=T_t$ up to $t=T_0$.

Fig.4. A graph of the potential of the represent force on a function of time. The lateparameters have been defined in other barris and in the text. Tube means the age of the universe

.

.

т

GAUGE E INTEGRABILIDADE EM EQUAÇÕES LINEARES E NÃO LINEARES

Manoelito Martins de Souza Universidade Federal do Espírito Santo Departamento de Física e Química 29069 - Vitória - ES

Usamos simetrias permutacionais para introduzir um critério algoritmico de decisão sobre a integrabilidade (solvabilidade) de um sistema de equações. Comparamos as estruturas de gauge das equações de Maxwell e das equações de Einstein, tomadas como exemplos de sistemas lineares e não lineares, respectivamente. Somente para equações lineares podemos fixar o gauge sem perda de completa generalidade (em contradição à literatura corrente), isto porque só para estas equações a condição de gauge coincide com a condição de integrabilidade.

A) Simetrias Permutacionais em Sistema de Equações

1) λ ação de operadores de Permutação ($P_{\alpha\beta}$, $\alpha,\beta=1$ a n), em sistemas de equações, $\tilde{\mathfrak{g}} = \{F^{\lambda}(\mathbf{x}^{\alpha},...,\mathbf{Y}(\mathbf{x})^{\alpha},...\}=0, \lambda = 1$ a L), $P_{\alpha\beta}F^{\lambda}(\mathbf{x}^{\alpha},...,\mathbf{Y}(\mathbf{x})^{\alpha},...]=F^{\mathbf{B}}(\mathbf{x}^{\beta},...,\mathbf{Y}(\mathbf{x})^{\beta},...]$ com F^{λ} , $F^{\mathbf{B}}\in \tilde{\mathfrak{g}}$

 $P_{\alpha\beta}F^{n}(x^{n},...,Y(x)^{n},...)=F^{n}(x^{n},...,Y(x)^{n},...]com F^{n}$, $F^{n} \in \mathfrak{F}$ divide o sistema em classes invariantes de equivalência, $[F^{\mathbf{A}}]$. Obs. Para resolver um sistema de equações no formalismo das simetrias de permutação, trabalhamos com as classes de equivalência, $[F^{\mathbf{A}}]$ e não com as equações, $F^{\mathbf{A}}() = 0$. 2) Qualquer equação pode ser escrita como uma equação de autovalor nulo de um polinômio de operadores de permutação.

 $\mathbf{F}^{\mathbf{A}}(\mathbf{x}^{\alpha},..,\mathbf{Y}(\mathbf{x})^{\alpha},...]=0 \longrightarrow \mathbf{O}_{\mathbf{i}}(\alpha)\hat{\mathbf{F}}^{\mathbf{A}}(\alpha) = 0$, onde $\mathbf{O}_{\mathbf{i}}(\alpha)$: polinomial de operadores envolvendo α ($\mathbf{P}_{\alpha\beta}$, $\mathbf{P}_{\alpha\gamma}$, etc)

 $\hat{\mathbf{F}}^{\mathbf{A}}(\alpha)$: núcleo ou autofunção de $O_{\mu}(\alpha)$

Exemplos:
$$(\alpha)$$

 $\nabla^{2} \phi = \rho \longrightarrow (1 + P_{xy} + P_{xz}) \quad (\phi_{,xx} - \rho/3) = 0$
 $\nabla \cdot B = \rho \longrightarrow (1 + P_{xy} + P_{xz}) \quad (B_{x'x} - \rho/3) = 0$
 $\alpha \phi = \rho \longrightarrow (1 + P_{xy} + P_{xz} - P_{xt}) \quad (\phi_{,xx} - \rho/2) = 0$

Base de Expansão dos $\hat{\mathbf{F}}^{\mathbf{A}}(\alpha)$

1) FUNCÕES DE ARGUMENTOS ORDENADOS, (FAO), são conjuntos de funções, f|aβγ...|, artitrárias e genéricas, que se distinguem entre si pela ordem de seus argumentos e por um fator global. Se $f|\alpha\beta\gamma...|$, = $x^{\alpha}+x^{\beta}\cos x^{\gamma}$ então $f|\beta\alpha\gamma...|$, $x^{\beta}+x^{\alpha}\cos x^{\gamma}$ Ex. Em um conjunto de FAO só uma é totalmente arbitrária. As outras são determinadas, a partir da primeira, a menos de um fator qlobal. 2) $\mathbf{F}^{\mathbf{A}}(\mathbf{x}^{\alpha}) = \mathbf{0} \rightarrow \mathbf{0}_{||}(\alpha) \mathbf{\hat{F}}^{\mathbf{A}}(\alpha) = \mathbf{0} \rightarrow \mathbf{\hat{F}}^{\mathbf{A}}(\alpha) = \mathbf{0}_{||}(\alpha) \mathbf{f}|\alpha\beta...|$ onde $\mathbf{0}_{||}(\alpha)$ é outro polinomial em $\mathbf{P}_{\alpha\beta}, \mathbf{P}_{\alpha\gamma}$, etc., tal que $\mathbf{0}_{||}(\alpha) \mathbf{0}_{||}(\alpha)$ $f|\alpha\beta...| = 0$. Observações: a) fla β ... | sendo genérico e arbitrário $\Rightarrow O_{\mu}(\alpha)$ fla β ... | mostra a existência de propriedades algébricas e topológicas comuns a todas as possíveis soluções de uma categoria inteira de equações, à qual pertence $F^{A}(x^{\alpha})=0$ b) $\hat{\mathbf{F}}^{\mathbf{A}}(\alpha) = O_{\mu}(\alpha) \mathbf{f}[\alpha\beta...]$ é uma equação, em geral, muito mais simples que $F^{\lambda}(x,)=0$ Exemplos: Se $\mathbf{F}^{\mathbf{A}}(\mathbf{x}^{\alpha}...) = (1 + \mathbf{P}_{\alpha\beta}) \ \hat{\mathbf{F}}^{\mathbf{A}}(\alpha) \rightarrow \hat{\mathbf{F}}^{\mathbf{A}}(\alpha) = (1 - \mathbf{P}_{\alpha\beta}) \ f|\alpha\beta| \ \epsilon \ uma \ solução.$ Se $\mathbf{F}^{\mathbf{A}}(\mathbf{x}^{\alpha}...) = (1 + P_{\alpha\beta} + P_{\alpha\gamma}) \hat{\mathbf{F}}^{\mathbf{A}}(\alpha)$, então $F^{\mathbf{A}}(\mathbf{x}^{\alpha},\ldots)_{+} = (2-P_{\alpha\beta}-P_{\alpha\gamma})f(\alpha(\beta\gamma))$

é uma de suas infinitas classes de soluções possíveis.

B) CRITÉRIO DE INTEGRABILIDADE (DEFINIÇÕES)

 Um sistema de equações, §, representa um pROBLEMA BEM COLOCADO se o n^o de equações independente for igual ao n^o de incógnitas.
 EQUAÇÃO PRESUMIVELMENTE INTEGRAVEL, EPI: a que envolve ou pode ser colocada em uma forma que envolve não mais que uma incógnita.

3) SISTEMA de equações PRESUMIVELMENTE INTEGRÁVEL, SPI: o que tem, ou que pode ser colocado em uma forma que tem pelo menos uma EPI, e que as demais se tornam EPI com a integração das primeiras. Em caso contrário o sistema não é integrável.

4) Um sistema não integrável pode se tornar um SPI com o acréscimo de outras equações, vínculos ou condições adicionais. Estas seriam, então, suas CONDIÇÕES DE INTEGRABILIDADE.

EXEMPLOS (aparentemente em contradição)

a) $\nabla xB=0$. São 3 equações, $(B_{i,j}=B_{j,i}, i,j=1,2,3)$, cada uma com duas incógnitas. É SPI, pois pode ser escrito como

 $(1-P_{ij})B_{i,j}=0 \Rightarrow B_{i,j}=f|ij|+f|ji|=f|(ij)|+B_{i,j}=\phi, ij \Rightarrow B= \nabla \phi.$ b) $\nabla.B=0.$ Uma eq. com 3 incógnitas. Mas é EPI pois \Rightarrow $(1+P_{xy}+P_{xz})B_{x'x}=0$. B = $\nabla x\lambda$ é apenas uma de suas (infinitas) classes de possíveis soluções.

Só é um PROBLEMA BEM COLOCADO porcausa de suas simetrias. permutacionais $(B_i = P_{ij}B_j)$.

c)Condição de curvatura nula + $A_{\mu'\nu} - A_{\nu'\mu} + [A_{\nu}, A_{\mu}] = 0$, ou $(1-P_{\mu\nu})D_{\mu}A_{\nu}=0, \text{ com } D_{\mu}=\partial_{\mu}+A_{\mu}. \Rightarrow \overline{D}_{\mu}A_{\nu}=f|\langle\mu\nu\rangle| \Rightarrow A_{\mu}=-M^{-1}\partial_{\mu}M.$ (M, matriz invertivel).

c) EQUACÕES DE MAXWELL (em espaço plano)

1) Abordagem usual

 $F^{\mu\nu}$, $= -J^{\mu}$ com $F_{\mu\nu} = \lambda_{\nu}$, $\mu = \lambda_{\mu}$, ν . 4 incógnitas e 3 eqs. já que J^{μ} , $\mu = 0$. A 4^a eq. é suprida pela condição de gauge, λ^{μ} , $\mu = 0 \Rightarrow a\lambda^{\mu} = J^{\mu}$. As soluções físicas são soluções simultâneas de λ^{μ} , $\mu = 0$ e de $a\lambda^{\mu}=J^{\mu}$.

2) Usando as simetrias permutacionais.

 λ^{X} e λ^{Y} . Precisamos de mais uma eq. relacionando λ^{X} e λ^{Y} , dada pela cond. de gauge $(1+P_{yz}+P_{yt})(\lambda^{y}, -\lambda^{x}, \chi/3) = 0$, que resolve o problema.

3) Diferenças (sutís) desta abordagem

uma $(\mathbf{F}^{\mathbf{X}\mu}, \mathbf{u} = -\mathbf{J}^{\mu}),$ a)São 4 egs. consideramos mas apenas representando a classe de equivalência.

b) O fato que as 4 eqs. não são independentes não é utilizado. A não integrabilidade está presente no fato que elas envolvem 2 incógnitas.

c) A condição de gauge é também a condição de integrabilidade já que a adoção da condição de gauge não restringe o universo das possíveis soluções. Não se perde generalidade com a escolha do gauge. Esta afirmativa não pode ser generalizada, como se faz na literatura, para sistemas não lineares.

d) Outra abordagem equivalente seria checar quais soluções da condição de gauge, $(1+P_{xy}+P_{xz}+P_{xt})\lambda^{x}, x=0 \Rightarrow \lambda^{x}, x=0_{||}(x)f|xyzt|$ satisfazem a $\Box \lambda^{\mu}=J^{\mu}$.

D) AS EQUAÇÕES DE EINSTEIN ($G_{\mu\nu} = T_{\mu\nu}$)

1) Notação: α , β , γ e desempre representam Diferentes índices ou componentes. Não vale a convenção de Einstein.

2) Escolhemos , sem perda de generalidade, coordenadas que diagonalizam o tensor métrico em um ponto genérico Q.

 $ds^2|_Q = \varepsilon_{\alpha} e^{\alpha} (dx^{\alpha})^2 + \varepsilon_{\beta} e^{\beta} (dx^{\beta})^2 + \varepsilon_{\gamma} e^{\gamma} (dx^{\gamma})^2 + \varepsilon_{\delta} e^{\delta} (dx^{\delta})^2$, onde α , β , γ e δ são funções genéricas de todas coordenadas, e ε_{α} , ε_{β} , ε_{γ} , $\varepsilon_{\delta} = \pm 1$. Portanto, estamos considerando as eqs. de Einstein em sua mais completa generalidade, inclusive quanto à assinatura da métrica. Nenhuma hipótese é feita sobre $T_{\mu\nu}$, a não ser da mais completa generalidade, o que corresponde a um tensor totalmente simétrico sob permutações.

3) As eqs. se dividem em duas classes invariantes:

$$\begin{aligned} |\alpha\alpha\rangle &: \quad \theta_{\gamma}\theta_{\beta}\{(P_{\alpha\gamma}+P_{\alpha\beta})(1+P_{\alpha\beta})g^{\beta\beta}[(\alpha_{\beta\beta})+2g^{\alpha\alpha}(\alpha_{\alpha}g_{\alpha\beta},\beta^{-}g_{\alpha\beta},\alpha\beta) + \\ &\quad +4g^{\gamma\gamma}g^{\alpha\alpha}(\Gamma_{\gamma\alpha\alpha}\Gamma_{\gamma\beta\beta}-\Gamma_{\gamma\alpha\beta}^{2})] + 8/3 \ g^{\alpha\alpha}T_{\alpha\alpha}\} = 0 \\ |\alpha\beta\rangle &: \quad (1+P_{\alpha\beta})\theta_{\gamma}\{(\gamma_{\alpha\beta}+1/2\gamma_{\alpha}\gamma_{\beta}-\alpha_{\beta}\gamma_{\alpha}-T_{\alpha\beta})+g^{\gamma\gamma}[2\alpha_{\beta}g_{\alpha\gamma},\gamma^{-2\alpha}\gamma\Gamma_{\alpha\beta\gamma}+ \\ &\quad +\gamma_{\gamma}\Gamma_{\gamma\alpha\beta}-2\Gamma_{\gamma\alpha\beta},\gamma + 2g^{\delta\delta}(\Gamma_{\delta\gamma\gamma}\Gamma_{\delta\alpha\beta}-\Gamma_{\delta\gamma\alpha}\Gamma_{\delta\gamma\beta})]\} = 0 \\ \text{onde } \alpha_{\beta}=\partial\alpha/\delta x^{\beta}, \ \alpha_{\alpha}=\partial\alpha/\partial x^{\alpha}, \ \text{etc.}, \ (\alpha_{\beta\beta}) = 2\alpha_{\beta\beta}+\alpha_{\beta}(\alpha-\beta)_{\beta}, \\ &\quad 2\Gamma_{\alpha\rho\mu}=g_{\alpha\rho},\mu^{+}g_{\alpha\mu},\rho^{-}g_{\rho\mu},\alpha, \quad \theta_{\gamma}=1+P_{\gamma\delta}, \ \theta_{\beta}=1+P_{\beta\gamma}+P_{\beta\delta}. \end{aligned}$$

CONDIÇÕES DE INTEGRABILIDADE

Cada eq. envolve todas as 10 incógnitas de um modo tal que para torna-las integráveis, sem quebrar a simetria, precisaríamos de 10 condições de gauge. Como só dispomos de 4, só nos resta a redução simétrica do n⁰ de incógnitas, o que implica em $g_{\alpha\beta}=0$. A métrica é globalmente diagonalizável. As eqs. se reduzem a $|\alpha\beta\rangle: \qquad (1+P_{\alpha\beta})\theta_{\gamma}\{2\gamma_{\alpha\beta}+\gamma_{\alpha}\gamma_{\beta}-2\alpha_{\beta}\gamma_{\alpha}-2T_{\alpha\beta}\}=0,$

 $|\alpha\alpha\rangle: \theta_{\beta}\theta_{\gamma}\{(P_{\alpha\gamma}+P_{\alpha\beta})(1+P_{\alpha\beta})[g^{\beta\beta}(\alpha_{\beta\beta})+1/2g^{\gamma\gamma}\alpha_{\gamma}\beta_{\gamma}]+8/3 g^{\alpha\alpha}T_{\alpha\alpha}\}=0$ Ainda não integráveis.

Para |αα> não há possibilidade de simplificação através de eventual condição de gauge, porque cada um des seus termos envolve mais de uma incognita.

 $|\alpha\beta\rangle$ poderia, em princípio, admitir uma condição de gauge do tipo $\theta_{\gamma}(1+P_{\alpha\beta})\{2\alpha_{\beta}\gamma_{\alpha}+2T_{\alpha\beta}-F(\gamma)\}=0,$

onde $F(\gamma)$ é uma dada função de γ e de suas derivadas. Mas para não quebrar a simetria precisaríamos de 6 condições iguais a esta-(uma para cada $|\alpha\beta\rangle$). Como só podemos ter 4 temos que reduzir o n⁰ de incógnitas, a única possibilidade é $\alpha=\beta=\gamma=\delta=\phi$, ou seja a métrica tem que ser conforme: "SOLUÇÕES TOTALMENTE SIMÉTRICAS SÃO CONFORMALMENTE PLANAS". DAS EQUACÕES DE EINSTEIN E COMO consequência:"SOLUCÕES VÁCUO SÃO DE . TOTALMENTE SIMÉTRICAS PLANAS".

E) LIBERDADE DE GAUGE E GENERALIDADE

Para as eqs. de Einstein, diferentemente do caso das eqs. de Maxwell, a condição de gauge não é igual à condição de integrabilidade, e isto implica em possível perda de generalidade com a adoção da condição de gauge. Por exemplo, se tívessemos imposto o gauge $g^{\rho\sigma}\Gamma^{\mu}_{\rho\sigma}=0$ (cond. harmônica) só poderíamos ter soluções planas, porque a cond. de integrabilidade não é afetada pelo gauge, e este, para uma métrica conforme implicaria em $\phi_{,\mu}=0$ para todos os pontos da variedade. Conclusão:

Liberdade de gauge não é garantia de máxima generalidade. Ao se adotar um gauge para sistemas não lineares deve-se atentar para possíveis exclusões no universo de soluções.

FORMALISMO PARA SISTEMAS DE ESTATÍSTICAS GENERALIZADAS

Manoelito Martins de Souza Universidade Federal do Espírito Santo Departamento de Física e Química 29069 - Vitória - ES

Sob permutações de índices um sistema de equações se particiona em classes de equivalência. Qualquer equação pode ser escrita como uma equação de autovalor nulo de uma função polinomial de operadores de permutação. Este operador polinomial define uma categoria de equações que tem em comum uma mesma álgebra e uma mesma topologia, definidas sobre uma base apropriada de expansão de suas autofunções. Esta álgebra e esta topologia classificam o sistema de equações de acordo com a estatística de suas soluções, isto é, o comportamento delas sobre permutações. Incluídas nestas classes se encontram as estatísticas de Bose-Einstein, Fermi-Dirac e de sistemas exóticos (anyons).

A) Simetrias Permutacionais em Sistema de Equações

1) λ ação de operadores de Permutação { $P_{\alpha\beta}$, $\alpha,\beta=1$ a n}, em sistemas de equações, $\tilde{v} = \{F^{\lambda}(x^{\alpha},..,Y(x)^{\alpha},...\}=0, \lambda = 1 \text{ a }L\}$,

 $P_{\alpha\beta}F^{A}(\mathbf{x}^{\alpha},..,\mathbf{Y}(\mathbf{x})^{\alpha},...]=F^{B}(\mathbf{x}^{\beta},..,\mathbf{Y}(\mathbf{x})^{\beta},...]$ com F^{A} , $F^{B}\in \mathfrak{F}$ divide o sistema em classes invariantes de equivalência, $[F^{A}]$. Obs. Para resolver um sistema de equações no formalismos das simetrias de permutação, trabalhamos com as classes de equivalência, $[F^{A}]$ e não com as equações, $F^{A}() = 0$.

2) Qualquer equação é uma equação de autovalor nulo de um polinômio de operadores de permutação.

 $\mathbf{F}^{\mathbf{A}}(\mathbf{x}^{\alpha},..,\mathbf{Y}(\mathbf{x})^{\alpha},...]=0 \longrightarrow O_{\mathbf{I}}(\alpha)\hat{\mathbf{F}}^{\mathbf{A}}(\alpha) = 0$, onde $O_{\mathbf{I}}(\alpha)$: polinomial de operadores envolvendo α ($P_{\alpha\beta}$, $P_{\alpha\gamma}$, etc)

 $\hat{\mathbf{F}}^{\mathbf{A}}(\alpha)$: núcleo ou autofunção de $O_{|}(\alpha)$ Exemplos: $O_{|}(\alpha)$ $\hat{\mathbf{F}}^{\mathbf{A}}(\alpha)$

$$\nabla^{2} \phi = \rho \longrightarrow (1 + P_{xy} + P_{xz}) \quad (\phi_{,xx} - \rho/3) = 0$$

$$\nabla \cdot B = \rho \longrightarrow (1 + P_{xy} + P_{xz}) \quad (B_{x',x} - \rho/3) = 0$$

$$\Box \phi = \rho \longrightarrow (1 + P_{xy} + P_{xz} - P_{xt}) \quad (\phi_{,xx} - \rho/2) = 0$$

B) BASE DE EXPANSÃO DOS $\hat{F}^{A}(\alpha)$

1) FUNCÕES DE ARGUMENTOS ORDENADOS, (FAO), são conjuntos de funções, flag7...,, ansitrárias e genéricas, que se distinguem entre si pela ordem de seus argumentos e por um fator global. Se $f|\alpha\beta\gamma...|$, = $x^{\alpha}+x^{\beta}\cos x^{\gamma}$ então $f|\beta\alpha\gamma...| \sim x^{\beta}+x^{\alpha}\cos x^{\gamma}$ Ex. 2) $K^n = \{K_{ij} | \exists K_{ij}^{-1}, K_{ij}K_{ji}^{-1}, i, j \in [1,n] \in \mathbb{Z}_+\}$, onde K_{ij} é um fator associado ao par de posições dos índices (i,j) no argumento de $f|\alpha_1\alpha_2...\alpha_n|$, quaisquer que sejam os índices. Kⁿ define a estatística (comportamento sob permutações) das FAO (e as divide em classes):

 $P_{\alpha_{1}\alpha_{j}} f | \dots \alpha_{i} \dots \alpha_{j} \dots | = K_{ij} f | \dots \alpha_{j} \dots \alpha_{i} \dots |$ Observações:i) Isto garante $P_{\alpha\beta}^{2} = 1$, sem nenhuma restrição sobre K^{n} ii) Os sistemas usuais de estatísticas de FD e de BE pertencem às classes de FAO com $K_{ij} = \pm 1$, i, j $\in [1,n]$

iii) Em um conjunto de FAO só uma é totalmente arbitrária. As outras são determinadas, a partir daprimeira, a menos de um fator global.

C) REDES DE FAOS

1) Definimos redes de FAOs associando cada $f|\alpha_1\alpha_2...\alpha_n|$ a um vértice ou ponto, e a cada par de pontos, associamoos uma aresta ou direção, representando um operador $P_{\alpha\beta}$. Cada vértice é ligado a n(n-1)/2 novos vértices por n(n-1)/2 arestas.

 $n = 1 \longrightarrow 1$ ponto: $f|\alpha|$

n ≥ 3:rede de dimensão n-1, de extensão e multiplicidade infinitas, construidas de hexagonos e guadrados Esta rede é uma representação da algebra dos P $_{\alpha\beta}$ sobre as FAOs Para um K abeliano, ela é definida por:

(Geometria algeb.)

 $P_{\alpha_{i}\alpha_{j}}P_{\alpha_{j}\alpha_{k}}P_{\alpha_{i}\alpha_{j}} = P_{\alpha_{j}\alpha_{k}}P_{\alpha_{i}\alpha_{j}}P_{\alpha_{j}\alpha_{k}} \text{ para } 0 < i < j < k \le n$ HEXAGONO

 $P_{\alpha_{i}\alpha_{j}}P_{\alpha_{k}\alpha_{m}} = P_{\alpha_{k}\alpha_{m}}P_{\alpha_{i}\alpha_{j}}$ para i,j,k,m, distintos QUADRADO Obs. Esta álgebra contém o grupo das tranças (braid group) que só admite geradores da forma $P_{\alpha_i^{\alpha_i \pm 1}}$.

2) Qualquer restrição a K^n gera deformações desta álgebra e desta topologia, porque implica em identificação de vértices. Esta restrição pode ser motivada por argumentos físicos/matemáticos ou pode provir do conjunto de equações que descreve o sistema

D) EXPANDINDO $\hat{\mathbf{F}}^{\mathbf{A}}(\alpha)$

 $\mathbf{F}^{\mathbf{A}}(\mathbf{x}^{\alpha}) = 0 \Rightarrow \mathcal{O}_{||}(\alpha) \hat{\mathbf{F}}^{\mathbf{A}}(\alpha) = 0 \Rightarrow \hat{\mathbf{F}}^{\mathbf{A}}(\alpha) = \mathcal{O}_{||}(\alpha) \mathbf{f}|\alpha\beta...|$ onde $\mathcal{O}_{||}(\alpha) \mathbf{f}|\alpha\beta...|$ outro polinomial em $\mathcal{P}_{\alpha\beta}, \mathcal{P}_{\alpha\gamma}$, etc., tal que

$$O_{\alpha}(\alpha) O_{\alpha}(\alpha) f |\alpha\beta...| = 0.$$

Obs.: sendo $f|\alpha\beta...|$ genérico e arbitrário, $O_{\parallel}(\alpha)$ $f|\alpha\beta...|$ denota a existência de propriedades algébricas e topológicas comuns a todas as possíveis soluções de uma categoria inteira de equações, à qual pertence $F^{A}(\mathbf{x}^{\alpha})=0$.

Para n=2, se $F^{A}(x^{\alpha}...)=(1+P_{\alpha\beta}) \hat{F}^{A}(\alpha) \rightarrow \hat{F}^{A}(\alpha) = f|\alpha\beta| - K_{12}f|\beta\alpha|$ Cada valor atribuido a K_{12} define uma classe de simetria distinta (estatística). Não há restrição a K_{12} .

(estatística). Não há restrição a K_{12} . Para n=3, se $F^{A}(x^{\alpha}...)=(1+P_{\alpha\beta}+P_{\alpha\gamma}) \tilde{F}^{A}(\alpha)$, suas soluções requerem $K_{12}^{2}K_{23}^{2}=K_{13}^{2}$, e são da forma

$${}^{\vee}_{F^{A}}(x^{\alpha},...)_{+} = a\{-K_{12}^{-1}f|\alpha(\beta\gamma)| + f|^{(\beta}\alpha^{\gamma)}|\} + \\ + b\{-K_{13}^{-1}f|\alpha(\beta\gamma)| + f|^{(\beta}\alpha^{\gamma)}|\};$$

$${}^{\vee}_{F^{A}}(x^{\alpha},...)_{-} = a\{K_{12}^{-1} \quad f|\alpha[\gamma\beta]| + f|^{[\beta}\alpha^{\gamma]}|\} + \\ + b\{K_{13}^{-1}f|\alpha[\beta\gamma]| + f|^{[\beta}\gamma]\alpha|\},$$

correspondendo a $K_{13}=\pm K_{12}K_{23}$, respectivamente. a e b são constantes arbitrárias, e os parêntesis (colchetes) indicam a simetria (anti-simetria) dos índices envolvidos. Observe que enquanto não há restrição sobre sistemas bidimensionais, para sistemas tridimensionais a restrição é forte. Sistemas formados por componentes idênticas ($K_{12}=K_{13}=K_{23}$)

só podem ter estatísticas de BE ou FD (K_{ij} =±1). Topologicamente: a multiplicidade da variedade das FAO se reduz a 1. ALGUNS EXEMPLOS DE REALIZAÇÕES (para n=3, b=0, K13=±K12K23)

1) Classe (111), ou seja
$$K_{12} = K_{13} = K_{23} = 1 + V_{x} + V_{x$$

Para $\nabla.B=0 \Rightarrow B_{\chi,\chi} = f|\langle xy \rangle z| - f|\langle xz \rangle y| \Rightarrow f|\langle xy \rangle z| = -A_{\chi,\chiy} \Rightarrow B_{\chi} = A_{\chi,\chi} = A_{\chi,\chi}$. Observe que $P_{\chiy}A_{\chi} = -A_{\chi}$, pois A pertence à classe (-1-1-1), enquanto que $P_{\chiy}B_{\chi} = B_{\chi}$. Não se pode obter $\nabla.B = 0$ em classe (111), e nem $\nabla^2 \phi = 0$ em classe (-1-1-1), o que é um indicativo da relevância da existência de distintas classes.

Sobre a Equação de Dirac em Três Dimensões *

Cesar A. Linhares' Instituto de Estudos Avançados (CTA) 12234 São José dos Campos, SP

Juan A. Mignaco Centro Brasileiro de Pesquisas Físicas 22290 Rio de Janeiro, RJ

Em trabalhos anteriores [1], comprovamos a existência de uma ligação bem definida entre a equação de Dirac com o grupo $SU(2^{n/2})$, sendo n um número par de dimensões do espaço-tempo. Mostramos que essa ligação é válida para a formulação usual em termos de matrizes e, também, como uma conseqüência lógica do isomorfismo, provado por Graf [2], entre matrizes de Dirac e formas diferenciais exteriores, estas dotadas ainda de um produto, dito "de Clifford". Mostra-se [3] que estas formas, satisfazendo a álgebra de Kähler-Atiyah, mantém invariantes os ideais mínimos à esquerda do espaço das formas.

Os físicos teóricos estão mais familiarizados, no entanto, com o emprego das matrizes de Dirac. Na última década, por outro lado, houve um interesse crescente pela física num espaço-tempo com dimensão três. Em geral, é costume representar as matrizes de Dirac correspondentes pelas matrizes de Pauli em representação bidimensional. Em alguns casos, usa-se uma representação por matrizes 4 x 4 em dois blocos idênticos 2 x 2.

Entretanto, o presente trabalho mostra que as representações habituais das matrizes de Dirac são inconsistentes, não satisfazem as condições que a álgebra correta das matrizes γ deve preencher. A descrição correta exige matrizes de Dirac de dimensão 4, com estrutura de blocos diagonal não idênticos. Isto decorre do fato de que as formas de Kähler-Atiyah podem ser escritas como combinações de geradores do grupo $SU(2) \times SU(2)$, identificáveis unicamente a partir de suas propriedades algébricas. O isomorfismo de Graf [2] on, simplesmente, a transcrição em termos de matrizes destas propriedades algébricas conduz ao resultado.

Além do mais, a reversão temporal e a de um único eixo espacial são incompatíveis com um formalismo de matrizes 2 x 2.

75

[&]quot;Trabalho apresentado no XII Encontro Nacional de Física de Partículas e Campos, Caxambu, MG, setembro de 1991.

Como é usual, defina-se o produto de Clifford entre duas formas diferenciais exteriores como

$$dx^{\mu} \vee dx^{\nu} = dx^{\mu} \wedge dx^{\nu} + g^{\mu\nu},$$

em que V é o símbolo do produto de Clifford, \wedge denota o produto exterior usual e $g^{\mu\nu}$ é o tensor métrico do espaço-tempo, com $\mu, \nu = 0, 1, 2$.

Podemos construir os seguintes quatro produtos independentes:

$$dx^0 \wedge dx^1, \ dx^0 \wedge dx^2, \ dx^1 \wedge dx^2, \ dx^0 \wedge dx^1 \wedge dx^2.$$

Designando genericamente por dx^H os diferenciais elementares e seus produtos, definimos o comutador "de Clifford" entre qualquer par destes objetos como

$$[dx^K, dx^L]_{\vee} = dx^K \vee dx^L - dx^L \vee dx^K.$$

Aplicando esta definição, temos os seguintes comutadores não nulos:

$$\begin{split} [dx^{0}, dx^{0}]_{\vee} &= 2dx^{0} \wedge dx^{s} \quad (s = 1, 2) \\ [dx^{0}, dx^{0} \wedge dx^{s}]_{\vee} &= 2dx^{s} \quad (s = 1, 2) \\ [dx^{1}, dx^{2}]_{\vee} &= 2dx^{1} \wedge dx^{2} \\ [dx^{s}, dx^{0} \wedge dx^{s}]_{\vee} &= 2dx^{0} \quad (s = 1, 2) \\ [dx^{1}, dx^{1} \wedge dx^{2}]_{\vee} &= -2dx^{2} \\ [dx^{2}, dx^{0} \wedge dx^{2}]_{\vee} &= 2dx^{0} \\ [dx^{2}, dx^{1} \wedge dx^{2}]_{\vee} &= 2dx^{1} \\ [dx^{0} \wedge dx^{1}, dx^{0} \wedge dx^{2}]_{\vee} &= -2dx^{1} \wedge dx^{2} \\ [dx^{0} \wedge dx^{1}, dx^{1} \wedge dx^{2}]_{\vee} &= -2dx^{0} \wedge dx^{2} \\ [dx^{0} \wedge dx^{1}, dx^{1} \wedge dx^{2}]_{\vee} &= -2dx^{0} \wedge dx^{2} \\ [dx^{0} \wedge dx^{2}, dx^{1} \wedge dx^{2}]_{\vee} &= -2dx^{0} \wedge dx^{2} \\ [dx^{0} \wedge dx^{2}, dx^{1} \wedge dx^{2}]_{\vee} &= -2dx^{0} \wedge dx^{2} \\ [dx^{0} \wedge dx^{2}, dx^{1} \wedge dx^{2}]_{\vee} &= 2dx^{0} \wedge dx^{1} . \end{split}$$

A forma de volume comuta com todos os outros.

Consideremos como exemplo ilustrativo:

$$X_1 = \frac{1}{2}dx^0, \quad X_2 = \frac{1}{2}idx^1, \quad X_3 = \frac{1}{2}dx^0 \wedge dx^1,$$

para os quais temos

$$[X_k, X_\ell]_{\mathsf{V}} = i\epsilon_{k\ell m} X_m.$$

Temos também que os duais de llodge [4] dos X_k acima,

$$Y_1 = \frac{1}{2}idx^1 \wedge dx^2, \quad Y_2 = -\frac{1}{2}dx^0 \wedge dx^2, \quad Y_3 = \frac{1}{2}idx^2,$$

satisfazem

$$[Y_k, Y_\ell]_{\mathsf{V}} = i\epsilon_{k\ell m} X_m$$
$$[X_k, Y_\ell]_{\mathsf{V}} = i\epsilon_{k\ell m} Y_m.$$

1

Definimos, então,

$$W_k^+ = \frac{1}{2}(X_k + Y_k), \quad W_k^- = \frac{1}{2}(X_k - Y_k)$$

e temos, portanto,

$$[W^\pm_k,W^\pm_\ell]_{\vee}=i\epsilon_{k\ell m}W^\pm_m,\quad [W^+_k,W^-_\ell]_{\vee}=0,$$

ou seja, estes objetos constituem geradores de uma álgebra $SU(2) \times SU(2)$. Para os X_k , podemos escolher à vontade qualquer par de 1- ou 2-formas e seu produto exterior. É válida a seguinte propriedade:

$$*W_k^{\pm} = \pm i W_k^{\mp}, \quad *W_3^{\pm} = \mp i W^{\mp},$$

sendo + o operador de dualidade de Hodge.

Se representados por matrizes, os geradores da álgebra $SU(2) \times SU(2)$ são escritos da seguinte maneira:

$$W_k^+ = \begin{pmatrix} \sigma_k & 0 \\ 0 & 0 \end{pmatrix}, \qquad W_k^- = \begin{pmatrix} 0 & 0 \\ 0 & \sigma_k \end{pmatrix}.$$

Com isto e mais o isomorfismo de Graf $\gamma^{\mu} \leftrightarrow dz^{\mu} \vee$, podemos reconstruir as matrizes γ de Dirac. Algumas "imagens", com $X_1 \leftrightarrow \gamma^0$, $X_2 \leftrightarrow \gamma^1$, $X_3 \leftrightarrow \gamma^2$, são exemplificadas a seguir:

Dirac-Pauli:

$$\gamma^{0} = \begin{pmatrix} \sigma_{3} & 0 \\ 0 & \sigma_{3} \end{pmatrix}, \quad \gamma^{1} = -i \begin{pmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{1} \end{pmatrix}, \quad \gamma^{2} = -i \begin{pmatrix} \sigma_{2} & 0 \\ 0 & -\sigma_{2} \end{pmatrix}$$

Kramers-Weyl:

$$\gamma^{0} = \begin{pmatrix} \sigma_{3} & 0 \\ 0 & -\sigma_{3} \end{pmatrix}, \quad \gamma^{1} = -i \begin{pmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{1} \end{pmatrix}, \quad \gamma^{2} = -i \begin{pmatrix} \sigma_{2} & 0 \\ 0 & \sigma_{2} \end{pmatrix}.$$

Note-se a diferença de sinais dos blocos. Isto é devido ao fato de que, independentemente da imagem,

$$i\gamma^0\gamma^1\gamma^2=\left(egin{array}{cc}I&0\\0&-I\end{array}
ight),$$

77

ŧ.

onde I é a matriz identidade 2 × 2. Assim, as representações corretas das matrizes γ são matrizes 4 × 4, diagonais em blocos 2 × 2, as quais diferem das utilizadas usualmente para a representação 4 × 4 de espinores em três dimensões.

Cada bloco de SU(2) identifica una quiralidade. Assim, os W_k^+ correspondem aos estados em que a rotação do spin é dextrógira e os W_k^- aos de rotação levógira.

Para terminar, temos as expressões das matrizes responsáveis pelas transformações correspondentes à inversão de um eixo coordenado e à reversão temporal [5]: Dirac-Pauli:

$$P_{(1)} = \begin{pmatrix} 0 & \pm \sigma_3 \\ \sigma_3 & 0 \end{pmatrix}, \quad P_{(2)} = \begin{pmatrix} 0 & \pm I \\ I & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & \sigma_1 \\ \pm \sigma_1 & 0 \end{pmatrix}$$

Kramers-Weyl:

$$P_{(1)} = -i \begin{pmatrix} 0 & \pm \sigma_2 \\ \sigma_2 & 0 \end{pmatrix}, \quad P_{(2)} = \begin{pmatrix} 0 & \pm \sigma_1 \\ \sigma_1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & l \\ \pm l & 0 \end{pmatrix}.$$

llagen (6) argumentou que a caracterização correta das invariâncias por transformações discretas em três dimensões é crucial para a interpretação em termos de "anyons" das teorias invariantes de gauge tipo Chern-Simons em interação com espinores.

A operação de conjugação de carga não mistura os blocos de SU(2). A operação composta $CP_{(4)}T$ dá, em geral, uma matriz diagonal em blocos, mas cada bloco é não diagonal. Há uma consistência entre o eixo que é invertido e a matriz que aparece no resultado de CPT.

Todas as operações representadas pela ação de uma matriz γ^{μ} podem ser igualmente descritas por matrizes isomorfas à forma dual de dx^{μ} .

Referências

- C.A. Linhares e J.A. Mignaco, Phys. Lett. 153B (1985) 82; "New symmetries for the Dirac equation", in J.J. Giambiagi Festschrift, II. Falomir et al. (eds.), World Scientific, Cingapura, 1990, p. 281.
- [2] W. Graf, Ann. Inst. Henri Poincaré A29 (1978) 55.
- [3] P. Becher e II. Joos, Zeits. für Phys. 15 (1982) 343.
- [4] T. Eguchi, P.B. Gilkey e A.J. Hanson, Phys. Rep. 66 (1980) 213.
- [5] C.A. Linhares e J.A. Mignaco, "On the Dirac equation in three dimensions", enviado para publicação, contém por extenso os tópicos aqui resumidos.
- [6] C.R. Ilagen, "Parity conservation in Chern-Simons theories and the anyon interpretation", Preprint University of Rochester UR-1212 (1991).

A RELAÇÃO ENTRE A EQUAÇÃO DE DIRAC E AS ALGEBRAS DE GRUPOS UNITÁRIOS PARA QUALQUER DIMENSÃO DO ESPAÇO-TEMPO

.

Cesar A. Linhares (*) Inst. de Estudos Avançados, CTA São José dos Campos

Juan A. Mignaco Centro Brasileiro de Pesquisas Físicas (CBPF/CNPq) Rio de Janeiro, RJ

Damos a demonstração geral para dimensões pares e impares que o anel de Dirac Formado pelas matrizes de Dirac e os seus produtos desenvolve a algebra de comutação do grupo $SU(2^{D/2})$ para as di-

 $\frac{D-1}{2} \qquad \frac{D-1}{2}$ mensões pares e do grupo SU(2²) x SU(2²) para as dimensões impares. Discutimos as eventuais conseqüências físicas destes resultados.

(*) Em licença no Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ

BUBBLES IN THE EARLY UNIVERSE

RUDNEI O. RAMOS and G.C. MARQUES Instituto de Física, Universidade de São Paulo C.P. 20516, 01498 São Paulo, SP, Brazil

<u>ABSTRACT</u> We analyse bubble formation as a result of thermal fluctuations. Bubbles appear whenever there is phase coexistence in the Universe. We have shown how the droplet model of phase transition allows us to determine the radius of the most favorable bubbles and their density contrast. In the case of the SU(5) model we get Zel'dovich spectrum with the proper order of magnitude as well as other interesting consequences to cosmology.

INTRODUCTION

Spontaneous symmetry breakdown seems to play an essential role in formulating theories of the fundamental interactions. Grand Unified theories are based on the idea that at very short distances the fundamental interactions can be described by a theory based on a larger than the standard $SU(3) \times SU(2) \times U(1)$ gauge group G whose symmetry is spontaneously broken at large distances.

If at zero temperature the symmetry is spontaneously broken, then there will be symmetry restoration at high temperatures. The system will then exhibits two phases. Since the Universe started at very high temperatures (in the symmetric phase) one then expects that during the course of its evolution the Universe went through a series of cosmological phase transitions.

The understanding of the dynamics of phase transitions might be relevant in the solution of cosmological problems such as the flatness, horizon, cosmological constant and the large scale structure of the Universe.

In the context of the large scale structure of the Universe cosmological phase transition might play an important role, since the appearance of inhomogeneities (defects) in the system is a common feature of theories whose symmetries are spontaneously broken. In fact, there are suggestions that topological defects such as strings and domain walls generates the required contrast density for giving rise to the observed structures in the Universe.

The formation of bubbles (or droplets) is a feature of systems that exhibits phase coexistence along the phase transition. The approach that we have used (the droplet picture of phase transition (Langer 1967, Gunton, San Miguel and Sahni 1983, Marques and Ramos 1991) has been developed for dealing with bubble formation in phase transitions that are very familiar to physicists. One of our motivations for dealing with this problem, and its role in cosmology, is

¹Work partially supported by FAPESP and CNPq.

the similarity of the observed geometrical structures and the ones formed along some phase transitions.

FIELD THEORETICAL DESCRIPTION OF CONDENSATION AND COSMOLOGICAL APPLICATIONS

We will show how the evaluation of the partition function for a collection of noninteracting droplets may lead to the thermodynamic properties of a condensing system and the derivation of macroscopic features of a two phase system. This is so called condensation problem (Langer 1967).

The droplet model pictures the system as a "dilute gas" of small droplets of radius R. The number of bubbles of size R might be approximated by a simple Boltzman factor, that is

$$N(R) \sim \exp\{-\beta \Delta F^{(1)}(R)\}$$
(1)

where $\Delta F^{(1)}(R)$ is the energy cost for introducing a single bubble in the system.

The cost in energy for introducing an interface in the system can be defined as (Marques and Ramos 1991)

$$\Delta F^{(1)} = F(\phi_B) - F(\phi_v) = -\beta^{-1} \ln \left[\frac{Z(\phi_B)}{Z(\phi_v)} \right] \quad . \tag{2}$$

For spherical bubbles of radius $R, \Delta F$ is a function for R, and one can write $\Delta F \equiv \Delta F(R)$.

Only bubbles whose size R is above a critical value R_{cr} are stable and they survive in the system. This critical value is given by the condition

$$\frac{d\Delta F^{(1)}(R)}{dR}\Big|_{R = R_{\rm er}} = 0 \quad . \tag{3}$$

Bubbles with radius smaller than R_{cr} are unstable and disappear again. These bubbles are assumed to be macroscopic objects.

The value $R = R_{cr}$ determined by (3) corresponds to the limit beyond which large quantities of the new phase begin to be formed. Bubbles beyond the critical range (with $R > R_{cr}$) will inevitably develop into a new phase.

We will assume that the distribution of bubbles is a dilute one. Under these circumstances one can write the partition function Z as

$$\frac{Z}{Z^{(0)}} = \exp\left[\frac{Z^{(1)}}{Z^{(0)}}\right] \simeq e^{-\beta \Delta F^{(1)}}$$
(4)

where $Z^{(0)}$ now stands for the partition function at the vacuum field configuration, ϕ_v , and $Z^{(1)}$ at the bubble field configuration ϕ_B .

In the high temperature limit and considering spherical bubbles one can find a general form to F which is given by (Marques and Ramos 1991)

$$F = -T \left[\frac{-4\pi/3 R^3 \Delta \Gamma + 4\pi R^2 \sigma(0)}{2\pi T} \right]^{3/2} \left(\frac{1}{\beta} \right)^3 \times \\ \times \exp \left[\frac{4\pi/3 R^3 \Delta \Gamma(T) - 4\pi R^2 \sigma(T)}{T} \right]$$
(5)

 $\Delta\Gamma$ in (5) is the energy difference between the two vacua (Carvalho and Marques 1986) (cosmological constant), $\sigma(T)$ is the surface tension and R is the bubble radius.

Let one takes the vacua as a degenerate one, i.e., $\Delta\Gamma$ in (5) is equal zero. In this case, (5) becomes

$$F = -T^{4} \left[\frac{4\pi R^{2} \sigma(0)}{2\pi T} \right]^{3/2} \exp \left[\frac{-4\pi R^{2} \sigma(T)}{T} \right] \quad . \tag{6}$$

The critical radius of the bubble can be obtained by minimizing the free energy (6) and one obtains

$$R_{cr}^2(T) = \frac{3T}{8\pi \sigma(T)} \qquad (7)$$

From this expression for $R_{cr}(T)$, one can see that for $T = T_c$ the bubble radius becomes infinite.

Within the dilute gas approximation the average number of bubbles is (Gross, Pisarski and Yaffe 1981)

$$N(T) = \frac{Z^{(1)}}{Z^{(0)}} \quad . \tag{8}$$

With (9) and (7) one finds for the bubble density the expression

$$\rho_{\text{bubble}} = \frac{(1+\sqrt{3\pi})}{4} \left(\frac{3}{4\pi e}\right)^{3/2} \left(\frac{\sigma(0)}{\sigma(T)}\right)^{5/2} T^4$$
(9)

where one uses the expression (7) for R_{cr} in (6).

The contrast density associated to bubbles is defined as

$$\frac{\delta\rho}{\rho} = \frac{\rho_{\text{bubbles}}}{\rho_{\text{clcm, part.}} + \rho_{\text{bubbles}}}$$
(10)

where $\rho_{\text{elem, part.}}$ is the energy density associated to the elementary particles and it can be written in terms of the number of degrees of freedom fermionic (N_F) and bosonic (N_B) as

$$\rho_{\text{elem. part.}} = \frac{\pi^2}{30} \left(N_B + \frac{7}{8} N_F \right) T^4 \quad .$$
(11)

.

From the expressions above one can see that all one need to know is the form of $\sigma(T)$, the surface tension, to determine all the quantities of interest.

One can write $\sigma(T)$, in the one loop order and in the high temperature approximation, in the general form given by (Marques and Ramos 1991)

$$\sigma(T) = \sigma(0) \left(1 - \frac{T^2}{T_c^2} \right)$$
(12)

where $\sigma(0)$ and T_c depends on the parameters (masses and coupling constants) of the model.

From (9) and (11) one can write the contrast density (10), by taking $\sigma(T)$ given by (12), as

$$\frac{\delta\rho}{\rho} = \frac{1}{1 + \pi^2/30 \left(N_B + 7/8 N_F\right) \frac{4}{\left(1 + \sqrt{3\pi}\right)} \left(\frac{4\pi e}{3}\right)^{3/2} \left(1 - \frac{T^2}{T_c^2}\right)^{5/2}} \quad (13)$$

Furthermore, taking $T < T_c$, one obtains the simple result

$$\frac{\delta\rho}{\rho} \simeq \frac{1}{1+25/2 (N_B+7/8N_F)}$$
(14)

which is completely general and leading to a contrast density depending only upon the number of particles in the model.

In the minimal SU(5) model, $N_B+7/8 N_F = 160,75$, so that for $T \sim T_c/3$ one gets

$$\frac{\delta\rho}{\rho} \sim 6 \cdot 10^{-4} \quad . \tag{15}$$

This result is compatible with the bounds imposed by the anisotropy of the background radiation $(\delta \rho / \rho \, \text{satisfy Zel'dovich's condition})$ (Zel'dovich 1972; Harrison 1970).

Let us analyze if the length of fluctuations is larger than the Jeans length. The length of fluctuations that we propose here is essentially the distance between two bubbles. Unfortunately we are not able to compute this distance, by using thermodynamical arguments, for the range of temperatures covering the critical temperature (10^{15} GeV) until recombination (1 eV). We can do this however, for temperature close to the critical one. For this range of temperatures, one has that if the average number of bubbles is given by (9) with $R = R_{cr}$. This density will be given by $\bar{n} = N(T, R_{cr})/V$ where N(T) is given by (8).

If one assume further that the bubbles are uniformly distributed over the space the (average) distance between two bubbles (theirs centers) will be given by

$$d = \frac{1}{\sqrt[3]{n}} \quad . \tag{16}$$

For $T \simeq T_c/3$ ($T_c \sim 10^{15}$ GeV) one gets the SU(5) model

$$d^{\rm GUT} \sim 8.2 \times 10^{-5} \,{\rm GeV^{-1}} \simeq 10^{-28} \,{\rm cm}$$
 (17)

In order to estimate the lenght of fluctuation in the recombination era, one just makes the hypothesis that the distances between bubbles (λ^B) expands conformally, that is, the ratio between this distance and the horizon distance is constant. Consequently at any time one has

$$\lambda^{B}(T) = \frac{d^{GUT}}{d_{H}(0, t_{GUT})} d_{H}(0, t) \qquad (18)$$

So that during the recombination $(t = t_R)$ one has, by using (17)

$$\lambda^{B}(T \simeq 1 \,\mathrm{eV}) = \frac{d_{0}^{GUT}}{d_{H}(0.2 \times 10^{-37} \,s)} \, d_{H}(0, t_{R}) \sim 1.2 \times 10^{21} \,\mathrm{cm} \quad . \tag{19}$$

Since the Jeans length at recombination is

$$\lambda_J(t_R) \simeq 2.9 \times 10^{19} \,\mathrm{cm} \tag{20}$$

it follows from (19) that $\lambda^B > \lambda_J$.

The mass associated to the distance (20) is

$$M^{\text{bubb.}} = \frac{4\pi}{3} \rho_{\text{rec}} (\lambda^B)^3 \sim 10^{10} M_{\odot}$$
 (21)

which fits very well in the galactical mass spectrum and is probably consistent with all of them if the dynamics of the bubbles below T_c is considered.

A legitimate conclusion would be that the number of aglutination centers is roughly the number of great structures observed in the Universe today. In fact, one can estimate the number of aglutination centers. This number is roughly given by

$$n_{\text{agl.cent.}}^{\text{bubb.}} \simeq \left[\frac{d_{II}(0, t^{\text{GUT}})}{d_0^{\text{GUT}}} \right]^3 \simeq 1.9 \times 10^6$$
 (22)

The greatest known strucures are the superclusters of galaxies that consist of groups with an average of 10^5 galaxies, that have densites close to critical $\rho_c \sim 10^{-29} g \,\mathrm{cm}^{-3}$ and spread over dimensions from 50 to 100 Mpcs (from 1.5 to $3.0 \times 10^{26} \,\mathrm{cm}$). The number of these structures (sub-clusters) may be estimated by the ratio

$$n_{sc} \simeq \left[\frac{d_{ll}(0, t_p)}{d_{so}}\right]^3 \simeq 7 \cdot 10^5 - 6 \cdot 10^6$$
 (23)

because $t_p \sim 10^{10}$ years and $d_{H}(0, t_p) = 3t_p \simeq 2.7 \times 10^{18}$ cm.

We see that the results from (22) and (23) are quite close to each other.

CONCLUSIONS

Bubbles might appear in cosmological phase transitions for theories with nondegenerate or degenerate vacua. In both cases one can predict phase coexistence in the Universe and the appearance of bubbles as a result of thermal fluctuations. The basic ingredient for making relevant predictons to cosmology is the cost in energy to introduce such an object in the system.

As an application to cosmology we have analysed the GUT phase transition in the minimal SU(5) model. In this application we have assumed that these bubbles survive until the recombination era. This is a dynamical problem that one has to solve in order to be sure that these objects act as seeds for structure formation.

Our simple estimates based only upon the interbubble distance indicates that one might get a surprinsigly good picture for the formation of structures in the Universe from the analysis of bubble formation in the early Universe.

REFERENCES

Carvalho, C.A. and Marques, G.C. 1986, Phys. Lett., B169, 398.

Gross, D.J., Pisarski, R.D. and Yaffe, L.G. 1981, Rev. Mod. Phys., 53, 43.

Gunton, J.D., San Miguel, M. and Sahni, P.S. 1983, The Dynamics of First-Order Phase Transitions, in Phase Transitions and Critical Phenomena, Vol. 8, Academic Press.

Langer, J.S. 1967, Ann. Phys., 41, 108.

- Lifshitz, E.M. and Pitaevskii, L.P. 1980, *Physics Kinetics*, Vol. 10 (Landau and Lifshitz, Course of Theoretical Physics).
- Marques, G.C. and Ramos, R.O. 1991, Phase Transitions and Formation of Bubbles in the Early Universe, Preprint IFUSP, submitted to Phys. Rev. D.
- Zel'dovich, Ya.B. 1972, M.N.R.A. Soc., 160, 1P; Harrison, E.R., Phys. Rev., D1, 2726.

$SU(3) \otimes U(1)$ Model for Electroweak Interactions and neutrinoless double beta decay

F. Pisano and V. Pleitcz Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 CEP 01405–São Paulo, SP

Brazil

Abstract

We consider a gauge model based on a $SU(3) \otimes U(1)$ symmetry in which the lepton number is violated explicitly by charged scalar and gauge bosons, including a vector field with double electric charge. This model also produces $(\beta\beta)_{0\nu}$ with massless neutrinos.

Here we are concerned with a gauge model based on a $SU_L(3) \otimes U_N(1)$ symmetry. The model is anomaly free if we have equal number of triplets and antitriplets, counting the color of $SU(3)_c$, and furthermore requiring the sum of all fermion charges to vanish. The anomaly cancellation occurs for the three generations together and not generation by generation. The price we must pay is the introduction of exotic quarks, with electric charge 5/3 and -4/3. [1]

We start by choosing the following triplet representations for the lefthanded fields of the first family, $(3,0) : (\nu_c, c, c^c)_L^T$ for the leptons, and $(u, d, J_1)_L^T : (3, +\frac{2}{3})$ for the quarks, and the right fields in singlets. Notice that we have not introduced right-handed neutrinos. The numbers 0, 2/3and 2/3, -1/3 and 5/3 are $U_N(1)$ charges. The other two lepton generations also belong to triplet representations, and the second and third quarks generations belong to antitriplets.

In order to generate fermion masses, we introduce the following Higgs triplets, $\eta : (\eta^0, \eta_1^-, \eta_2^+)^T$, (3,0), $\rho : (\rho^+, \rho^0, \rho^{++})^T$, (3,1) and $\chi : (\chi^-, \chi^{--}, \chi^0)^T$, (3, -1) and the sextet (6, 0)⁻¹

$$\begin{pmatrix} \sigma_1^0 & h_2^+ & h_1^- \\ h_2^+ & H_1^{++} & \sigma_2^0 \\ h_1^- & \sigma_2^0 & H_2^{--} \end{pmatrix}$$
(1)

These Higgs multiplets will produce the following hierarchical symmetry breaking

$$SU_L(3) \otimes U_N(1) \xrightarrow{\leq i \geq} SU_L(2) \otimes U_{i'}(1) \xrightarrow{\leq p, \eta \geq} U_{r.m}(1),$$
 (2)

The Yukawa interactions with the leptons is

$$2\mathcal{L}_{III} = \sum_{l} [\nu_{lL}^{c} \nu_{L} \sigma_{1}^{0} + \bar{l}_{L}^{c} l_{L} H_{1}^{++} +$$

¹We thanks R. Foot for calling our attention to this possibility.

$$\bar{l}_{R}l_{L}^{e}H_{2}^{--} + (\bar{\nu}_{lR}^{e}l_{L} + \bar{l}_{R}^{e}\nu_{L})h_{2}^{+} + (\bar{\nu}_{lR}^{e}l_{L}^{e} + \bar{l}_{R}\nu_{lL})h_{1}^{-} + (\bar{l}_{R}^{e}l_{L}^{e} + \bar{l}_{R}l_{L}^{e})\sigma_{2}^{0}.$$
(3)

As $\langle \sigma_1^0 \rangle = 0$ the neutrinos remains massless. For the first and second quark generations we have Yukawa interactions like $G_u(\bar{u}_L u_R \eta^0 + \bar{d}_L u_R \eta_1^-, G_d(\bar{u}_L d_R \rho^+ + \bar{d}_L d_R \rho^0)$.

Here we will not write explicitly the physical gauge bosons, but only to mention that there are consistent with the usual relation between the mass of the lighter neutral gauge boson m_Z and that of the lighter charged one $m_{W'}$: $m_Z/m_W = 1/c_W$ where c_W is the cosine of the Weinberg angle:

As the sextet does not couple to quarks it is not able to produce $(\beta\beta)_{0\nu}$ by itself. Notwhithstanding, by considering the most general potential involving the η triplet and the *H* sextet, it is possible to verify that the physical charged scalar are linear combination either of $\eta_1^- h_2^-$ or $\eta_2^- h_1^$ both degenerates in mass. [2] This degeneration will be broken when we allow the coupling with the other two triplets, ρ and χ , with η . With the sextet they will anly coupled through the term $(1/2)\rho_i\chi_j H^{ij}$.

It is very well known that the observation of neutrinoless double beta decay, $(\beta\beta)_{0\nu}$, will imply a new physics beyond the standard model. Usually, two kinds of mechanisms for this decay were assumed to be independent: massive Majorana neutrinos and right-handed currents [3]. In both cases, the bosons exchanged in diagrams producing the decay are vector ones. Even for those models in which there are contributions of the scalars exchange, they are negligible [4].

Then, the Yukawa interactions with the scalars $h_{1,2}^-$ with leptons and

 η_1^- with quarks in, allow all the couplings appearing in Fig. 1, for example, with the physical scalar ϕ_1^- . We can estimate a lower bound on the mass of ϕ_1 , by assuming that its contribution to $(\beta\beta)_{0\nu}$ is less than the amplitude due to massive Majorana neutrinos and vector bosons W^- exchange. We obtain $m_{\phi} > 3 \, GeV$.

We can see that $(\beta\beta)_{0\nu}$ proceeds in this model only as a Higgs bosons effect, with massless neutrinos at tree level. There are not contributions to $(\beta\beta)_{0\nu}$ from trilinear Higgs interactions because the charged leptons couple only to the η -like triplets, and those triplets do not contain doubly charged scalars. In models in which these contributions exist, they are negligible [4] unless a neighboring mass scale (~ 10⁴GeV) exist [5].

References

- [1] F. Pisano and V. Pleitez, $SU(3) \otimes U(1)$ model for the electroweak interactions, to be published in Physical Review D.
- [2] In preparation.
- [3] M. Doi, T. Kotani and E. Takasugi, Prog. Theor. Phys. 83, 1(1985).
- [4] J. Schechter and J. W. F. Valle, Phys. Rev. D25, 2951(1982).
- [5] C. O. Escobar and V. Pleitez, Phys. Rev. D28, 1166(1983).

Fig.1 Scalar contribution to the $(\beta\beta)_{0\nu}$, $G_{u,e}$ are Yukawa couplings and $a_{1,2}$ mixing parameters.

Form Factors of the Charmed Meson Decays $D^+ \to \overline{K}^{0*} e^+ \nu$

Patricia Ball and H.G. Dosch Institut für Theoretische Physik, Universität Heidelberg Philosophenweg 16, D. 6900 Heidelberg, Germany

and

Erasmo Ferreira

Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro C.P. 38071, 22452 Rio de Janeiro RJ, Brasil

Abstract. As an attempt to explain discrepancies between experimental results and theoretical calculations on the ratios between longitudinal and transversal polarizations of the \overline{K}^{0*} meson in the semileptonic D^+ decay, we evaluate the simplest hadronic corrections to the form factors. We show that the influence of these corrections is too small to account for the existing discrepancies.

1. Introduction and general method

Semileptonic decays of charmed and beautiful hadrons are a most important source of information on fundamental parameters in the Higgs-sector of the standard model of weak interactions. However, these parameters, which are elements of the Cabibbo-Kobayashi-Maskawa matrix, have to be extracted from the hadron decays taking into account the strong QCD-interaction confining the quarks inside hadrons. The main source of uncertainty in the results that can be thus obtained comes from the treatment given to non-perturbative QCD.

Quark model calculations¹⁻⁵ give in general a reasonably adequate description of nonperturbative effects despite the rather crude way of achieving chiral symmetry breaking through non-zero constituent quark masses. However, in the case of the semileptonic decays of charmed mesons into vector mesons $D^+ \to \overline{K}^{*0}e^+\nu$ there is a rather poor agreement between quark model calculations and experimental results⁶⁻⁹, concerning both total rates and polarizations. A detailed study of this decay in the framework of QCD-sum rules^{10,11} shows better agreement with the data, except for the ratio of the longitudinal to the transversal polarizations of the \overline{K}^* -meson. The central experimental value for this ratio is about twice as large as the theoretical result.

It was already pointed out^{10,11} that within the sum rule approach a large ratio for the longitudinal over the transversal polarization cannot be obtained and that therefore, in case of confirmation of the present experimental value, one has to look beyond the simple quark levels for sources of the disagreement. The clarification of this question is of great importance, not only for our understanding of the mesons systems consisting of a charmed and a light quark, but also in view of the determination of the weak matrix elements involving bottom quarks.

It was suggested in ref. 10 that hadronic corrections might influence the semileptonic decays and be the source for the discrepancy between theory and experiment. In fig. 1 we show the dominant diagram providing such a correction. In the present work its contribution is evaluated and compared to the simple quark results of ref. 11.

Fig. 1. Dominant hadronic contribution to the semileptonic decay $D^+ \to \overline{K}^{0*} e^+ \nu$, whose contributions to form factors are calculated in the present work.

The calculation of the diagram of fig. 1 must take into account that hadrons are not elementary particles with pointlike couplings, and therefore internal contributions of high virtuality must be supressed. This is done in our calculation in the following way. We represent the hadronic contributions to the different form factors by double dispersion integrals

$$F(t) = \int_{s_1}^{s_m} \frac{ds}{s - m_D^2} \int_{u_1}^{u_m} \frac{du}{u - m_{K^*}^2} \rho_{FF}(s, u, t) \tag{1}$$

where the index FF specifies each of the form factors. The quantities s_1 and u_1 are the kinematical thresholds. The double spectral function can be obtained from diagram (1) by using the Cutcosky rules, putting the internal lines on mass shell, so that only on-mass-shell vertex functions occur in the determination of the double spectral function. The internal contributions with high virtuality are then suppressed through cut-offs s_m and u_m in the s and u-integrations.

The cutoffs s_m and u_m are determined by the hadronic excitation energies, since above them the single diagram (1) is no longer representative. We have thus parametrized s_m and u_m as

$$s_m = (m_D + \Delta)^2$$
; $u_m = (m_{K^*} + \Delta)^2$ (2)

where Δ is conservatively varied in the range $0.6 \leq \Delta \leq 2$ GeV.

With a cutoff value s_m the above mentioned non-Landau singularities occur only for $t \gtrsim 4m_{D^*}^2/s_m$.

The point m_D^2 is always outside the integration interval of s, but $m_{K^*}^2$ is not always outside that of u. We therefore take into account the finite width of the K^* meson, through the replacement

$$\frac{1}{u - m_{K^*}^2 + i\varepsilon} \to \frac{u - m_{K^*}^2 - im_{K^*}\Gamma_{K^*}}{(u - m_{K^*}^2)^2 + (m_{K^*}\Gamma_{K^*})^2}$$
(3)

where Γ_{K^*} is the full width of the K^* -meson. The imaginary part of the hadronic corrections obtained in this way can be viewed as a consequence of a final state interaction.

2. Results

In the table we display the effect on measured quantities due to the hadronic corrections, for cutoff values (in GeV² units) given by $(s_m; u_m) = (6.0; 1.7), (8.2; 3.6)$ and (15.0; 8.35). The results of ref. 11 have to be multiplied by the entries of that table in order to include the effects of hadronic corrections. We observe that for the case (6.0; 1.7) the effects are completely negligible, and that even for the extreme large cutoff $s_m = 15 \text{ GeV}^2$ the effect of the hadronic corrections on the longitudinal to transversal polarization ratio is smaller than 20%. The main influence is on the decay rate, which is increased by 77%. The effect of the imaginary part is always completely negligible. **Table.** Multiplicative factors representing the influence of the hadronic corrections on the polarization ratios and on the total decay rate. As in the table, s_m and u_m represent the cutoff values in units of GeV².

- R_{LT} : Ratio of the longitudinal over transversal ratio including hadronic corrections, divided by the corresponding uncorrected quantity;
- $R_{+/-}$: Analogous ratio for the relation between positive and negative helicities;
- R_{tot} : Ratio between the total semileptonic decay rates including and not including hadronic corrections.

$(s_m; u_m)$	R _{LT}	R _{+/-}	R _{tot}
(6;1.7)	1.01	1.01	1.02
(8.2;3.6)	1.04	1.10	1.15
(15;8.35)	1.19	1.49	1.77

Summarizing we remark that hadronic corrections cannot explain the existing discrepancy between the central value of the experimental results for the $D^+ \to \overline{K}^{0*}e^+\nu$ decay and the theoretical result obtained from sum rules for the ratio of the longitudinal to the transversal polarization. However, it can be remarked that the corrections obtained slightly move the polarization ratios towards a better agreement with experiment.

References

- 1. M. Bauer, B. Stech, M. Wirbel, Z. Phys. C29 (1985), 637
- T. Altomari, L. Wolfenstein, Phys. Rev. Lett. 58 (1987), 1583; Phys. Rev. D37 (1988), 681
- 3. N. Isgur, D. Scora, Phys. Rev. D40 (1989), 1491
- 4. M. Bauer, M. Wirbel, Z. Phys C42 (1989), 671
- 5. F.G. Gilman, R.L. Singleton, Phys. Rev. D41 (1990), 142
- 6. Z. Bai et al., Phys. Rev. Lett. 66 (1991), 1011 (Mark III-collaboration)
- 7. J.C. Anjos et al., Phys. Rev. Lett. 62 (1989), 722 (E691-collaboration)
- 8. H. Albrecht et al., Phys. Letters B255 (1991), 634 (Argus-collaboration)
- 9. J.C. Anjos et al., Phys. Rev. Lett. 65 (1990), 2630 (E691-collaboration)
- 10. P. Ball, V.M. Braun, H.G. Dosch, M. Neubert, Phys. Letters B259 (1991), 481
- 11. P. Ball, V.M. Braun, H.G. Dosch, Form factors of semileptonic *D*-decays from QCD sum rules; Heidelberg preprint HD-THEP-91-16. Subm. to *Phys. Rev.* D

ESTUDO DA DISTRIBUIÇÃO LATERAL DA CASCATA NUCLEÔNICA INDUZIDA POR UM ÚNICO NUCLEON NA ATMOSFERA

J. Bellandi, R.J.M. Covolau, C. Dobrigkeit, C.G.S. Costa e L.M. Mundim, Depto. Raios Cósmicos e Cronologia, IFGW - UNICAMP.

Em recente artigo¹, estudamos o comportamento da cascata nucleónica induzida por um único nucleon, que interage com a atmosfera numa profundidade t_v (g/cm^2) com energia E_v (arbitrariamente escolhida como sendo $E_a = 10^4 TeV$), usando as soluções da equação de difusão tridimensional, obtidas pelo método de ordenação de operadores exponenciais de Feynman^{2,3}. Apresentamos aqui somente a discussão de alguns aspectos importantes do comportamento lateral da cascata: dependência com a energia; com a altura de interação; com a dispersão lateral e com a quantidade média de matéria atravessada pela cascata.

A análise da solução é feita com base nas seguintes variáveis: a) E e t, energia e profundidade de detecção; b) a distância r no plano perpendicular à direção da cascata com relação ao seu centro; c) $T = (t - t_o)/\lambda_N$, altura em que ocorre a interação com relação ao detetor, em unidades de livre caminho médio de interação nucleônico; d) $T_f = t/\lambda_N$. nível observacional em unidades de λ_N - nos cálculos usamos $T_f = 6,75$, nível de observação de Chacaltaya, Bolívia (540g/cm²); e) parâmetro de dispersão lateral $\alpha = Er/p_T H_o$, sendo p_T o momento transversal transferido na colisão, suposto aqui constante e ignal ao seu valor médio e H_o um fator de escala, definido pelo modelo isotérmico para a densidade atmosférica.

A componente lateral F_N^L , em função de α , está representada na Figura I (multiplicada pela quantidade $p_T^2 H_c^2$), indicando que para cada valor de T existe um alcance máximo ao desenvolvimento lateral, determinado por α_{max} , calculado como sendo

$$\sigma_{max} = -\ln\left(1 - T/T_f\right)$$

O comportamento de F_N^L em função da energia E, para diferentes alturas de interação, indica que para eventos iniciados nas proximidades do ponto

de medida (7 pequeno), o fluxo apresenta um espectro mais rico em energias "altas" (> $10^{3}TeV$) e mais pobre em energias "baixas" (> $10^{2}TeV$) do que para eventos iniciados muito acima do ponto de observação, quando então o desenvolvimento da cascata já está bastante avançado. Com isto, as curvas para diferentes valores de T se cruzam, como mostra a Figura 2, na qual assumimos $\alpha \rightarrow 0, 1$.

O fluxo lateral em função de T demonstra, como era de se esperar, uma intensidade tanto maior quanto mais próximo do centro é realizada a medida (Figura 3, com $E \approx 100 TeV$). Também é de se notar a presença de um ponto de máximo no fluxo a uma determinada profundidade. Este resultado é analogo ao que ocorre no desenvolvimento da cascata eletromagnética, para a qual existe um ponto crítico un produção de pares e fótons ⁴.

Uma característica da componente lateral é a dependência com a profundidade do nível de observação T_f . Como exemplo, mostramos na Figura 4 as modificações introduzidas nas curvas de F_N^{i} em função de T, para diferentes valores de T_f : 6,75 (Chacaltaya, Bolívia); 8,125 (Mt. Fuji, Japão); 10,625 (Gran Sasso, Itália) e 12,875 (nível do mar). Esta dependência é introduzida nos cálculos como consequência da variação da densidade atmosférica ao longo do percurso desenvolvido pela cascata.

Outra fator importante na análise é a dispersão lateral quadrática média, $< \alpha^2 >$. A sua raiz quadrada está relacionada com a largura média da distribuição lateral da cascata e apresenta o mesmo comportamento que o valor de α_{max} , na medida em que se varia T (Figura 5).

A dependência de $\langle \alpha^2 \rangle$ com a energia é muito fraca, mesmo para diversas ordens de grandeza em *E*. Este resultado pode ser comparado com aquele obtido por A. Olsawa e S. Yamashita ⁵, que resolveram a equação de difusão nucleónica seguindo um método de cálculo bem diverso. A Figura 6 apresenta a variação de $\langle \alpha^2 \rangle$ com a razão E_a/E , tomando por base o nível de observação $T_f = 6,00$, remnindo resultados da Ref.[5] e os deste trabalho, para 3 diferentes altitudes de interação 7. A coincidência é completa e as curvas se superpõe.

Apesar de não existirem dados experimentais só para a cascata nucleónica, esta análise é importante para o estudo do comportamento da cascata hadrónica (nucleons + pions). O conhecimento da solução da equação de difusão para a parte nucleónica da cascata permite resolver de forma completa o sistema de equações diferenciais acopladas que descreve a cascata hadrónica ⁶, a partir da qual pode-se proceder à análise dos dados experimentais em radiação cósmica.

Figura 1. Comportamento de $F_N^L + (p_T H_n)^2$ em função da dispersão lateral α , para diversos valores de T (com E = 100TeV).

Figura 2. Comportamento de F_N^L $(p_T H_n)^2$ em função da energia E, para diversos valores de T (com a = 0.1).

500 E - 10 000 TeV E - 100 TeV 400 ALFA= 0.1 F.b. (pr.H.)² TeV 300 8.125 200 10.625 100 1(- 12.875 8.60 4.00 8.00 12.00 18.00 $T = (t - t_{\bullet})/\lambda_{R}$

Figura 3. Comportamento de $F_N^L \cdot (p_T H_n)^2$ em função da altura de interação *T*, para diversos valores de *a* (com *E* = 1007 eV).

Figura 4. Comportamento de $F_N^L \cdot (p_T H_n)^2$ em função de T_i para diversus valores do nível de observação T_f (com $E = 100 TeV, \alpha = 0.1$).

Figura 5. Variação de $\sqrt{\langle \alpha^2 \rangle}$ e de α_{max} em função da altitude de interação *T*, para diversos valores da energia de limitar *E*.

Figura 6. Variação de $< \alpha^2 > cm$ função da razão E_c/E para 3 valores de T (usando $T_f = 6.00$). Os cálculos da Ref.[5] e os deste trabalho fornecem os mesmos resultados.

Agradecimentos:

Os autores agradecem à FAPESP (CGSC e LMM) e ao CNPq (JI) pelo auxílio financeiro concedido.

Referências Bibliográficas:

- [1] J. Bellandi et al., Preprint DRC TH 02/91.
- 2] J. Bellandi F^o et al., Hadronic Journal 12, 245 (1989).
- 3 J. Bellandi Fo et al., Hadronic Journal 13, 165 (1990).
- [4] J. Nishimura, Handbuck der Physik XLV1/2, Spriger-Verlag (1967).
- [5] A. Ohsawa and S. Yamushita, Prog. Theor. Phys. 77, 1411 (1987).
- [6] J. Bellandi F^o et al., Hadronic Journal 13, 493 (1990).

SKYRMIONS NÃO VIBRANTES E VIBRANTES *

V.E. Herscovitz e F.M. Steffens

Instituto de Física, Universidade Federal do Rio Grande do Sul C.P. 15051, 91500, Porto Alegre, RS, Brasil.

Abstract

A instabilidade da solução estática do modelo σ não linear levou Skyrme a adicionar uma interação quártica ao lagrangeano. A obtenção de soluções solitônicas no modelo σ não linear continua sob análise na literatura, agora ao nivel quântico, sobretudo com propostas de quantização de grau de liberdade de vibração. Comparamos no presente trabalho os hamiltonianos de algumas destas formulações considerando, também, a interação quártica simétrica incluída em uma generalização do modelo de Skyrme.

1 INTRODUÇÃO

Ao sugerir que os núcleons podem ser descritos por sólitons topológicos de uma teoria de campos mesônicos, Skyrme¹ recorre a uma configuração de campo estática, da forma "ouriço"

$$U_0 = e^{iF \cdot iF(r)}$$
, $U_0 \in SU(2)$, $U_0(r = \infty) = 1$, (1)

com $F(\infty) = 0$ e $F(0) = \pi$ para número topológico n = 1.

Considerando que a solução clássica do modelo σ não linear puro não é estável ao colapso, Skyrme adiciona ao lagrangeano uma interação quártica que assegura a estabilidade do sóliton. Omitindo temporariamente o termo de massa:

$$\mathcal{L}_{sk} = Tr\left\{\frac{f_s^{\prime 2}}{16}(\partial_{\mu}U)(\partial^{\mu}U^{\dagger}) + \frac{1}{32e^2}[(\partial_{\mu}U)U^{\dagger},(\partial_{\nu}U)U^{\dagger}]^2\right\}$$
(2)

sendo $F_{\pi} = 186$ MeV a constante de decaimento do píon e c^2 , um parâmetro adimensional a ajustar.

A solução de Skyrme é um estado de "simetria máxima" para o qual uma rotação no espaço de isospin equivale a uma rotação espacial, e em que o ângulo quiral ou função perfil F(r) é solução da equação (de Euler-Lagrange) que minimiza a massa estacionária, delinindo um ponto estacionário da ação.

Adkins, Nappi e Witten², trataram as flutuações em torno da solução de Skyrme hierarquicamente em uma teoria de campos fracamente acoplados, quantizando os graus de fiberdade coletivos rotacionais, e Hajduk e Schwesinger^a incluíram o modo vibracional do skyrmion para estudar a ressonância Roper e

[&]quot;Trabalho parcialmente linanciado por CNPq, FAPERGS e FINEP.
isóbaros Δ . Aborda-se, também, na literatura a situação em que o lagrangeano do modelo de Skyrme é, desde o início, quântico⁴.

Ademais, como predições sobre a interação NN pelo modelo de Skyrme apresentadas^{5,0} evidenciam que o mesmo não descreve a interação atrativa a distâncias médias, é proposta a adição da interação quártica simétrica^{7,8}

$$\mathcal{L}_{sim} = \frac{\gamma}{8e^2} \left\{ Tr(\partial_{\mu} t/\partial^{\mu} t/^{\dagger}) \right\}^2 \tag{3}$$

ao lagrangeano de Skyrme, o que resolve em parte⁸ tal problema. Como este termo contribui com sinal negativo à massa estática, os possíveis valores de γ são limitados superiormente. Os autores desprezam as derivadas temporais quárticas, por serem de ordem $(v^2/c^2)^2$ em relação à massa estática M.

2 SOLUÇÕES DO MODELO σ NÃO LINEAR

A existência de soluções estáveis para o modelo σ não linear é ainda alvo de discussão na literatura, face à possibilidade de estabilização quântica do sóliton. Carlson⁹ incorpora, além dos de rotação, efeitos de vibração em uma teoria vinculada, onde o vínculo preserva a simetria quiral no limite de massa zero para o píon. Dividindo o conjunto de configurações de campo em classes de equivalência de campos que diferem por escalamento do sistema de coordenadas, a integral funcional

$$Z = \int dU \frac{d\lambda}{\lambda} \prod_{l} \delta\left(1 - \int G[U(\vec{r}, t)] d^3r\right) e^{iS[U(\lambda^{-2/3}\vec{r}, l)]}$$
(4)

inclue um campo representativo de cada classe (em δ), sendo G uma função local positiva da configuração de campo e $\lambda(t)$ a variável que promove a dilatação

$$U(\vec{r},t) \to U(\lambda^{-2/3}\vec{r},t). \tag{5}$$

Recorrendo ao lagrangeano do modelo σ não linear, ao campo U na forma"onriço " e adotando como vínculo o termo de Skyrme, Carlson determina o ângulo quiral F(r) que satisfaz $\delta[L - \rho G] = 0$.

A proposição de estabilização das soluções do modelo σ não linear por flutuações quânticas¹⁰, com a introdução de uma variável coletiva vibracional adicional R(t) à função perfil do campo U, é contestada na literatura^{11,12}, onde se ressalta a importância da presença de uma interação adicional estabilizadora, como o termo de Skyrme, mesmo ao nível quântico. Contudo, para a análise destas situações, são adotadas formas específicas para o ângulo quiral, que não são, obviamente, soluções clássicas das equações de movimento e que dependem de parâmetros clássicos.

Já em uma variante alternativa de estabilização das soluções do modelo pela introdução de um parâmetro de corte ϵ a pequenas distâncias¹³ para o funcional de energia, e sua posterior quantização, o perlil F(r) é determinado.

3 HAMILTONIANOS PARA SÓLITONS VIBRANTES E NÃO VIBRANTES

Considerem-se as duas situações seguintes:

I. Ao lagrangeano que, inclui os termos do modelo σ não linear, de Skyrme e quártico simétrico, com quantização das variáveis coletivas rotacionais e vibracional para o campo

$$U = A(t)e^{i\mathcal{T} \cdot \mathcal{F}(\rho)}A(t)^{\dagger} \quad , \rho = \frac{r}{R(t)} \tag{6}$$

c $A(t) = a_0 + \vec{a} \cdot \vec{\tau}$, incorpora-se a restrição nas variáveis a_μ de SU(2) via nultiplicador de Lagrange.

II. Ao lagrangeano do modelo σ não linear, incorpora-se como vínculo a interação composta dos termos de Skyrme e quártico simétrico, via multiplicador de Lagrange.

Desprezando contribuições das derivadas temporais quárticas do último termo e promovendo a quantização covariante¹⁴, após o estabelecimento dos vínculos das duas teorias (todos de 2^ª classe) e a determinação dos parênteses de Dirac¹⁵, obtém-se os Hamiltonianos quânticos gerais

$$II = -\frac{1}{2\sqrt{g}}\frac{\partial}{\partial q^{\mu}}g^{\mu\nu}\sqrt{g}\frac{\partial}{\partial q^{\nu}} + V(q)$$
(7)

sendo $g_{\mu\nu}(q)$ o tensor métrico, $g = det g_{\mu\nu} c q^{\mu}$ as coordenadas generalizadas.

Como casos específicos, para as situações I e II acima, citam-se:

I. I Termo quártico simétrico e modo vibracional ausentes: Hamiltoniano de Skyrme¹; I.2 Modo vibracional ausente^{7,8}; I.3 Termo quártico simétrico ausente¹²; I.4 Neuhum termo ausente.

II.1 Termo quártico simétrico ausente⁹; II.2 Nenhum termo ausente.

Aos hamiltonianos I.1 e I.2 correspondem sólitons não vibrantes e aos demais, sólitons vibrantes. De I.4 obtêm-se diretamente I.1, I.2 e I.3 eliminando o parâmetro γ e,on o gran de liberdade vibracional. A forma funcional dos coeficientes, que são funções do ângulo quiral, não se altera de um caso a outro, mas o ângulo quiral se modifica.

Os hamiltonianos II.1 e II.2, bem como os das situações III¹⁰ e IV¹³ são idênticos na forma diferindo, contudo, os coelicientes, à semelhança da situação 1.

Na situação III não existe solução clássica (para o ângulo quiral)¹⁶, seudo esta dificuldade evitada em IV pela introdução do parâmetro de corte c.

A comparação entre 1.3 e 11.1 (1.4 e 11.2) é particularmente interessante porque os coeficientes dependentes do termo de Skyrme (Skyrme mais quártico simétrico) não contribuem a 11.1 (11.2) embora os termos contribuam à função perfil correspondente.

Se, para $m_x=0$, ajustarmos² a massa do núcleon a 938.9 MeV na ausência de modo vibracional (F_x e c compatíveis), obteremos para a situação 1.3 o valor

 $m_N = 1036$ MeV e para 1.4, 1045 MeV ($\gamma = 0.11$). Já para $F_n = 186$ MeV, 11.1 conduz⁹ a $m_N = 1101$ MeV e 11.2 a 1152 MeV, enquanto o caso I gera valores mais elevados.

Considerações mais detalhadas, serão apresentadas em breve.

REFERENCIAS

 T.H.R. Skyrme, Proc.Roy.Soc. A260, 127; A262, 237 (1961); Nucl. Phys. 31, 550, 556 (1962).

2. G.S. Adkins, C.R. Nappi and E. Witten, Nucl.Phys. **B228**, 552 (1983); E. Witten, Nucl.Phys. **B223**, 422 (1983); G.S. Adkins, in *Chiral Solitons*, K-F-Liu ed., World Scientific, p.99 (1987).

3. Ch. Hajduk and B. Schwesinger, Phys. Lett. 140B, 172 (1984).

4. K. Fujii, A. Kobushkin, K. Sato and N. Toyota, Phys. Rev. D35, 1896 (1987).

5. A. Jackson, A.D. Jackson and V.Pasquier, Nucl. Phys. A432 567 (1985).

6. R. Vinh Mau, M. Lacombe, B.Loiseau, W.N. Cottingham and P. Lisboa, Phys. Lett. **150B**, 259 (1985).

7. J.F. Donoghuc, E. Golowich and B.R. Holstein, Phys. Rev. Lett. 53, 747 (1984).

8. M. Lacombe, B. Loiseau, R. Vinh Mau, Phys. Lett. 161B, 31 (1985); 169B, 121 (1986).

9. J.W. Carlson, Nucl. Phys. B253, 149 (1985); B277, 253 (1986).

10. P. Jain, J. Schechter and R. Sorkin, Phys.Rev. D39, 998 (1989).

11. A. Kobayashi, H. Otsu and S. Sawada, Phys. Rev. D42, 1868 (1990).

12. H. Asano, H. Kanada and H. So, Phys. Rev. D44, 277 (1991).

13. B.S. Balakrishna, V. Sanyuk, J. Schechter and A. Subbaraman, Preprint SU-4228-482 (1991).

14. B.S. DeWitt, Phys. Rev. 85, 653 (1952).

15. P.A.M Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York (1964).

16. J.A. Mignaco and S. Wulck, Phys. Rev. Lett. 62, 1449 (1989).

OS SOLITONS DO MODELO DE SKYRME COM O TERMO DE MASSA DO PION

• •

• .

Juan A. Mignaco Centro Brasileiro de Pesquisas Písicas (CBPF/CNPq) Rio de Janeiro - RJ

Stenio Wulck Inst. de Física, UFRJ Rio de Janeiro, RJ

Damos os desenvolvimentos analíticos na origem e no infinito para a solução da equação de Euler-Lagrange do modelo em que<u>s</u> tão, e estudamos em função dos parámetros relevantes as soluções correspondentes a número bariônico inteiro. Mostramos que a inclusão do termo de massa muda a topologia, e o espaço de configuração não é mais uma tri-esfera.

Sobre o Conteudo Físico do Modelo de Skyrme SU(2)

Juan A. Mignaco

Centro Brasileiro de Pesquisas Físicas(CBPF/CNPq) Rua Dr Xavier Sigand 150 - CEP 22290 Rio de Janeiro, Brasil

Stenio Wulck

Instituto de Física, Universidade Federal do Rio de Janeiro CEP 21944, Rio de Janeiro, Brasil

Este trabalho é um resumo muito comprimido de um outro trabalho onde analisamos , entre outros pontos, as soluções do Modelo de Skyrme na representação ouriço do SI'(2) como uma função dos parâmetros do modelo [1]. As regras de soma que obtemos a partir da equação diferencial para a função angulo quiral apresentam-se como ferramentas úteis nesta análise, e também usamos o leorema de Derrick [2] na parte que se refere a estabilidade das soluções sólitous (soluções regulares). Nos enfatizamos que a evolução dos soluções é controlada por un parametro específico ϕ , que tem valores distintos $\phi_1, \phi_2, \phi_3 \cdots$ para soluções correspondentes a solitons com diferentes números bariônicos $B = 1, 2, 3 \cdots$, respectivamente. É mostrado que un parâmetro dimensional aparece nas solações regulares, na origem,e que pode ser tornado como a inclinação das curvas correspondentes às ditas soluções Àlém disso, mostramos também que o parâmetro adimensional de Skyrme (c) tem um papel peculiar pois ele explicita a instabilidade da solução sólitou clássico visto que, a este nível, não se tens como tixá lo. mesino sabendo que ele é finito e está definido no intervalo $0 < \epsilon < \infty$. Por outro lado, a quantização do modelo através das coordenadas coletivas nos leva a uma expressão para a energia que é funcão do parâmetro de Skyrme e que tem um mínimo estável bem definido para cada número bariônico inteiro. Desta marcina fixa-se o valor do parámetro e.

Neste trabalho obtennos, também, as massas dos sólitons em termos de números específicos dependentes do paràmetro ϕ , do momentum angular e da constante de decaimento do píon (f_r) o qual pode ser tido como um parámetro livre, para ajustar as previsões do modelo com os dados experimentais on entrar nos cálculos com o seu valor experimental (0.186 Gev). Mostramos, aiada, um bárion B = 2, l = J = 1 com massa quase duas vezes o valor da massa do nucleon B = 1, l = J = 1/2, e um estado B = 3, l = J = 1/2 que é mais leve que o primeiro acima citado.

No modelo de Skyrme, todos os birions tornam-se enda vez mais leves em relação às massas confrecidas dos micleos leves, a medida que B aumenta.

Na Tabela 1 apresentantos os valores do parâmetro ϕ correspondentes a sólitons

com número B = 1, 2, 3. Nesta mesma tabela damos o valor de e no minimo quántico (para cada valor de B) e a massa do sólitou nesse mínimo. O valor $f_{\pi} = 0.129$ Gev é aquele do trabalho de G. S. Adkins, C. R. Nappi e E. Witten [3] e foi colocado para efeito de comparação .

Na Tabela 2 damos as principais características do sóliton bariônico B = 1.

Na Figura 1 representances algunas soluções da equação de movimento, como função do parâmetro ϕ . A solução regular é aquela que vai a zero no infinito.

Na Figura 2 damos alguns resultados obtidos através das regras de soma, como função de *\u00f8*.

Na Figura 3 temos o espectro de massa, de acordo com a Tabela 1.

Referências

- [1] J A Mignaco and Stenio Wulck 1991 CBPF UFRJ * On The Physical Content of The SU(2) Skyrme Model* aparecerá em breve como Preprint
- [2] G H Derrick 1964 Journal of Mathematical Physics 5 1252
- [3] G S Adkins, C R Nappi and E Witten 1983 Nucl Phys B228 552

•	8	a1(4)	h(4)	1 = j	e	1.(Gev)	Fi(Gev/c)	M(liev/c)
1.00376	1	11.6	51.01	1/2	7.67	0.129	0.993	0.817
						0.15G	1.621	1.178
[1			3/2	5.13	0.129	0.664	1.222
						9.15G	0.950	1.762
1.9630	2	32.22	219.5	L	11.16	0.129	2.63	1.560
						U.166	4.08	2.250
2.5862	3	58.1	563.9	1/2	20.02	0.129	7.500	1.500
						Q.166	11.2	2.164
				3/2	14.00	0.129	5.21	2.24
					_	0.1S6	7.52	J.24

•

.

Table 1: Results for B=1, 2 and 3

.

Quantity	ANW.	This Work	This Work	Esperiment
	f; = 0.129 Ger	f. = 0.129 Gev	$f_{\pi} = 0.186 Gev$	
M _N	inyel	0.817	1.15	0.939 Gev
Ma	input	1.272	1.76	1.232 Gew
e	5.45°	7.67	7.67	
< r ² > ^{1/2} /mu	0.59 /	0.422 /	0.293 /_	0. <u>7</u> 2 /
< r ¹ > ^{1/1} M.l=1	0.92 /_	0.65 /_	0.45 <i>f</i> _	0.81 /_
μ,	1.67	0.61	0.61	2.79
<u>ب</u> بر	-1.31	-0.16	-4 16	-1.91
	1.43	5.25	5.25	1.66
grad .	1.11	1 36	1.36	1.76
\$1- 1	6.3š	2.0	2.0	9.4
94	ų.61	(1.307	0 307	1,23
5. MN	8.9	189	3 23	13.5
9 .NU	13.2	5.81	5.S.I	20 a j
<i>₽</i> ₩D	2.3	17.0	0.71	J.J
Fillerici	0.7037	9.293	1.121	 .
KyGev-J/ci)	-31.95		-6.459	<u> </u>

.

Table 2: Besults for the Nucleon Physical Parameters

* Obtained by fitting

Massas hadrônicas num modelo com confinamento e simetria quiral *

يە جان يەر

> Gastão Krein Instituto de Física Teórica - Universidade Estadual Paulista Rua Pamplona, 145 - 01405 São Paulo/SP

Resumo

Nesta comunicação apresentamos os resultados de um cálculo de massas de mésons pesados e núcleons e deltas usando um modelo de quarks com confinamento e simetria quiral (P.J.A. Bicudo, G. Krein, J.E.F.T. Ribeiro e J.E. Villate, aceito para publicação em Phys. Rev. D). As massas dos mésons são obtidas resolvendo a equação de Salpeter e as massas dos núcleons e deltas são obtidas usando um método variacional para a equação de Salpeter. Os resultados obtidos são muito bons.

 Trabalho parcialmente financiado pelo CNPq (Ilrasil) e INIC (Portugal)

A cromodinâmica quântica (QCD) tem sido bem sucedida na análise de dados experimentais de sistemas hadrônicos a altas energias e grandes momenta transferidos. Este sucesso é devido principalmente a sua propriedade de liberdade assintótica, a qual permite o emprego da teoria de perturbações para tuis processos. Por outro lado, fenômenos de baixos momenta tranferidos e baixas energias, tais como o confinamento da cor e a quebra dinâmica da simetria quiral, não foram aiuda derivados da teoria. Estes fenômenos são eminentemente não-perturbativos, o que torna difícil seu estudo de maneira sistemática. Cálculos usando supercomputadores (teorias de calibre na rede) têm se mostrado promissores, mas ainda se encontram num estágio muito preliminar, e os resultados obtidos até o momento ainda não podem ser comparados com a experiência. Portanto, o emprego de modelos fenomenológicos, que incorporam algunas das características básicas da QCD, são a única alternativa disponível no momento para o estudo da QCD a baixas energias. Nesta comunicação apresentamos o resultado de um cálculo das massas dos mésons pesados e dos núcleons e das deltas empregando um modelo que incorpora o confinamento da cor e que realiza a simetria quiral no modo de Nambu-Goldstone,

Aqui vamos apenas apresentar os elementos essenciais do cálculo, os detalhes podem ser encontrados na publicação que deverá aparecer em breve na Phys. Rev. D. O modelo está baseado no seguinte Hamiltoniano[1,2]

$$H = \int d^3x \left[H_0(\mathbf{x}) + H_I(\mathbf{x}) \right] , \qquad (1)$$

onde H_0 é a densidade Hamiltoniana livre c H_I corresponde a uma interação efetiva:

$$H_{\mathbf{u}}(\mathbf{x}) = \psi^{\dagger}(\mathbf{x}) \left(m\beta - i\vec{\alpha} \cdot \vec{\nabla} \right) \psi(\mathbf{x}) , \qquad (2)$$

$$H_I(\mathbf{x}) = \frac{1}{2} \int d^3 y \, V(\mathbf{x} - \mathbf{y}) \, \psi^{\dagger}(\mathbf{x}) \frac{\lambda^a}{2} \psi(\mathbf{x}) \, \psi^{\dagger}(\mathbf{y}) \frac{\lambda^a}{2} \psi(\mathbf{y}) \,. \tag{3}$$

As λ^{a} 's são as matrizes de cor de Gell-Mann. A estrutara espinorial desta interação efetiva é do tipo "Coulombiana"; mas o formalismo permite o emprego de outros tipos de interações (possivelmente o retardamento possa ser incluído).

O operador de campo tem a forma

$$\psi_{fc}(\mathbf{x}) = \int \frac{d^3 p}{(2\pi)^{3/2}} \left[u_s(\mathbf{p}) b_{fsc}(\mathbf{p}) + v_s(\mathbf{p}) d^{\dagger}_{fsc}(-\mathbf{p}) \right] e^{i\mathbf{p}\cdot\mathbf{x}} , \qquad (4)$$

onde b and d referem-se respectivamente aos operadores de destruição de quarks e antiquarks no espaço de Fock, os quais carregam índices de sabor, spin e cor. Uma soma sobre índices repetidos está implícita. Os espinores u and v, e os operadores do espaço de Fock, não são os corespondentes de uma teoria livre, mas sim combinações lineares destes. u_s e v_s são dados por

$$u_{s}(\mathbf{p}) = \frac{1}{\sqrt{2}} [f(p) + g(p)\hat{\mathbf{p}} \cdot \vec{\alpha}] u_{s}^{0},$$

$$v_{s}(\mathbf{p}) = \frac{1}{\sqrt{2}} [f(p) - g(p)\hat{\mathbf{p}} \cdot \vec{\alpha}] v_{s}^{0},$$

$$f(p) \equiv \sqrt{1 + \sin\varphi(p)},$$

$$g(p) \equiv \sqrt{1 - \sin\varphi(p)},$$
(5)

onde $u_s^0 \in v_s^0$ são os espinores livres usuais. A função $\varphi(p)$ é chamada de *ângulo quiral*. Esta função é determinada de modo que a energia do vácuo é mínima. As propriedades de $\varphi(p)$ foram estudadas com detalhe em [1,3] e mais abaixo voltaremos à discussão de algumas destas.

Em termos dos operadores de Fock e do ângulo quiral, o Hamiltoniano fica sendo dado por

$$H = H_2 + H_4,$$

$$H_2 = \int d^3k \ E(k) \left[b^{\dagger}_{fsc}(\mathbf{k}) b_{fsc}(\mathbf{k}) + d^{\dagger}_{fsc}(\mathbf{k}) d_{fsc}(\mathbf{k}) \right],$$

$$H_4 = \frac{1}{2} \int d^3p \ d^3k \ d^3q V(\mathbf{q}) \left(\frac{\lambda^a_{c_1c_2} \lambda^a_{c_3c_4}}{4} \right) : \Theta^j_{c_1c_2}(\mathbf{p}, \mathbf{p}+\mathbf{q}) \Theta^j_{c_3c_4}(\mathbf{k}, \mathbf{k}-\mathbf{q}):.$$

Em H_4 , os dez diferentes termos (obtidos somando-se sobre os índices $j \in I$) são combinações dos seguintes vértices Θ^j

$$\begin{aligned}
\Theta^{1}_{c'c}(\mathbf{p},\mathbf{p}') &\equiv u^{\dagger}_{s'}(\mathbf{p}')u_{s}(\mathbf{p}) b^{\dagger}_{fs'c'}(\mathbf{p}')b_{fsc}(\mathbf{p}), \\
\Theta^{2}_{c'c}(\mathbf{p},\mathbf{p}') &\equiv -v^{\dagger}_{s'}(\mathbf{p}')v_{s}(\mathbf{p}) d^{\dagger}_{fsc}(-\mathbf{p})d_{fs'c'}(-\mathbf{p}'), \\
\Theta^{3}_{c'c}(\mathbf{p},\mathbf{p}') &\equiv u^{\dagger}_{s'}(\mathbf{p}')v_{s}(\mathbf{p}) b^{\dagger}_{fs'c'}(\mathbf{p}')d^{\dagger}_{fsc}(-\mathbf{p}), \\
\Theta^{4}_{c'c}(\mathbf{p},\mathbf{p}') &\equiv v^{\dagger}_{s'}(\mathbf{p}')u_{s}(\mathbf{p}) d_{fs'c'}(-\mathbf{p}')b_{fsc}(\mathbf{p}).
\end{aligned}$$
(6)

Os termos H_2 e H_4 foram ordenados na ordem normal. O ordenamento normal do operador energia potencial introduz termos de auto-energia, os quais estão incluídos em H_2 , dando origem ao termo E(k),

$$E(k) = A(k)\sin\varphi(k) + B(k)\cos\varphi(k), \qquad (7)$$

$$A(k) \equiv m + \frac{2}{3} \int d^3 p V(\mathbf{k} - \mathbf{p}) \sin \varphi(p) , \qquad (8)$$

$$B(k) \equiv k + \frac{2}{3} \int d^3 p(\hat{\mathbf{k}} \cdot \hat{\mathbf{p}}) V(\mathbf{k} - \mathbf{p}) \cos \varphi(p) .$$
 (9)

O ordenamento normal dos termos de energia cinética e potencial dá origem, além de E(k), a um termo constante (independente de operadores de criação e destruição), o qual representa a energia do vácuo. A minimização da energia do vácuo com relação a $\varphi(p)$ nos fornece a equação de gap:

$$A(k)\cos\varphi(k) - B(k)\sin\varphi(k) = 0, \qquad (10)$$

a qual determina $\varphi(p)$.

A física do ângulo quiral é que se $\varphi(p) \neq 0$, temos a quebra dinâmica da simetria quiral: no limite de massas de corrente iguais a zero, o termo de energia dos quarks (E(k)) apresenta um termo de massa, o gerado dinamicamente.

Neste trabalho, o potencial confinante empregado foi o seguinte

$$V(\mathbf{x}) = -K_0^3 x^2 + U. \tag{11}$$

O termo constante U, independente das corrdenadas do espaço, é necessário para definir estados assintóticos "in" e "out". Ambos K_0 e U são positivos e têm dimensão de energia. O potencial $q - \overline{q}$ total pode ser visto como o limite, quando $U \rightarrow +\infty$, de uma sucessão de potencinis cada vez mais profundos com $V(\pm\infty) = 0$ eventualmente. É importante notar que U não corresponde a um deslocamento universal, como num formalismo de primeira quantização, das massas hadrônicas. Este U entra no Hamiltoniano (3) multiplicado por um produto de quatro operadores de campo fermiônicos ψ e duas matrizes de cor. Portanto, U é um operador e não um número-c. Ainda mais, como será visto abaixo, a interação efetiva entre os quarks no interior dos hádrons é atrativa, apesar de V ser positivo.

E possível provar os seguintes resultados:

a) Quando $U \rightarrow +\infty$, a autoenergia dos quarks (antiquarks) tende a mais infinito. Isto significa que não existem quarks livres!

b) A adição de um termo constante ao potencial não modifica a equação do gap.

c) Um potencial "constante" não contribui para amplitudes de aniquilação (criação) quark-anti-quark.

d) A equação dos estados ligados (equação de Salpeter) é invariante sob o deslocamento da energia potential por U.

e) O Hamiltoniano confina a cor.

Passemos agora à discussão dos estados ligados correspondentes aos mésons charmosos e núcleons e deltas. Neste trabalho, como estamos tratando com potenciais instantâneos (e desprezamos canais de energia negativa) a equação de Salpeter pode ser escrita como

$$H |\psi\rangle = M |\psi\rangle , \qquad (12)$$

onde $|\psi\rangle$ é um auto-estado do Hamiltoniano, com massa M. O operador que cria um méson é escrito como

$$\Psi_{m}^{\dagger} = \int d^{s} p \, \delta(\mathbf{p}_{1} + \mathbf{p}_{2}) \, \psi(\mathbf{p}_{1}, \mathbf{p}_{2}) \, \chi_{f_{1} f_{2} s_{1} s_{2}} \, b_{f_{1} s_{1} c}^{\dagger}(\mathbf{p}_{1}) d_{f_{2} s_{2} c}^{\dagger}(\mathbf{p}_{2}) \,, \qquad (13)^{\circ}$$

e o operador de núcleons (e deltas) é escrito como

$$\Psi_{b}^{\dagger} = \int d^{9}p \, \delta(\mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3}) \, \psi(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}) \, \epsilon_{c_{1}c_{2}c_{3}} \, \chi_{f_{1}f_{2}f_{3}s_{1}s_{2}s_{3}} \\ \times b_{f_{1}s_{1}c_{1}}^{\dagger}(\mathbf{p}_{1}) b_{f_{2}s_{2}c_{3}}^{\dagger}(\mathbf{p}_{2}) b_{f_{3}s_{2}c_{3}}^{\dagger}(\mathbf{p}_{3}) , \qquad (14)$$

onde ψ , $\chi \in \epsilon$ são as funções de onda nas variáveis espaciais, de spin-isospin e cor, respectivamente. Para os mésons, fatorando a parte angular da função de onda de acordo com

$$\phi(\mathbf{k}) = \sum_{L,M} \begin{pmatrix} L & S & J \\ M & M_S & M_J \end{pmatrix} Y_{LM}(\hat{\mathbf{k}}) \frac{\nu_L(k)}{k}.$$
 (15)

obtemos a equação para $\nu_L(k)$

113

$$\begin{cases} \frac{d^2}{dk^2} + M - E(k) - \overline{E}(k) - \frac{L(L+1)}{k^2} - \frac{\varphi'^2(k) + \overline{\varphi}'^2(k)}{4} \\ + \frac{\sin\varphi(k)\,\sin\overline{\varphi}(k) - 1}{k^2} + \frac{2}{k^2} \left[g^2(k)\,\mathbf{S}_1 + \overline{g}^2(k)\,\mathbf{S}_2 \right] \cdot \mathbf{L} \\ - \frac{2\,g^2(k)\,\overline{g}^2(k)}{k^2} \left[\frac{S}{3}(S+1) + (\hat{\mathbf{k}}\cdot\mathbf{S}_1)(\hat{\mathbf{k}}\cdot\mathbf{S}_2) - \frac{1}{3}\,\mathbf{S}_1\cdot\mathbf{S}_2 \right] \right\} \nu(k) = 0 \; . \end{cases}$$

A equação para ψ para os bárions é dada por

$$\begin{cases} 3E(p_1) - M - \frac{3}{2} \nabla_{p_{12}}^2 + \frac{3}{4} \varphi_1'^2 + \frac{3(1 - \sin \varphi_1)}{p_1^2} \\ + \left[\frac{3}{4} - \frac{1}{3} S(S+1)\right] (1 - \sin \varphi_1) (1 - \sin \varphi_2) \frac{\hat{p}_1 \cdot \hat{p}_2}{p_1 p_2} \end{cases} \psi(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = 0 \; . \end{cases}$$

Nas equações acima, os momenta, energias e massas são dadas em unidades de $(4/3)^{1/3}K_0$ e sin φ_i significa sin $\varphi(p_i)$. L é o momento angular orbital total, S_i é o spin do i'ésimo quark, S é o spin total e $\nabla^2_{\mathbf{p}_{12}}$ é o Laplaciano em relação ao momentum relativo $(\mathbf{p}_1 - \mathbf{p}_2)/2$.

As equações acima se parecem com equações de Schrödinger com interações spin-spin, spin-órbita e tensorial. Estas interações implicam em diferentes massas para os diferentes hádrons, dependendo dos valores de S, L and J. É importante notar que todas as interações foram derivadas de um mesmo termo do potencial e dependem do ângulo quiral φ , o qual reflete a estrutura do vácuo.

A equação dos mésons é resolvida numericamente usando o método de Runge-Kutta[1]. Os resultados obtidos estão mostrados na Tabela I abaixo.

. .

Tabela 1: Espectro mesônico no setor do charm, com $(4/3)^{1/3}K_0 = 290 \ MeV$, $m_c = 1362 \ MeV$ c $m_u = m_d = 0$. Os valores experimentais são da Ref. 3

Méson	JPC	s _{Lj}	Calculado	Experimental
		-	(MeV)	(MeV)
1/c	0-+	¹ S ₀	3096	`2 979´
J/ψ	1	${}^{3}S_{1} + {}^{3}D_{1}$	3097	3097
Xa	0++	$^{3}P_{0}$	3332	3415
Xe	1++	${}^{3}P_{1}$	3343	3511
Xez	2++	${}^{3}P_{2} + {}^{3}F_{2}$	3365	3556
ψ'	1	${}^{3}S_{1} + {}^{3}D_{1}$	3579	3686
$\psi^{\prime\prime}$	1	${}^{3}S_{1} + {}^{3}D_{1}$	3611	3770
ψ'''	1	${}^{3}S_{1} + {}^{3}D_{1}$	4155	4040
$\psi^{\prime\prime\prime\prime}$	1	${}^{3}S_{1} + {}^{3}D_{1}$	4209	4159
ψ^{mn}	1	${}^{3}S_{1} + {}^{3}D_{1}$	4935	4415
D	0-	' <i>S</i> u	1998	1869
D_{o}^{\bullet}	0+	³ P ₀	2216	
D.	1-	³ S1	2005	2007
D_1	1+	${}^{3}P_{1} + {}^{1}P_{1}$	2271	
D	1+	${}^{3}P_{1} + {}^{1}P_{1}$	2499	2424
D_2^*	2+	${}^{3}P_{2} + {}^{3}F_{2}$	2552	2459

Tabela 2: Massas dos núcleons e deltas, para diferentes valores para as massas de corrente $m \equiv m_u \equiv m_d$. O parâmetro do potencial é o mesmo que o usado para o charmônio $(4/3)^{1/3}K_0 = 290 \ MeV$. α é o parâmetro variacional.

m (MeV)	M _N (MeV)	M₄ (MeV)	$\alpha_{\rm N}$ (fm)	-α ₄ (fin)
0	1378	1612	0.629	0.540
0.725	1378	1611	0.628	0.539
7.25	1375	1607	0.622	0.537
290	1844	2005	0.479	0.435

Resultados do método variacional para as massas dos núcleons e das deltas. A massa M e o parâmetro variacional α estão apresentados em unidades de $(4/3)^{1/3}K_0$

A equação para núcleons e deltas foi resolvida usando o método variacional. As funções variacionais foram tomadas como gaussianas, com parâmetro α . Como teste do método, empregamos este para o charmônio. Obtemos resultados em excelente acordo com os calculados exatamente (Tabela I). Na Figura abaixo mostramos os resultados para as massas do sistema $N - \Delta$, como função de α , para o caso de massas de corrente iguais a zero. Os valores numéricos para diferentes valores das massas de corrente estão mostrados na Tabela II. Os resultados para as massas $N - \Delta$ são razoavelmente bons, considerando se que não incluímos camais acoplados (píons, principalmente).

Como conclusão, temos que o presente modelo é capaz de formezer resultados muito bons para o espectro dos mésons pesados e para o sistema $N - \Delta$. Os resultados aqui obtidos dependem de um *único* parâmetro, K_0 . Os desdobramentos dependentes de spin são dependentes do ângulo quiral $\varphi(k)$, o qual é resultado da quebra dinâmica da simetria quiral. O próximo passo, é a inclusão de canais acoplados, bem como o cálculo de outras propriedades dos hádrons (funções de estrutura). Apesar de não-relativístico, o presente modelo certamente é um avanço em relação aos modelos de quarks não-relativísticos do tipo Isgur e Karl[5].

Referências

- P.J.A. Bicudo e J.E.F.T. Ribeiro, Phys. Rev. D 42, 1611(1990), 1625(1990), 1635(1990).
- M. Finger, D. Horn, and J. E. Mandula, Phys. Rev D 20, 3253 (1979);
 A. Casher, Phys. Lett. 83B, 395 (1979).
- [3] A. Le Yaouauc et al., Phys. Rev. D 29, 1233(1984).
- [4] Particle Data Group, Phys. Lett. B239, (1990).
- [5] N. Isgur em Proceedings da 16th. International School of Subnuclear Physics, Erice 1978, ed. A. Zichichi (Plenum, N.Y., 1980).

MINI-JETS SEEN IN COSMIC RAY INTERACTION WITH CARBON TARGET CHAMBER

C.E.Navia, F.A.Pinto, H.Portella, H.V.Pinto, R.H.Maldonado

Instituțo de Fisica-Universidade Federal Fluminense 24020-Niteroi- RJ -Brazil

In this work we use two differents procedures by minijets identification in cosmic ray particules interaction with carbon target chamber (C-jets) observed by Brazil-Japan Collaboration. This events concerns the overlapping energy region with CERN and FNAL collider experiments (\sqrt{s} ~ 500 GeV). Our results are discuted and interpreted in terms of fire-ball model and we find which those studies are common in many aspects with modern version of multiparticles production models such as quark-string inspired by QCD.

1-INTRODUCTION. The present work covers experimental results and phenomenological studies with use of the emulsi on chamber exposed to the cosmic radiation at the top of Mountain Chacaltaya, Bolivia(altitude 5200 above sea leve)) by Brazil-Japan Collaboration¹. We carried a systematic analysis on the data of carbon target interaction(C-jets) of cosmic ray particules observed by two storeyed emulsion chamber. The cosmic ray observation is confined in the forward region while the collider experiment works' in the central region. However C-jets of Chacaltaya exposure is in good agreement with CERN collider experiment. Both cosmic ray C-jets and CERN collider experiment found frequent emission of "mini-jets" and also rapid increase of its production rate with collision energy. They believe that the association of such mini-jets are the cause of increase of $\langle p_t \rangle$ and multiplicity. According QCD picture minijets are the result of "gluon-gluon" collision. The incoming nucleon is a bundle of quark and gluons, where the number of associated gluons (mini-jets) increase with energy.

2-C-JETS CHARACTERISTIC AND MINI-JETS IDENTIFICATION. Lower chamber is designed to be a detector for secondary gamma ray from the cosmic hadrons in carbon target interaction (C-jets). For every C-jet detected in the lower chamber we have energy E and position (r , ϕ) of all detected gamma ray. The detection threshold energy in nuclear emulsion plates for gamma rays in lower chamber is around E~0.1 TeV. The energy weighted of C-jet is taken as the origin of the coordinates and after the correction for slanting arrival direction we obtain the zenithal and the azimuthal angles of gamma rays in laboratory system. In this work we use 171 C-jets events with total visible energy greater than 10 TeV and two differents methods by mini-jets identication, a) JETS-ANALYSIS. This method is very similar to use in the study of atmospheric gamma ray familles called "decascading". The jets analysis procedure use the parameter

Pt_i relative transverse momentum between i and j gamma ray in a C-jet defined as:

 $Pt_{ii} = E_i E_j (R_i j / H) / (E_i + E_j)$ (1) where E; and E; are the respective energies, R_{ij} is their mutual distance and H is the heigth of the interaction $(H \sim 1.7 \text{ m for } C-\text{jets})$ and impose the criterion $Pt_{ij} \in Pt_{ent}$. putting the pair jointly into one. Repeating the procedure over all possible combination of pairs we arrive at a family composed of jets. The number of mini-jets in every event depending of chosed of Ptcur. The dependence on Ptcur is examined in Fig.1, for the purpose of choosing an appropriate value for Pt_{cut} , where we find a rapid decrease in number of jets as Pt_{(at}increases up to 0.25 GeV/c while the decrease becomes slow as Pt runs in the region beyond and the critical value Pteur can be taken near 0.3 GeV/c. b) VETOR-ANALYSIS. According with fire-ball model an intermediate object(fire-ball) is formed in a high energy collision, decays into a number of secondary particles to form a jet in the c.m.s. The momentum of every secondary particles can be resolved in two components p_f and p_b . The p, is along the direction of the fire-ball momentum and p, is at right angles to the axis referred to as spin axis which makes an angle with fire-ball momentum direction as is shown in Fig.2. The momentum conservation impose the **Ž** Pti = 0 ,where N is the number of secondary condition particles produced in nuclear collision. If the secondary particle momentum \vec{p} makes angles δ_f and δ_2 with the emission direction of the fire-ball and spin axis, respectively, we have:

 $(1-K^2)\cos^2\delta_s + 2K^2\cos\Psi\cos\delta_f\cos\delta_s - K^2\cos^2\Psi = 0$, (2) where K=P_f /P_t and $\delta_f = \delta_f(\theta, \phi)$, $\delta_s = \delta_s(\theta, \phi)$. Here θ and

 ϕ are the zenithal and azimuthal angles of a secondary particle in the c.m.s. When K is constant the relation (2) represents the equation of a scew elliptic curve in θ and ϕ variables. In Fig.3, we can see three different types of distribuition of secondary particles according whit relation (2). The Fig.3C is for all possible values of k and ψ The Fig.3B is for k)1, for both ψ and k variables, and the Fig.3A is for fixed values of both k and ψ . Typical c.m.s $\theta - \phi$ plots are shown in Fig.4 A,B,C of secondary gamma rays produced in three differents hadron-nucleus interactions (C-Jets). The elliptic like distribuition is shown by dotted curves.

The number of jets obtained for both procedures, jetsanalysis and and vetor-analysis is shown in Fig.5 and we can see a good agreement between both.

3-SECONDARY ENERGY DISTRIBUTION AND "MINI-JETS". In the fire-ball language the scaling characteristical multiple production of hadrons observed in both cosmic ray and accelerator experiment a low energies is a consequence of the existence of a minimum unit fire-ball in multiple-pion production called H-quantum. Those old ideas from cosmic ray studies are common in many respects with modern version of multi-pion production models such as "quark-string" and we may identify H-quantum as an unit piece of the "quarkstring".After 1970 Brazil-Japan Collaboration has observed in two storeyed emulsion chamber events with large Pt and large multiplicity and were assumed the existence of a larger fire-ball called "SH-quantum" or "Acu-jets" and is the responsable by scaling break when the energy increases. The "Acu-jets" events are associated with "mini-jets" and "mini-jets" is a consequence of two steps decay of the "SH-quantum" first going into a few "H-quantum" and then "H-quantum" decay in pions like a mini-jet. Analysis of secondary energy distribution for a C-jets with large multiplicity is shown in Fig.6. The full lines is the theorical distribution of gamma-rays from a "SH-quantum" under the assumption of direct decay in gamma-rays through 77°. The broken line is the theorical distribution of gamma-ray from "SH-quantum" under the assumption of two steps decay; where a "SH-quantum" first goes into N H-quanta and then emits N gamma-rays through mesons and can be expressed by the convolution of two thermodinamic like distributions.

4-CONCLUSION- We analyse the existence of one or more groups of secondary particles in cosmic ray particles interaction with carbon target(C-jets), each of those groups is represented by points on elliptic curve in c.m.s. ∂ - ϕ plot. Each of those groups is identified as a mini-jet. This type of analysis is in good agreement with other type of framework called "jet-analysis". Multiple production is a process which can be considered in two steps: first, a sub-hadronic process(fire-ball production) and second, a subsequent decay or transmutation in jets of hadrons. The sub-hadronic process can be vinterpreted under the light of the QCD like models.

1-C.M.G.Lattes et al- Phys.Report.v.65,n. 3,1980,152. 2-N.Arata- Nucl.Phys.,B211,1983,189. 3-D.Majumbar-.Proc. 20th I.C.R.C.,Moscou,v.5,1987,174. 4-C.Navia et al- Il Nuovo Cimento,(in press),1991.

120

ALGUNS ASPECTOS DA DETECÇÃO DE NEUTRINOS COSMOLÓGICOS E MATÉRIA ESCURA

R.Simonetti e C.Escobar

Instituto de Física, Universidade de São Paulo C.P. 20516, 01498, S.Paulo, SP

RESUMO: Visando a detecção de partículas candidatas à matéria escura, incluindo neutrinos, estudamos o espalhamento coerente inelástico destas partículas por um alvo composto (macroscópico). Através da excitação coletiva do alvo (cristal) investigamos a produção de fönons, fora do equilíbrio térmico. Analisamos o espectro dos fónons produzidos, com especial interesse nos fônons balísticos (GHz-THz), que são mais facilmente detectados. Investigamos ainda a possibilidade de se utilizar estados coerentes como estado inicial do processo.

1 Introdução

Nosso objetivo [1] é investigar processos através dos quais poderiam vir a ser detectados neutrinos cosmológicos, assim como outras partículas, fracamente interagentes, candidatas à matéria escura.

Estamos interessados na magnitude destes processos, isto é, qual a probabilidade com que ocorrem e as respectivas taxas de eventos.

Por se tratar de WIMPS, Weakly Interacting Massive Particles, a seção de choque é proporcional à $G_{I'}^2$, a constante de Fermi ($\approx 10^{-5}GeV^{-2}$), sendo portanto muito reduzida. Existem outros agravantes, como por exemplo as baixas energias de partículas presas à galáxia (com velocidades da ordem de 300km/s) ou em equilíbrio térmico a uma temperatura de 1,95K.

A seção de choque típica destas partículas interagindo com a matéria ordinária (u, d, e) é da ordem de $10^{-36}mb$ para partículas de massa nula, $10^{-27}mb$ para massas da ordem de 10eV e $10^{-10}mb$ para massas da ordem de 2GeV.

A questão é, portanto, como aumentar esta seção de choque. Uma maneira possível é

explorar a cocrência deste processo. Devido às baixas energia envolvidas (comprimentos de onda longos) ocorre cocrência em escala nuclear e atômica em alguns casos.

O espalhamento coerente pode se dar de duas maneiras: clástica e inelasticamente. Vamos tratar aqui apenas do caso inelástico.

2 Espalhamento Coerente Inelástico

Consideramos neste caso, que ao sofrer uma colisão, as partículas transferem energia para o alvo (rede cristalina) de modo a provocar excitações coletivas. Numa rede cristalina o deslocamento dos átomos de suas posições de equilíbrio pode ser descrito atrevés da produção/aniquilação de fônons. A idéia portanto é produzir fônons a partir da interação ν -cristal e detectá-los.

Observou-se que em cristais a baixas temperaturas (com poucos fónons térmicos) podese detectar fónons na superfície do cristal que foram produzidos no seu interior mas que não sofreram termalização. São chamados fónons balísticos e possuem frequências da ordem de GHz-THz [2].

Nesta situação teríamos um cristal preparado com número de ocupação de fônons bem definido (auto-estado do operador N) e portanto fora do equilíbrio térmico.

A interação ν -cristal pode ser medida através do monitoramento dos fônons produzidos no estado final. Para tal precisamos conhecer o seu espectro, que é dado por:

$$\frac{d\sigma}{d\lambda_i} = \frac{\sigma_0}{8k^3} \frac{\lambda_c^2 c_i}{\lambda_j} n_j(n_i+1) \\ \times \left\{ \frac{1}{\lambda_i^3} \left[2k^2 + \frac{4\pi k c_j}{\lambda_j} \right] - \frac{1}{\lambda_i^3} \left[4\pi k c_i - \frac{8\pi^2 c_i c_j}{\lambda_j} \right] \right\}$$
(1)

para neutrinos sem massa e para neutrinos com massa diferente de zero (ou outras partículas candidatas a ME):

$$\frac{d\sigma}{d\lambda_i} = \frac{\sigma_m}{\pi} \frac{c_i}{m_\nu \beta^2} \frac{\lambda_c^2}{\lambda_j} \frac{1}{\lambda_i^{\dagger}} n_j (n_i + 1)$$
(2)

Considerations dois casos, num o cristal é preparado inicialmente com fônons acústicos $(\lambda \approx 10^{12} GeV^{-1})$ e no ontro com fônons balísticos $(\lambda \approx 10^7 GeV^{-1})$.

Os gráficos abaixo apresentam o espectro de fônons produzidos a partir da interação de partículas massivas com um cristal (Si) preparado inicialmente com fônons acústicos (à esquerda) e com balísticos (à direita).

ł,

m _v	fônons acústicos	fônons balísticos		
0	5.62×10^{-49}	8.42×10^{-36}		
10 eV	9.0×10^{-28}	9.0×10^{-18}		
1 MeV	5.52	9.12 × 10 ⁷		
2 GeV	6.30×10^{15}	6.30×10^{20}		

Na tabela abaixo se encontram as taxas de eventos para os processos citados:

3 Estados Coerentes

Uma outra possibilidade é utilizar um cristal preparado em estados coerentes. O interesse neste caso é investigar se há aumento da seção de choque devido a um fenômeno análogo ao efeito de "super-radiância" em ótica. Em princípio o que se quer observar é a transição entre dois estados coerentes, que pode ser caracterizada pelo surgimento de uma fase relativa. Os resultados numéricos para este processo estão sendo obtidos.

4 Conclusão

Os dados relativos à produção de fônons num cristal inicialmente ocupado com fônons balísticos são bastante animadores, principalmente se considerarmos partículas candidatas à matéria escura com massas superiores a alguns MeV's. Quanto à possibilidade da utilização de estados coerentes é uma questão ainda em aberto, a ser decidida quando estiverem concluídos os cálculos numéricos acima referidos.

Referências

[1] R.Simonetti, Dissertação apresentada ao IFUSP para obtenção do título de Mestre, 1991.

[2] J.P.Wolfe, Phys.Today, Dec.1980(44).

ESPECTRO DE MASSAS DE BÁRIONS NO MODELO QUARK-DIQUARK*

A.S. de Castro - UNESP, Campus de Guaratinguetá, DFQ H.F. de Carvalho e A.C.B. Antunes - UFRJ, IF

Calculamos as massas dos estados fundamentais dos bárions de spin 3/2 através da redução do problema de três quarks ao problema equivalente envolvendo um quark e um diquark. O potencial não-relativistico utilizado teve seus parâmetros fixados no setor mesônico, e difere do potencial quark-antiquark apenas por um fator associado com o operador de Casimir quadrático do grupo SU(3) de cor. O espectro de massas obtido por essa aproximação é comparado com o espectro obtido pelo método de Zickendraht e com o espectro experimental. A aproximação quark-diquark e o método de Zickendraht fornecem espectros similares, apesar do diquark ter dimensão de mesma ordem de guandeza do méson.

Acredita-se que a QCD (cromodinâmica quântica) seja a teoria das interações fortes, descrevendo as interações entre quarks e gluons. No modelo de quarks ordinário mésons e bárions são estados ligados QQ e QQQ, respectivamente. Bárions podem ainda ser interpretados como estados ligados de um quark e um diquark. As excitações bariônicas são excitações do diquark, do quark-diquark, ou ambos. O propósito deste trabalho é investigar essa possibilidade calculando as massas dos estados fundamentais dos bárions de spin 3/2 com o modelo de potencial não relativistico.

A equação de Schrödinger com o potencial estático

$$V(r) = F_{c} \frac{\alpha_{s}}{r} + Kr^{0,s} + C$$
 (1)

acrescido de correções relativisticas dependentes de spin, foi usada no setor de quarks leves e pesados, mostrando excelente concordância com os espectros experimentais de mésons [1] e bárions [2]. A extensão para o setor gluônico também já foi considerada [3]. $F_{\rm G}$ é o valor esperado do produto escalar dos spins F de cor de dois corpos, relacionado com o operador de Casimir quadrático do grupo SU(3) de cor. Para o par QQ no estado singleto de cor $F_{\rm G}$ = -4/3 e a parametrização do potencial (1) para esse sistema é

$$m_{p} = 4.5 \text{ GeV}, m_{p} = 1.5 \text{ GeV}$$
 (2a)

$$m_{g} = 0,5 \text{ GeV}, m_{d} = m_{g} = 0,38 \text{ GeV}$$
 (2b)

$$\alpha_{\rm s} = 0,187, \quad {\rm K} = 0,767 \; {\rm GeV}^{3/2}$$
 (2c)

$$C = (0,01x^2 + 0,146x - 1,412) \text{ GeV}$$
 (2d)

$$x = \operatorname{Ln}\left[\left(\underset{q}{\operatorname{m}}\underset{q}{\operatorname{m}}_{q}^{2} + \underset{q}{\operatorname{m}}_{q}^{2}\right)\operatorname{GeV}^{-3}\right] \qquad (2e)$$

com as massas em (2e) dadas em GeV. Para o tratamento da espectroscopia de três corpos na Ref. 2 introduziu-se um sistema de coordenadas interno, que descreve a forma do triângulo formado pelos três corpos, e um sistema de coordenadas externo, que descreve a orlentação desse triângulo no espaço. A equação de Schrödinger para esse problema reduz-se então a um sistema de equações acopladas nas coordenadas internas. Para os estados de onda S,P e D um método formulado por Zickendraht [4] permite transformar o problema de três corpos num problema unidimensional. O espectro de bárions foi calculado supondo que o potencial de três corpos é uma soma de potenciais entre pares. O par QQ na representação irredutivel $\overline{3}$ tem F_c = -2/3, de modo que o par QQ tem um peso relativo ao quarkônio igual a 1/2. O potencial de curto alcance para o par QQ é 1/2 vêzes o potencial de curto alcance para o quarkônio. Conjectura-se que essa regra sobrevive para o potencial confinante.

Na aproximação quark-diquark para o cálculo da espectroscopia bariônica supomos, como no caso do método de Zickendraht na Ref. 2, que o potencial de três corpos é uma soma de potenciais entre pares e a regra de multiplicar todos os parâmetros do potencial por um peso relativo. Desse modo não há parâmetros livres. Calculamos as massas dos estados fundamentais dos diquarks de spin 1 ($F_c = -2/3$) e em seguida as massas dos estados fundamentais dos sistemas quark-diquark de spin 3/2 ($F_c = -4/3$), considerando o diquark como uma particula elementar na combinação com o quark para formar o bárion. Alguns de nossos resultados estão llustrados na Tabela I.

Na Tabela II constam as massas dos diquarks e as massas dos mésons assim como os respectivos raios quadráticos médios. As massas dos diquarks e mésons não diferem significativamente mas os diquarks são malores que os mésons por um fator pouco malor que 1,5. Em geral o diquark tem raio quadrático médio malor que o do sistema quark-diquark. Somente diquarks constituídos de dois quarks pesados e combinado com um quark leve reverte essa situação, devido a menor energia cinética dos quarks pesados que tendem a estar mais próximos. Apesar disso nota-se que os resultados obtidos com a aproximação quark-diquark são tão bons (ou tão ruins) quanto a solução (também aproximada) obtida com o método de Zickendraht.

* Trabalho parcialmente financiado pelo CNPq, FAPESP e FINEP

REFERÊNCIAS:

- H.F. de Carvalho et al., Lett. Nuovo Cim. <u>22</u>, 679 (1978); H.F. de Carvalho e A.B. d'Oliveira, Lett. Nuovo Cim. <u>33</u>, 572 (1982); A.S. de Castro et al., Lett. Nuovo Cim. <u>43</u>, 161 (1985).
- A.B. d'Oliveira et al., Lett. Nuovo Cim. <u>38</u>, 27 (1983); M.A.B. do Vale et al., Rev. Bras. Fis. <u>16</u>, 469 (1986).
- 3. A.S. de Castro et al., Nuovo Cim. A <u>101</u>, 423 (1989); A.S. de Castro et al., Z. Phys. C <u>46</u>, 453 (1990); A.S. de Castro et al., J. Phys. G <u>16</u>, L81 (1990).
- 4. H.W. Zickendraht, Ann. Phys. <u>35</u>, 18 (1965).
- 5. J.J. Hernández (Particle Data Group), Phys. Lett. B 239, 1 (1990).

1.28

ž

ŝ

	Quark-diquark	Zickendraht	E×p.	R rq p
(ъъ)ъ	14, 495	14,362		0,21
(ss) s	1,707	1,707	Ω (1,672)	0,60
(qq)q	1,341	1,339	A(1,230-1,234)	0,67
(bb)q	10, 422	10, 172		0,58
(bg)b	10, 185	10, 172		0,24
p(ss)	1,611	1,587	E(1,532-1,535)	0,65
(eq)s	1,571	1,587	£(1,532-1,535)	0,61
(qq)s	1,440	1.448	Σ(1,383-1,387)	0,62
p(pa)	1,474	1,448	Σ(1,383-1,387)	0,6
(qq)b	5,747	5,838		0,42
(bq)q	. 6,055	5,838		0,59
(bc)q	7,200	6,935		0,59
(bq)c	7,083	6,935	·	Ó, 34
(cq)b	6,924	6,935		0,31

TABELA I

Massas dos estados fundamentais dos bárions de spin 3/2 na aproximação quark-diquark (em GeV). O par entre parênteses é o diquark. As massas obtidas com o método de Zickendraht estão ilustradas para comparação (M.A.B. do Vale et al., Ref.2). Resultados experimentais: Ref.5. O raio quadrático médio também é fornecido (em fm). q = u ou d.

	Diquark	R rqa	Méson	R Tran	
bb	9.352	0,35	9.466	0,25	
S S	1,159	0,93	1,020	0,69	
qq	0,910	1,04	0,770	0,78	
þq	5,208	0,80	5,270	0,60	
be	6,285	0,48	6,285	0,48	
cq	2,080	0,85	2,088	0,63	
sq	1,028	0,99	0,892	0,73	

TABELA II

Massas dos estados fundamentais dos diquarks de spin i (em GeV) e raios quadráticos médios (em fm). Os resultados para mésons vetoriais também estão ilustrados, q = u ou d,

....

Simetrias de Spins mais Altos do Modelo de Toda Conforme Afim

H.Aratyn, C.P.Constantinidis, L.A. Ferreira, J.F.Gomes, A.H.Zimerman Instituto de Física Teórica - UNESP

O estudo de modelos integráveis tem levado a observação de estruturas algébricas interessantes. Além disso, alguns desses modelos apresentam invariância conforme, sendo portanto natural procurar uma relação entre essas propriedades. Os modelos de Toda, de certa forma, servem como um laboratório para essas investigações. Estes são classificados em três entegorias:

O primeiro, denominado "Toda Molecule", é obtido através da condição de curvatura nula de potenciais de gauge definidos numa álgebra de Lie \mathcal{G} cujos geradores satisfazem $[T^a, T^b] = f^{abc}T^c$. Para o caso sl(2), obtemos a equação de Liouville:

$$\partial_-\partial_+\phi - e^{2\phi} = 0 \tag{1}$$

onde $x_{\pm} = x \pm t$, $\partial_{\pm} = \frac{1}{2}(\partial_x \pm \partial_t)$. A invariância conforme é facilmente observada na equação acima a partir das transformações :

$$x^+ \to F(x^+) \tag{2}$$

$$x^- \to G(x^-) \tag{3}$$

$$\phi \to \phi + \frac{1}{2} ln(F'G') \tag{4}$$

Recentemente as cargas desta teoria foram obtidas [1], observando-se serem elas geradoras da álgebra W, que é uma extensão da álgebra de Virasoro.

O segundo modelo de Toda usualmente encontrado na literatura é o "Toda Lattice", cuja equação de movimento é novamente obtida através da condição de curvatura nula de potenciais de gauge descritos por uma "loop algebra", $[T_m^a, T_n^b] = f^{abc}T_{m+u}^c$. Quando $\mathcal{G} = \mathfrak{sl}(2)$ obtemos:

$$\partial_{-}\partial_{+}\phi - e^{2\phi} + e^{-2\phi} = 0 \tag{5}$$

A integrabilidade completa deste modelo foi obtida por Olive e Turok [2], ou seja, foram construídas infinitas cargas conservadas (já que o modelo possui infinitos graus de liberdade) e demonstrada sua involução. No entanto este modelo não apresenta invariância conforme como pode ser observado impondo-se (2), (3) e (4) em (5).

Mais recentemente foi proposto por Babelon e Bonora [3] uma terceira classe de modelos de Toda, descritos por uma álgebra de Kac-Moody:

$$[T_m^a, T_n^b] = f^{abc} T_{m+n}^c + cm \delta^{ab} \delta_{m+n,0} \tag{6}$$

$$[d, T_m^a] = mT_m^a, [c, d] = [c, T_m^a] = 0$$
(7)

Os dois novos geradores $d \in c$ implicam a introdução de dois novos campos na teoria, $\mu \in \nu$ respectivamente. As equações de movimento para o caso de sl(2) são:

$$\partial_-\partial_+\phi = e^{2\phi} - e^{-2\phi+2\mu}$$
 (8)

$$\partial_{-}\partial_{+}\mu = 0 \tag{9}$$

$$\partial_{-}\partial_{+}\nu = e^{-2\phi+2\mu} \tag{10}$$

A introdução desses novos campos faz com que recobramos a invariância conforme:

$$\phi \rightarrow \phi + \frac{1}{2} ln(F'G') \tag{11}$$

$$\mu \rightarrow \mu + \ln(F'G') \tag{12}$$

$$\nu \rightarrow \nu - Bln(F'G') \tag{13}$$

onde B é arbitrário. A questão por nós colocada diz respeito às simetrias do modelo denominado "Toda Conforme Afim".

Propomos uma construção para as cargas deste modelo e explorar as simetrias nele existentes. O fato do modelo ser invariante conforme implica a existência de quantidades construídas a partir das correntes conservadas, $W(x^+) \in \bar{W}(x^-)$.

Considerando a quiralidade (x^+) percebemos

$$\partial_- W(x^+) = 0 \quad \rightarrow \quad \partial_x W = \partial_t W$$
 (14)

Portanto as integrais espaciais de tais densidades são conservadas no tempo:

$$\frac{dQ}{dt} = \int dx \partial_t W = \int dx \partial_x W = 0 \tag{15}$$

Note que qualquer função de W, F(W), também satisfaz $\frac{d}{dt} \int dx F(W) = 0$.

A Lagrangeana do modelo de Toda Conforme Afim, escrita nas coordenadas do cone de luz é dada por:

$$\mathcal{L} = \partial_+ \phi \partial_- \phi + \partial_- \mu \partial_+ \nu + \partial_+ \mu \partial_- \nu + e^{2\phi} + e^{2\mu - 2\phi}$$
(16)

Defininos os momentos canônicos em relação ao "tempo" x~ como:

$$\Pi_{\phi} = \partial_{+}\phi, \Pi_{\mu} = \partial_{+}\nu, \Pi_{\nu} = \frac{1}{2}J^{c} = \partial_{+}\mu \qquad (17)$$

cuja estrutura algébrica é dada pelos parênteses de Poisson:

$$\{\Pi_{\phi}(x), \Pi_{\phi}(y)\} = \frac{1}{2}\delta'(x-y) \{\Pi_{\mu}(x), J^{c}(y)\} = \delta'(x-y)$$
(18)

Escrevendo o tensor de Energia-Momento modificado em termos das quantidades (17)temos:

$$W_2 = \Pi_{\phi}^2 - \Pi_{\phi}' + 2\Pi_{\mu}\Pi_{\nu} - 2\Pi_{\mu}'$$
(19)

onde os termos com derivadas são introduzidos de tal forma que W_2 tenha traço nulo. Com o auxílio de (18) observamos que o tensor de EM modificado satisfaz:

$$\{W_2(x), W_2(y)\} = 2W_2(y)\delta'(x-y) - \partial_y W_2(y)\delta(x-y) - \frac{1}{2}\delta'''(x-y) (20)$$

que é a álgebra de Virasoro. Lembremos que estamos tratando apenas o caso sl(2). A generalização para outras álgebras é encontrada em [4]. Além disso o modelo possui uma corrente conservada J^e, satisfazendo

$$\{W_2(x), J^c(y)\} = J^c(y)\delta'(x-y) - \partial_y J^c(y)\delta(x-y) - 2\delta''(x-y) \quad (21)$$

Para construirmos as cargas de spins mais altos introduzimos o seguinte operador

$$\mathcal{D}_{s} \equiv \partial + \frac{s}{c_{J}} J(x) \tag{22}$$

onde s e c_J são definidos nas equações que se seguem. Um campo de spin s, V_J deve satisfazer a seguinte relação :

$$\{W_2(x), V_s(y)\} = sV_s(y)\delta'(x-y) - V'_s(y)\delta(x-y) + c_V\delta^{(s+1)}(x-y)$$
(23)

Assim, uma corrente de spin 1, seguindo a definição acima satisfaz:

$$\{W_2(x), J(y)\} = J(y)\delta'(x-y) - J'(y)\delta(x-y) + c_J\delta''(x-y)$$
(24)

Portanto, para obtermos um operador de spin s + 1 a partir de um outro de spin s, aplicamos o operador definido em (22) em V_s :

$$V_{s+1}(x) \equiv \mathcal{D}_s V_s(x) = V'_s(x) + \frac{s}{c_J} J(x) V_s(x)$$
⁽²⁵⁾

que satisfaz:

$$\{W_2(x), V_{s+1}(y)\} = (s+1)V_{s+1}(y)\delta'(x-y) -V'_{s+1}(y)\delta(x-y) + c_V \mathcal{D}_s(y)\delta^{(s+1)}(x-y)$$
(26)

Observamos na relação (26) que o campo V_{s+1} só será primário se partirmos de um campo primário V_s com $c_V = 0$, pois o último termo descaracteriza a relação (23) (definição de campo primário de spin s).

Voltando ao modelo de Toda Conforme Afim, observainos que a corrente J^c satisfaz a relação (24) com $c_J = -2$, conforme mostrado na equação (21). No entanto o campo primário $W_2(x)$ possui $c_V = -1/2$ (veja (20)), mas a existência de J^c nos permite construir um segundo campo de spin 2, que denominanos \widetilde{W}_2 :

$$\widetilde{W}_2(x) \equiv \frac{1}{4} \left(J^c(x) \right)^2 - J^{c\prime}(x) \tag{27}$$

que satisfaz a relação de comutação :

$$\{W_2(x), \widetilde{W}_2(y)\} = 2\widetilde{W}_2(y)\delta'(x-y) - \widetilde{W}_2'(y)\delta(x-y) - 2\delta'''(x-y) \quad (28)$$

Consegnimos, portanto, construir um campo primário de spin 2 livre de anomalia com o auxílio de (27), dado por:

$$V_2(x) = W_2(x) - \frac{1}{4} \widetilde{W}_2(x)$$
 (29)

A partir de V_2 construímos uma torre de campos primários, que também serão densidades de cargas conservadas da teoria de Toda Conforme Afim:

$$W_{s}^{(1)}(x) \equiv (\partial - (s-1)J^{c}(x)/2)(\partial - (s-2)J^{c}(x)/2)\dots$$

...($\partial - 2J^{c}(x)/2$) V₂(x) (30)

para s > 2.

Notainos, no entanto, que existem outros campos primários livres de anomalia construídos a partir de V_2 e que são as próprias potências dele:

$$\{W_2(x), (V_2(y))^N\} = 2N(V_2(y))^N \,\delta'(x-y) - \partial_y (V_2(y))^N \,\delta(x-y) \quad (31)$$

Logicamente estas potências também darão origem a outras torres de campos primários livres de anomalia. Portanto, de maneira geral podemos escrever:

$$W_{s}^{(N)}(x) \equiv (\partial - (s-1)J^{c}(x)/2) (\partial - (s-2)J^{c}(x)/2) \dots \\ \dots \quad (\partial - (2N+1)J^{c}(x)/2) (\partial - 2NJ^{c}(x)/2) (V_{2})^{N}(x)$$
(32)

onde s > 2N. Resta-nos ainda estudar eventuais degenerescências existentes entre as torres (30) e (32).

Outra questão interessante é a estrutura da álgebra dos campos primários. Mostramos o resultado da relação para $W_3^{(1)}$ obtido a partir de (30):

$$\{W_{3}^{(1)}(x), W_{3}^{(1)}(y)\} = 4W_{4}^{(1)}(y)\delta'(x-y) - 2W_{4}^{(1)'}(y)\delta(x-y) - B'(y)\delta(x-y) + (2B(y) + W_{2}''(y))\delta'(x-y) - 3W_{2}'(y)\delta''(x-y) + (2W_{2}(y) + \frac{1}{2}J^{c}(x)J^{c}(y))\delta'''(x-y) + \frac{1}{2}(J^{c}(x) - J^{c}(y))\delta^{(4)}(x-y) - \frac{1}{2}\delta^{(5)}(x-y)$$
(33)

onde $B(y) = J^{c}(y)W'_{2}(y) + 2 J^{c}(y)W_{2}(y) - (J^{c}(y))^{2}W_{2}(y)$. Observannos em (33) uma estrutura de álgebra W um pouco diferente da estrutura para álgebras de Lie ordinárias.

Observamos também que no limite J^e grande:

$$V_2(x) \approx \pi_{\mu}(x) J^c(x) - \frac{1}{16} (J^c(x))^2$$
 (34)

$$W_{4}^{(1)}(x) \approx \pi_{\mu}(x) (J^{c}(x))^{4-1} - \frac{1}{16} (J^{c}(x))^{4} \qquad (35)$$

obtendo uma relação que se comporta como

$$W_{s}(x), W_{s'}(y) \approx [(s-1)W_{s+s'-2}(x) + (s'-1)W_{s+s'-2}(y)]\delta(x-y) \quad (36)$$

que é a relação da álgebra w_{∞} [5]. A relação acima é válida tanto para geradores obtidos em (30) quanto (32).

Referências

(1) J. Balog, L. Feher, P. Forgacs, L. O'Raifeartaigh and A. Wipf, Phys. Lett. B 227 (1989) 214

[2] D.Olive, N.Turok Nucl. Phys. B257, (1985) 277-301

[3] O.Babelon, L.Bonora Phys. Lett. B 244 (1990) 220

[4] H.Aratyn, C.P.Constantinidis, L.A.Ferreira, J.F.Gomes, A.H.Zimerman Phys. Lett. B 281 (1992) 245

[5] I. Bakas, Phys. Lett. B 228 (1989) 57
QUANTUM STRING SCATTERING IN SHOCK WAVES BACKGROUNDS

M.E.V. Costa

Instituto de Física, Universidade Federal do Rio Grande do Sul Caixa Postal 15015, 91500 Porto Alegre, RS, Brasil

and

H.J. de Vega

LPTHE, Université Pierre et Marie Curie Tour 16, 1^{er} étage, 4, place Jussieu, 75252 Paris Cedex 05, France

At particle energies of the order or larger than the Planck mass, the curved space-time geometry created by the particles dominate their collision process. In such situation, the description of fields or strings in flat space-time is no longer valid. The dynamics of the quantum fields or strings is then governed by their equations of motion in the classical background geometry.

This has been the motivation to investigate string propagation in relevant background geometries. In ref. [1] a systematic approach to quantize strings in curved space-times was proposed. It has been applied to cosmological space-times [2], blackhole geometries [3] and more general ones [4]. In addition, the string equations of motion turned out to be exactly soluble, in closed form, for some interesting geometries, like gravitational shock waves [5,6] and conical space-time [7] (the geometry around a straight cosmic string).

The purpose of these papers [8] is to investigate the scattering of particles by a gravitational shock wave in the framework of string theory. As it was stressed in ref. [9], the shock wave described by the Aichelburg-SexI metric (that is the gravitational field of a neutral spinless ultrarelativistic particle) is relevant to particle scattering at Planck energy. We then choose to investigate specifically the scattering of a string (in one of its stationary states) by a particle with an energy of the order or larger than the Planck mass. The string is considered here as a test string, in other words its energy must be much smaller than the energy carried by the shock wave.

To compute N-point particle amplitudes in a curved, but asymptotically flat, space-time we start from the following generalization of the usual flat space-time formula [6]:

$$A_N(k_1,\ldots,k_N) = \int \prod_{i=1}^N \left[d\sigma_i \, d\tau_i \right] \left\{ 0_{\leq} \mid \prod_{j=1}^N : \Psi\left(k_j, \, X(\sigma_j,\tau_j)\right) : \mid 0_{\leq} \right\}$$

Here $\Psi(k, X(\sigma, \tau))$ represents the vertex operator for a particle of asymptotic momentum k in curved space-time. It is a solution of the corresponding wave equation in the given geometry, i.e. the Klein-Gordon equation for a scalar particle [6]. Furthermore, the string coordinates $X^{\mu}(\sigma, \tau)$ fulfil the propagation equations in the choosen curved geometry,

$$\partial_A \left[G_{\lambda\mu}(X) \,\partial^A \,X^{\mu} \right] - \frac{1}{2} \left[\partial_\lambda \,G_{\mu\nu}(X) \right] \, (\partial_A \,X^{\mu}) (\partial^A \,X^{\nu}) = 0$$

where $G_{\mu\nu}(X)$ is the space-time metric $(\mu, \nu = 0, 1, ..., D - 1)$ and we use the orthonormal gauge for the world- sheet. Hence, the string interaction with the geometry shows in two different places: the functional form of $\Psi(k, X)$ and the solution for $X^{\mu}(\sigma, \tau)$.

,

The vertex operators $\Psi(k_j, X(\sigma_j, \tau_j))$ pinch the world-sheet at N different points. These pinches describe the ingoing and outgoing particles intervening in the process. Of course, the integration in the expression of A_N must cover the whole string world-sheet.

We start by solving exactly the string equations of motion and the constraint equations for a shock wave space-time, in the light-cone gauge [5,6]. We recall that the string obeys the flat equations of motion in one side (<) and the order (>) of the shock wave. There is a non-trivial matching between both flat space-time string solutions, which is reviewed and completed. The ambiguity in the longitudinal coordinate is solved explicitly. We find that the constraints are satisfied if and only if we choose a mean-value prescription. This string solution will be used as the starting point for the computation in of the scattering amplitude in shock wave space-time.

The aim of the present articles is to compute the two-point amplitude, $A_2(k_2, k_1)$, for the scattering of a scalar particle (the tachyon in a bosonic string) by te shock wave,

$$\begin{array}{rcl} A_2(k_2,k_1) &=& \int_0^{2\pi} d\sigma_1 \ d\sigma_2 \ \int_{-\infty}^{+\infty} d\tau_1 \ d\tau_2 \ \langle 0_{<} \mid : \Psi^{\bullet}(k_2,X(\sigma_2,\tau_2)) \ : \\ &:& \Psi(k_1,X(\sigma_1,\tau_1)) \ : \mid 0_{<} \rangle \quad , \end{array}$$

where $k_1(k_2)$ is the momentum of the incoming (outcoming) particle. The vertex operator for the scalar particle, $\Psi(k, X)$, is a solution of the Klein-Gordon equation in the shock wave space-time and $X^{\mu}(\sigma, \tau)$ stands for the string solution in the shock wave metric. The total amplitude A_2 is naturally written as a sum of four terms. They correspond to qualitatively different space-time histories contributing to the scattering process. For simplicity, we choose the light-cone gauge to perform our calculations.

As it is clear, the exact evaluation of the expectation value in the right hand side of the above equation is a difficult task, since it involves the matrix elements of exponentials of non- polynomial functions of oscillator operators. [The operators $X^{\mu}(\sigma, \tau)$ after the collision contain non- polynomial functions of oscillators]. We then evaluate $A_2(k_2, k_1)$ for large impact parameters q, that is when the scattering angle as well as the momentum transfer are small. In such a regime, we can start by neglecting the oscillator modes since $|q| >> \sqrt{\alpha'}$. This zeroth order approximation can be improved by expanding the string coordinates operators in powers of $\sqrt{\alpha'}$ (i.e. powers of the oscillators modes). Analogous approximations have been used in flat space-time [12]. We arrive at an explicit integral representation for the total amplitude in terms of matrix elements $\tilde{S}(\vec{\ell}, \vec{p})$ of the vertex operator. As for $\tilde{S}(\vec{\ell}, \vec{p})$ itself, we show that it admits a series expansion in Gegenbauer polynomials.

In the impact parameter representation, we find that the string contributions for large q appear as corrections of order s/q (s is the usual Madelstam variable) to the Conlombian phase. It must be noticed that flat space-time calculations yield corrections of order s/q^2 and smaller for large q [12]. In oter words, the correction terms we find do not seem to be obtainable through flat space-time computations.

As is well known, the point particle amplitude for te scattering by a gravitational shock wave, as follows from the Klein-Gordon equation, possess an infinite number of purely imaginary poles in s, for $lm \ s < 0$ [9,10]. The $A_2(k_2, k_1)$ amplitudes, here computed in the string framework, exhibit an additional sequence of imaginary poles. Their positions are obtained in the small momentum transfer approximation. On the contrary, the Coulomb poles come from the vertex operator as an exact Γ -function factor. In other words, the position of the Coulomb poles are not affected by our approximations.

Up to our knowledge, this is the first time that the amplitude for the quantum scattering of a particle by a curved geometry is computed within the framework of string theory.

We still want to notice that the present calculations can be easily generalized for other string states (that is, for higher spin and higher mass particles) by inserting the appropriate vertex operators. Of course, extensions to superstrings are also possible.

References

- II.J. de Vega and N. Sánchez, Phys. Lett. 197 B, 320 (1987).
- [2] N. Sánchez and G. Veneziano, Nucl. Phys. B 333, 253 (1990).
- [3] H.J. de Vega and N. Sánchez, Nucl. Phys. B 309, 552 and 577 (1988).
- [4] H.J. de Vega, M. Ramón Medrano and N. Sánchez, LPTHE preprint 90-06 (to appear in Nucl. Phys. B).
- [5] D. Amati and C. Klimčik, Phys. Lett. B 210, 92 (1988).
- [6] H.J. de Vega and N. Sánchez, Nucl. Phys. B 317, 706 (1989).

 [7] H.J. de Vega and N. Sánchez, LPTHE preprint 89-21 (to appear in Phys. Rev. D).

۰.

ł

- [8] M.E.V. Costa and H.J. de Vega, LPTHE preprints 90-37 and 90-40, to appear in Annals of Physics.
- [9] G. 't Hooft, Phys. Lett. B 198, 61 (1987).
- [10] H.J. de Vega and N. Sánchez, Nucl. Phys. B 317, 731 (1989).
- [11] P.C. Aichelburg and R.U. Sexi, Gen. Rel. Grav. 2, 303 (1971).
 T. Dray and G. 't Hooft, Nucl. Phys. B 253, 173 (1985).
- [12] D. Amati, M. Ciafaloni and G. Veneziano, Int. Jour. Mod. Phys. A 3, 1615 (1988).

CORRELATION FUNCTION AND MASS SPECTRUM OF QUANTUM VORTICES[†]

Rudaci O. Ramos*, E.C. Marino**, G.C. Marques* and J.S. Ruiz***

ABSTRACT - The method of soliton quantization is used to obtain explicit expressions for the vortex mass spectrum and the asymptotic behaviour of vortex correlation function In the Abelian Higgs Model In 24-11).

INTRODUCTION

In a recent publication^[1], a general method of vortex quantization in continuum QFT was introduced, based on the concept of order-disorder duality of statistical mechanics^[2]. It was obtained that the extended topological excitations, which in the Abelian Higgs Model (AHM) in 2+1D is the vortex, could be described by nonlocal fields analogous to the Wilson loop operator^[3]. In [1], a general procedure for the obtention of correlation functions involving vortices was established and an explicit operator realization of the vortex field was obtained. In [4] we have take the formulation of [1] and it was applied to the computation of the vortex two point correlation function in the AIIM in 2+1D and from the large distance behavior of this function, we obtain an explicit expression for the quantum vortex mass in the tree level and its quantum correction at 1-loop level. The main steps of the procedure are shown below.

CORRELATION FUNCTION OF NONLOCAL VORTEX OPERATORS

Let us consider the AIIM in 2+1D, given by

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu} \phi)^* (D^{\mu} \phi) - m^2 \phi \phi^* - \frac{\lambda}{4} (\phi \phi^*)^2$$
(1)

where $D_n = \partial_n + ieA_n$, A_n being the electromagnetic field and e, the electronic charge. For $m^2 > 0$ the system is the "unbroken" or disordered phase, where $\langle \phi \rangle = 0$. For $m^2 < 0$, the Higgs field ϕ develops a nonzero vacuum expectation value and the photon acquires a mass through the Higgs mechanism. We call it the "broken" or

[†]Work partially supported by FAPESP, CNPq, CAPES and FINEP. *Instituto de Física, Universidade de São Paulo.

^{**}Pontifícia Universidade Católica de Rio de Janeiro.

^{***}Univ. Simón Boltvar, Venezaela,

ordered phase. In this phase Nielsen and Olesen^[5] observed that this model possessed classical solutions with the long distance behavior

$$\begin{aligned}
\psi(\vec{x},t) & \xrightarrow{|\vec{x}| \to \infty} \rho_0 \ e^{i \ \arg(\vec{x})} \\
& A_i(\vec{x},t) \quad \xrightarrow{|\vec{x}| \to \infty} \quad -\frac{1}{c} \ \partial_i \ \arg(\vec{x})
\end{aligned}$$
(2)

These solutions we called vortices and they are associated with the identically conserved topological current $j^{\mu} = 1/2 \epsilon^{\mu\alpha\beta} F_{\alpha\beta}$ whose topological charge Q is the magnetic flux along the (x_1, x_2) plane.

In [1] a nonlocal vortex operator μ was introduced through the equal time commutation relations

$$\mu(\vec{x},t;c) \ \phi(\vec{y},t) = \begin{cases} c^{i} \arg(\vec{y}-\vec{x}) \ \phi(\vec{y},t) \ \mu(\vec{x},t;c) \ ; \ \vec{y}-\vec{x} \notin T(c) \\ \\ \phi(\vec{y},t) \ \mu(\vec{x},t;c) \ ; \ \vec{y}-\vec{x} \in T(c) \end{cases}$$
(3.a)

and

$$\mu(\mathbf{x},\mathbf{t};\mathbf{c}) \mathbf{A}_{\mathbf{j}}(\mathbf{y},\mathbf{t}) = \begin{cases} \left[\mathbf{A}_{\mathbf{i}}(\mathbf{y},\mathbf{t}) - \frac{\mathbf{i}}{\mathbf{c}} \partial_{\mathbf{i}}^{\mathbf{y}} \arg(\mathbf{y}-\mathbf{x}) \right] \mu(\mathbf{x},\mathbf{t};\mathbf{c}) & ; \quad \mathbf{y}-\mathbf{x} \notin \mathbf{T}(\mathbf{c}) \\ \mathbf{A}_{\mathbf{i}}(\mathbf{y},\mathbf{t}) \mu(\mathbf{x},\mathbf{t};\mathbf{c}) & ; \quad \mathbf{y}-\mathbf{x} \in \mathbf{T}(\mathbf{c}) \end{cases}$$
(3.b)

where c defines a certain plane curve on which the vortex operator $\mu(c)$ is defined and T(c) is the minimal surface bounded by c.

The euclidean correlation function of the vortex operator satisfying the algebra (3) is given by^[1]

$$\langle \mu(\mathbf{x};\mathbf{c}_{1}) \ \mu^{*}(\mathbf{y};\mathbf{c}_{2}) \rangle = \mathbb{Z}^{-1}(0) \int \mathcal{D}\phi \ \mathcal{D}\phi^{*} \ \mathcal{D} \ \Lambda_{\mu}$$

$$\exp \left\{ -\int d^{3}z \left[\frac{1}{4} \left(\mathbf{F}_{\mu\nu} + \tilde{\mathbf{F}}_{\mu\nu}(\mathbf{S}) \right)^{2} + \left(\mathbf{D}_{\mu} \ \phi \right)^{*} \left(\mathbf{D}^{\mu} \ \phi \right) + \mathbf{V}(\phi) \right] \right\}$$

$$(4)$$

where $\bar{F}_{\mu\nu}(S) = \partial_{\mu} \bar{A}_{\nu}(S) - \partial_{\nu} \bar{A}_{\mu}(S)$ and $\bar{A}_{\mu}(S)$ is an external field introduced in (4) such that it guarantee that $<\mu\mu^*>$ is simultaneously surface and path independence. S is an arbitrary surface such that its boundary is $\partial S = c_1 U c_2$.

MASS SPECTRUM

From (4) one can see that $<\mu\mu^*>$ reduces to

$$\langle \mu \mu^* \rangle = e^{\Lambda[\mathbf{x};\mathbf{c}_1, \mathbf{y};\mathbf{c}_2]} \tag{5}$$

where A is the sum of all Feynman graphs with the external field $\tilde{A}_{\mu}(S)$ in the external logs. From the asymptotic behavior of (5) one can predict the following behavior [4]

$$\langle \mu(\mathbf{x};\mathbf{c}_1) \ \mu^*(\mathbf{y};\mathbf{c}_2) \rangle \xrightarrow[|\mathbf{x}-\mathbf{y}| \to \omega]{} e^{-\mathbf{M}_{\mathbf{y}}|\mathbf{x}-\mathbf{y}|}$$
(6)

where M_{ν} will be the mass of the excitations produced by the field $\mu(c)$ and that in this case will be the mass of the vortex excitation.

Choosing $\tilde{A}_{\mu}(S)$ as defined by the surface $S : S_x \cup S_y = (\mathbb{R}_x^2 - T_1) \cup (\mathbb{R}_y^2 - T_2)$ where T_1 and T_2 are plane surfaces bounded by c_1 and c_2 respectively (with radius R), then $\tilde{A}_{\mu}(S)$ can be written in the form

$$\tilde{A}_{\mu}(S) = -\frac{1}{c} \arg(2-\bar{x}) \int_{S_{x}} \delta^{3}(z-\xi) d^{2}\xi_{\mu} + \frac{1}{c} \arg(2-\bar{y}) \int_{S_{y}} \delta^{3}(z-\xi) d^{2}\xi_{\mu}$$
(7)

and choosing in both phases the Lorentz gauge as the fixing gauge term:

$$\mathcal{L}_{GF} = \frac{\xi}{2} \left(\partial_{\mu} \Lambda^{\mu} \right)^2 \tag{8}$$

one can make the shift $A_{\mu} \rightarrow A_{\mu} - \tilde{A}_{\mu}(S)$ in (4) and define a new D_{μ} as $\tilde{D}_{\mu} = \partial_{\mu} + ic(A_{\mu} - \tilde{A}_{\mu}(S)).$

In the symmetric phase $(m^2 > 0)$, since $\langle \phi \rangle = 0$, we need not make any shift in the fields in (1). In the "broken" phase $(m^2 < 0)$, we have $\langle \phi \rangle \neq 0$. Taking $\phi = 1/\sqrt{2} (\phi_1 + i\phi_2)$ and choosing $\langle \phi_1 \rangle = b$ and $\langle \phi_2 \rangle = 0$ one will obtain, after the shift in ϕ_1 , the mass terms $M^2 = c^2 b^2$ for the Λ_{μ} field and $m_1^2 = 2|m|^2$ for the Higgs component ϕ_1 .

In both phases one extracts from \mathcal{L} the terms that depend on $\tilde{A}_{\mu}(S)$ and then one has the respectively Feynman rules.

After an explicit calculation one obtains the following expression to Λ in (5) ^[4]

$$\Lambda = \Lambda_{\text{tree}} + \Lambda_{1\text{-long}} \tag{9}$$

where

ġ.

where

 $= \Delta_{\rm E}^{(1)}(z) = \int \frac{{\rm d}^3 k}{(2\pi)^3} \frac{{\rm e}^{1/k z}}{k^2 + m^2}$ (12) (1)

represents the external field $\tilde{\Lambda}_{\mu}(S)$. in (10) and (11) 0000000000 Taking the limit $|x-y| \rightarrow \infty$ in (9) we get^[4]

$$\Lambda \xrightarrow[|x-y| \to \infty]{} - M_{y} |x-y| \qquad (13)$$

where, in the symmetric phase, $M_v = 0$, as was expected, and in the "broken" phase

$$M_{v} = \pi \frac{M^{2}}{c^{2}} - \frac{m_{1}}{6} .$$
 (14)

In (14), $\pi \frac{M^2}{e^2}$ is the result at the tree level and is just the semiclassical result for the vortex mass^[6]. The second term in (14) represents the i-loop quantum correction to the vortex mass.

REFERENCES

- [1] E.C. Marino, Phys. Rev. D38, 3194 (1988).
- L.P. Kadanoff and H. Ceva, Phys. Rev. B3, 3198 (1971); E.S. Fradkin and L. [2] Susskind, Phys. Rev. D17, 2637 (1978).
- [3] K.G. Wilson, Phys. Rev. D14, 2455 (1971).
- [4] E.C. Marino, G.C. Marques, R.O. Ramos and J.S. Ruiz, PUCPREPRINT (1991).
- H.B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973). [5]
- [6] de Veiga and F. Schaposnik, Phys. Rev. D14, 1100 (1976).

SUPERSIMETRIA, ALGEBRIZAÇÃO PARCIAL

E O POTENCIAL V(x) =
$$x^2 + \lambda \left[x^2 / 1 + g x^2 \right]$$

ELSO DRIGO FILHO - INILCE/UNESP-SÃO JOSÉ DO RIO PRETO-SP REGINA M. RICOTTA - IFT/UNESP-SÃO PAULO-SP

RESUMO: Exploramos a relação entre a mecânica quântica supersimétrica e a algebrização parcial do problema espectral para resolver o potencial não polinomíal: $V(x) = x^2 + \lambda \sum_{i=1}^{2} 1 + g_{i}^2$].

A supersimetria tem sido aplicada em vários contextos relacionados a mecánica quántica ordinária⁽¹⁾. Particularmente, a resolução da equação de Schrödinger através da super-algebra tem sido tratada em potenciais exatamente solúveis^(2,9). Estes potenciais possuem uma simetria especial em sua forma, que possibilita a solução exata. Outros potenciais, parcialmente solúveis, também tém sido estudados^(4,9).

Por outro lado, o método de algebrização parcial⁶⁹ fornece elementos para tratar potenciais onde apenas uma parte do espectro e exatamente solúvel. Este método e baseado na presença de uma simetria escondida no Hamiltoniano (SU(2) no caso 1-dímensional).

Neste trabalho usamos a relação entre a Mecànica Qu^antica Supersimetrica e o Método de algebrização parcial^(6,7) para resolver a equação de Schrödinger para o potencial N^ão-polinomial:

$$V(x) = x^{2} + \lambda \frac{x^{2}}{1 + gx^{2}}$$
(1)

cujos resultados analíticos vem sendo estudados por varios autores⁽⁷⁻¹⁰⁾.

Em Mecánica Quántica Supersimétrica o Hamiltoniano e escrito por

$$H_{sq} = -\frac{1}{2} - \frac{d}{dx^2} + \frac{1}{2} W^2(x) + \frac{1}{2} \sigma_g W'(x)$$
(2)

onde o superpotencial W(x) deve satisfazer a equação de Ricatti (para o setor "bosonico"):

$$V(x) -E = -\frac{1}{2} W^{2}(x) - \frac{1}{2} W^{2}(x)$$
 (3)

e a auto função do estado fundamental é

Para o setor "Fermiónico" o sinal da exponencial é trocado, e neste caso a autofunção não é normalizável.

A ligação entre formalismo supersimétrico e o Método "de Algebrização Parcial é feito através do superpotencial⁽⁹⁾

$$W(x) = A(x) - \frac{\widetilde{\Psi}'}{\widetilde{\Psi}} = A(x) - \sum_{i=1}^{2j} \frac{f'(x)}{f(x) - \alpha_i}$$
(5)

onde $\tilde{\Psi}(x)$ é obtida através de uma transformação de gauge 'imaginário' na função de onda original: $\Psi(x) \rightarrow \tilde{\Psi}(x) e^{-\int_{x}^{x} A(y) dy}$. () Hamiltoniano original também sofre uma transformação, a derivada simples é substituída por uma derivada covariante $\left(\frac{d}{dx} \rightarrow \frac{d}{dx} - A(x)\right)$. O Hamiltoniano assim transformado possue uma simetria escondida, neste caso SU(2). O índice j (semi inteiro) indica o número de estados que são diagonalizados: (2j+1) estados. Para estudar o potencial proposto em (i), nós usamos

$$A(x) = x - \frac{b}{x}$$
 (6)

$$f(x) = \sum_{n=0}^{N} c_n x^{2n}$$
 (7)

onde b e c_n são coeficientes numericos a serem determinados através da equação (3).

Vamos nos restringir a
$$j = \frac{1}{2}$$
, o que significa que
apenas 2j + i = 2 estados serão diagonalizados. Assim usando W(x)
dado em (5) na equação de Ricatti (3) obtemos

$$\frac{b(b-1)}{x^2} + \frac{\lambda}{g} - \frac{1}{1+gx^2} + \left(2E - 2b - 1 - \frac{\lambda}{g}\right) + \frac{\lambda}{g} - \frac{1}{1+gx^2} + \left(2E - 2b - 1 - \frac{\lambda}{g}\right) + \frac{\lambda}{g} - \frac{1}{g} + \frac{\lambda}{g} - \frac{1}{g} + \frac{\lambda}{g} - \frac{1}{g} + \frac{\lambda}{g} - \frac{1}{g} - \frac{\lambda}{g} - \frac{\lambda}{g}$$

Do resíduo em x = 0 obtenos a condição

$$\mathbf{b} = \mathbf{0} \qquad \mathbf{0} \mathbf{u} \qquad \mathbf{b} = \mathbf{1} \qquad (\mathbf{9})$$

Manipulando algebricamente a equação (8) obtemos para b = 1 e N = 1:

$$\frac{c_1}{c_0} = g; \quad E_0 = \frac{3}{2} - 3g; \quad \frac{\lambda}{g} = -6g - 4$$
 (10)

o que nos leva a autofunção e autovalor:

$$\Psi_0 = (1 + gx^2) x^2 e^{-1/2x}$$
; $E_0 = 3 \frac{1}{2} - 3g$ (11)

fixamos c_o = 1, pois n^xo estamos preocupados aqui com a exata normalização.

Tomando b = 0 teremos para cada N uma solução que fixa g e λ e que fornece junto com (11) o par de solução. Para N = 1 nós obtemos g (0 que não possue interesse físico. Com N = 2 obtemos

$$c_1 = 0; c_2 = -\frac{4}{g} = -g^2; g = \frac{2}{3}; E = \frac{5}{2} - 3g$$
 (12)

ou 1

$$\Psi_{g} = N(1 - g^{2}x^{2}) e^{-4/2x^{2}} E_{g} = 5 \frac{1}{2} - 3g$$
 (13)

Finalmente, para N = 3 a autofunção e autovalor para o estado excitado vale

$$\Psi_{a} = (1 + C_{x}x^{2} + C_{y}x^{4} + C_{y}x^{4}) e^{-4/2x^{2}} = E_{a} = 9. \frac{1}{2} - 3g \quad (14)$$

COD

$$C_{i} = 3g-4 , C_{2} = g^{2} - \frac{10}{3} g + \frac{4}{3} , C_{3} = -\frac{1}{5} g^{3} - \frac{2}{15} g^{2} + \frac{4}{5} g;$$

$$g = \frac{1}{2} + \frac{1}{2} \sqrt{\frac{11}{3}} \approx 1,457$$
(15)

Assim, usando um "ansatz" apropriado, achamos dois pares de soluções para a equação de Schrödinger original, eq.(11) e (13) com g = 1/2 e eq. (11) e (14) com g = 1,457. Podemos nos perguntar se e possivel obter um número de soluções maior que 2, para que isto ocorra e preciso fixar j) $\frac{1}{2}$ na equação (5) e procurar as soluções de (3).

Finalmente, notemos que o parâmetro b estă relacionadu a paridade das autofunções: b = 1 para o estado fundamental Indica paridade Impar e b = 0 para o estado excitado fornece paridade par.

Referências

- [1] L.E. Gedenshtein and I. Krive, Sov. Phys. Usp. 28 (1985) 645
- [2] L.E. Gedenshtein JETP Lett. 38 (1983), 356
- E3.1 F. Cooper, J.N. Ginocchiro and A. Khare Phys. Rev. <u>036</u> (1987) 2458
- [4] E. Drigo Filho and R.M. Ricotta *Mod. Phys. Lett* <u>64</u> (1989) 2263
- [5] N.A. Shifman Int. J. Mod. Phys. A4 (1989) 3305
- 163 M.A. Shifman Int. J. Hod. Phys. <u>A4</u> (1989) 2897
- C73 E. Drigo Filho and R.M. Ricotta Mod. Phys. Lett. A& (1991) 2137
- COR N.W. Beims and J.A.C. Gallas Rev. Brosil. Fis. 20 (1990) 92
- 193 G.Vanden Berghe and H.E. De Meyer *J. Phys.* <u>A22</u> (1989) 1705 1103 G.P. Flessas *Phys. Lett.* <u>A83</u> (1981) 121.

RESOLUÇÃO DA EQUAÇÃO DE SCHRODINGER CON POTENCIAL BI-DIMENSIONAL USANDO SUPERSIMETRIA

Elso Drigo Filho

IBILCE/UNESP/São José do Rio Preto

Rua Criștovão Colombo, 2265, Jd. Nazareth, Caixa Postal 136 CEP.: 15.055, Fone (0172) 24-4966 - Ramal 59

RESINO: Introduzimos uma realização não usual para algebra supersimetrica em Mecánica Quántica. Esta realização permite desenvolver um metodo para determinar a solução da equação de Schrödinger para certos tipos de potenciais bi-dimensionais. O potencial de Hartmann é estudado para ilustrar o método.

Em Mecánica Quántica Supersimétrica (N=2) nos temos 2 geradores (Q e Q[†]) que obedecem a seguinte relação de anticomulação.

uma não usual realização desta superalgebra e:

.

$$Q = d \begin{bmatrix} x & \sigma - z \\ 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \end{bmatrix}; d \begin{bmatrix} a^{-} & 0 \\ 0 & b^{-} \end{bmatrix}; \sigma_{-} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} (2)$$

$$Q^{*} = d \Big|_{X}^{*} \sigma_{+}^{*} = \begin{bmatrix} 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; d \Big|_{X}^{*} = \begin{bmatrix} a^{*} & 0 \\ 0 & b^{*} \end{bmatrix}; \sigma_{+}^{*} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} (3)$$

onde a e b são operadores bosónicos (a realização usua) da superalgebra pode ser encontrada, por exemplo, na ref.[1]). O Hamiltoniano supersimétrico dado pela eq. (1) assume a forma:

$$H_{q_{W}} = \begin{bmatrix} a^{*} a^{*} & 0 & 0 & 0 \\ 0 & b^{*} b^{*} & 0 & 0 \\ 0 & 0 & a^{*} a^{*} & 0 \\ 0 & 0 & a^{*} a^{*} & 0 \\ 0 & 0 & b^{*} b^{*} \end{bmatrix} = \begin{bmatrix} H_{1}^{*} & 0 & 0 \\ 0^{*} H_{1}^{*} & 0 & 0 \\ 0 & 0^{*} H_{1}^{*} & 0 \\ 0 & 0^{*} H_{1}^{*} & 0 \\ 0 & 0^{*} H_{1}^{*} \end{bmatrix} = \begin{bmatrix} H_{1}^{*} & 0 \\ 0 & H_{1}^{*} \\ 0 & H_{2}^{*} \end{bmatrix}$$

is geradores Q e Q[†] aplicados as autorunções de H_{um} atuam da seguinte maneira

$$0 \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ d \end{pmatrix} \quad \Rightarrow \quad Q^{\dagger} \begin{pmatrix} 0 \\ \overline{x} \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix} \quad (65)$$

while $\chi \in \widehat{\chi}$ são autorunções de H₁ e H₁, respectivamente.

O Hamiltoniano original e total a 2 dímensões pode ser encontrado como sendo

$$H_{\text{org}} = \text{tr } H_{+} = a^{\dagger} a^{\dagger} + b^{\dagger} b^{\dagger} \qquad (6)$$

En uma dimensão a superalgebra permite em alguns casos construir uma familia de Hamiltonianios ligados entre si pela supersimetria⁽²⁾ como ilustrado na figura 1.

Figura 1: llustração da familia de Hamiltonianos gerados por supersimetria.

Sabemos que o espectro e as autorunções destes Hamiltonianos estão relacionados entre si

$$E_{n}^{(1)} = E_{n}^{(n)} \oplus \gamma_{n}^{(1)} = a_{1}^{+} a_{2}^{+} \dots a_{n}^{+} \gamma_{n}^{(n)}$$
 (7)

Polenciais uni-dimensionais que permitem tal construção possuem uma invariancia na forma quando passames de um Hamiltoniano para outro dentro da família, o que significa uma mudança apenas nos parametros do polencial e não na sua forma funcional.

Com a realização que demos para a superalgebra estes conceitos usados em uma dimensão são automaticamente estendidos para cada componente de H₂ CH' e H"O no caso bi-dimensional.

te particular, podemos usar a relação (7) para encontrar a solução da equação de Schrödinger⁴⁹.

Tomemos agora um exemplo, o potencial de Harimann⁴⁰

$$\forall r_{r}, m = \gamma \sigma^{2} \left\{ \frac{-\frac{c^{2} a_{0}}{r} - \frac{\gamma a_{0}^{2}}{r^{2} \sin^{2} \theta}}{r^{2} \sin^{2} \theta} \right\} \varepsilon_{0}$$
(8)

Este potencial pode ser aplicado, por exemplo, a molecula de benzeno. Em nossa notação a é o raio de Bohr e ε_0 é o estado rundamental do atomo de hidrogênio. γ e σ são parámetros positivos e constantes. Em termos de coordenadas parabolicas "quadradas"⁽⁵⁾ a equação de Schrödinger original pode ser separada em duas

$$H_{i}^{*} \chi_{i}^{*} = \left\{ -\frac{d^{2}}{dx^{2}} + \frac{M^{2} - 1/4}{x_{i}^{2}} + \frac{2\mu x_{i}^{2}}{h^{2}} \right\} \chi_{i}^{*} (x_{i}^{*}) = -\frac{2\mu \alpha_{i}}{h \sqrt{|E|}} \chi_{i}^{*} (x_{i}^{*})$$
(9)

e

$$H_{g}^{\mu} \chi_{2}^{\mu} = \left\{ -\frac{d^{2}}{dx_{2}^{2}} + \frac{M^{2} - 1/4}{x_{2}^{2}} + \frac{\partial \mu x_{2}^{2}}{h^{2}} \right\} \chi_{2}^{c} (x_{2}) = -\frac{\partial \mu \alpha_{2}}{h \sqrt{|E|}} \chi_{2}^{c} (x_{2})$$
(10)

onde $x_1^2 = \sqrt{|E|} \xi^2 e x_2^2 = \sqrt{|E|} \eta^2 \cdot \xi e \eta$ estão relacionadas as coordenadas cartezianas pelas relações:

$$x = \xi \eta \cos \psi$$
 , $y = \xi \eta \sin \psi$ Θ $z = \frac{1}{2} (\eta^2 - \xi^2)$

A runção de ondas em ternos das novas coordenadas sera

$$\psi(x_1, x_2, \psi) = (x_1, x_2)^{-1/2} \chi_1(x_1) \chi_2(x_2) e^{im\psi}$$
(11)

 $\Rightarrow M^2 \approx m^2 + \gamma^2 \sigma^2$. Temos ainda um vinculo entre os parámetros $\sigma_t = \sigma_t^2$:

$$\alpha_1 + \alpha_2 = 4 \gamma^2 \sigma^2 \varepsilon_0 a_0 \qquad (12)$$

Neste caso em particular, H' e H" são idénticos e devido a sua estrutura de oscilador harmónico com barreira de potencial sabemos que ele apresenta a invariáncia na forma (a ref.(1) tras alguns aspectos do potencial harmónico com barreira de potencial numa versão supersimetrica). Vamos estudar H', onde os resultados para H" são obtidos por analogia.

isembrando que $a^+ a^- = H - E^{(n)}$, podemos verificar usando (7) que

$$E_n = 2 \frac{\sqrt{2\mu}}{h} (|M| + 1 + 2n) \quad (n = 0, 1, 2, ...) \quad (13)$$

$$a_{11}^{\dagger} = -\frac{d}{dx} + \frac{\sqrt{2\mu}}{h} = -\frac{|M| + 1/2 + n}{x}$$
 (14)

$$x_{1,0} = a_1^{\dagger} a_2^{\dagger} \dots a_n^{\dagger} x_n$$
 (16)

orvie χ_{z} e obtindo pela equação diferencial:

$$\hat{x}_{1} = 0 \rightarrow x_{0} = x |M|^{+1/2} = \frac{\sqrt{2\mu}}{2h} x^{2}$$
 (16)

No problema original obtemos portanto (da igualdade - V-D:

$$H_{179} = E_{11} + E_{12} = -2 \frac{\sqrt{2\mu}}{h} (2|M|+2+C2n_1+2n_2) - n_1 = n_2 = 0,1,2,$$
(17)

Per outro lado (de C9) e CLODD

$$\frac{\beta_{11}}{\alpha_1} + \frac{\beta_{12}}{\alpha_2} = \frac{\beta_{11}}{\alpha_1} + \frac{\beta_{11}}{\alpha_2} + \frac{\beta_{12}}{\alpha_2} + \frac{\beta_$$

Usando (17) e (18) obtemos:

$$|\mathbf{E}| = \frac{\mu}{R} \left[\frac{4 \gamma^2 \sigma^2 \varepsilon_0 \mathbf{a}_0}{|\mathbf{M}| + 1 + |\mathbf{n}_1| + |\mathbf{n}_2|} \right]^2$$
(19)

que são os autovalores da energia para o potencial original, a tunção de onda e obtida usando a eq. (11) onde χ_1 e χ_2 tem a forma descrita por (15). Portanto, nosso resultado fornece a rolução analítica exata para o potencial de Hartmann (8).

Concluimos frizando que atraves da realização de superalgebra introduzida neste trabalho podemos usar a supersimetria para resolver a equação de Schrödinger para alguns potenciais bi-dimensionais. Entretanto, o metodo não é geral, pois nem todos os potenciais bi-dimensionais, permitem que o Hamiltoniano original seja separado em dois Hamiltonianos uni-dimensionais.

REFERENCIAS

(1) N.A. Alves e E. Drigo Filho J. Phys. <u>A21</u> (1988) 3215
(a) C.V. Sukumar J. Phys. <u>A18</u> (1985) 157
(b) L.E. Gedernstein Jetp Lett. <u>38</u> (1983) 356
(c) H. Hartmann Theor. Chem. Acta <u>24</u> (1972) 201
(c) C. Gerry Phys. Lett. <u>A118</u> (1985) 445.

CÁLCULO DAS FUNÇÕES DE GREEN DO MODELO DE SCHWINGER GENERALIZADO

PELO MÉTODO DE INTEGRAÇÃO FUNCIONAL

Alvaro de Souza Dutra - UNESP/Campus de Guaratinguetá-DFO

Calculam-se as funções de Green do modelo de Schwinger generalizado não-anômalo, usando variadas fixações de calibre, através de uma sequência de transformações nos campos do modelo. Em particular tratamos do caso em que o parâmetro de regularização assume o valor $a = g_i$ (a=1,no modelo de Schwinger quiral). Verifica-se também que, como observado por Girottí e Rothe [1], as funções de correlação invariantes de gauge são iguais nos dois modelos. Isto implica que o termo de fonte na integral funcional deve ser tal que gere apenas tais soluções [2].

A Lagrangeana do Modelo de Schwinger generalizado não-anômalo, após serem feitas as transformações que desacoplam os férmions, é dada por

$$\mathfrak{L} = \overline{\psi} \left(i\gamma_{\mu} \partial^{\mu} \right) \psi' + (1/2e^2) \chi \, o^2 \chi + (1/2ne^2) \left(g_i^2 - M^2 \right) (\eta + \theta) o(\eta + \theta)$$

+
$$(1/2\pi e^2)(g_2^2 + M^2)\chi_0\chi - (g_1g_2/\pi e^2)(\eta + \theta)_0\chi$$
 (1)

onde $M^2 = ae^2$ e os campos η e χ são, respectivamente, as componentes longitudinal e transversal do campo de gauge

$$eA_{\mu} = \partial_{\mu}\eta + e_{\mu\nu}\partial^{\nu}\chi, \qquad (2)$$

e o campo 0 é o campo de Wess-Zumino, aquele que restaura a simetria de gauge do modelo. Sendo esta uma versão invariante do modelo, devemos fixar o calibre a fim de obter as funções de Green. Vamos usar os seguíntes termos de fixação de calibre:

i)
$$\hat{\mathbf{L}}_{\alpha \mathbf{F}} = -(1/2\alpha) \left(\partial_{\mu} \mathbf{A}^{\mu} + \beta e^{\mu \nu} \partial_{\mu} \mathbf{A}_{\nu} \right)^2 = -(1/2\alpha) \left(\alpha \eta - \beta \alpha_{\chi} \right)^2;$$
 (3a)

ii) $\mathfrak{L}_{aF} = -(1/2\alpha)\partial_{\mu}\partial\partial^{\mu}\partial_{\nu}$, (3b) onde $\alpha \in \beta$ são parâmetros de gauge. CASO $M^2 \neq g_1^2$:

Neste caso, para o primeiro gauge fazemos a transformação:

$$\Theta = \Theta' + \left[\frac{g_2 g_2}{(g_1^2 - M^2)} - \beta\right] \chi' - \eta' \qquad (4a)$$

$$\eta = \eta' + \beta \chi' = \chi = \chi' \tag{4b}$$

de modo que o modelo desacopla:

$$\dot{\chi} \approx \dot{\chi}_{MS0} + \dot{\chi}_{QF}^{(1)} = (1/2e^2)\chi' o(o + m^2)\chi' + (1/2ne^2)(g_1^2 - M^2)\partial' o\partial' + - (1/2ae^2)\eta' o\eta',$$
 (5)

com

.

.

$$m^{2} = \underbrace{\left(\left(g_{1}^{2}g_{2}^{2}\right)^{2} - \left(g_{1}^{2} - M^{2}\right)\left(g_{2}^{2} + M^{2}\right)\right)}_{\pi\left(M^{2} - g_{1}^{2}\right)}.$$
(6)

Fazemos as mesmas transformações nos termos de fonte do funcional gerador, por exemplo

$$J_{\mu}^{A^{\mu}} = (1/e) J^{\mu} \left[\partial_{\mu} (\eta' + \beta \chi') + \epsilon_{\mu \rho} \partial^{\rho} \chi' \right], \qquad (7.)$$

de modo que o propagador de fóton, que se obtém a partir de :

$$\langle A_{\mu} A_{\nu} \rangle = - \delta^2 Z / \delta J_{\mu} \delta J_{\nu} |_{J=0}$$
 (8)

vai ser dado na representação de momentum por:

$$D_{\mu\nu}(k) = -(1/e^2) \left[k_{\mu} k_{\nu} D_{\eta} + (\beta k_{\mu} + \overline{k}_{\mu}) (\beta k_{\nu} + \overline{k}_{\nu}) D_{\chi'} \right], \qquad (9)$$

onde $\overline{k} \equiv e_{\mu} e_{\mu}^{\rho}$. Usando os propagadores livres dos campos $\eta' = \chi'$ obtem-se:

$$D_{\mu\nu}(k) = -(i/(k^2 - m^2)) \left[q_{\mu\nu} - (1 + \beta^2 - \alpha + \alpha m^2/k^2) k_{\mu} k_{\nu}/k^2 + \frac{1}{2} \beta (k_{\mu} k_{\nu} + k_{\mu} k_{\nu})/k^2 \right]. \qquad (10)$$

No caso da segunda fixação de calibre, teremos análogamente: 1) Trantormações:

.

$$\eta = \eta + \left[\frac{g_1 g_2}{(g_1^2 - M^2)}\right] \chi - \theta$$
 (11a)

χ = χ' = θ = θ (11b)

. .

2) Lagrangeana:

$$\mathbf{\hat{R}} = \mathbf{\hat{R}}_{MSO} + \mathbf{\hat{R}}_{OF}^{(ii)} = (1/2e^2)\chi^{i}a(a + m^2)\chi^{i} + (1/2ne^2)(g_1^2 - M^2)\eta^{i}a\eta^{i} +$$

3) Termo de fonte:

$$J_{\mu}A^{\mu} = (1/e)J^{\mu}\left[\partial_{\mu}\left[\eta' + \left[\frac{g_{i}g_{2}}{(g_{i}^{2} - M^{2})}\right]\chi' - \theta'\right] + \epsilon_{\mu\rho}\partial^{\rho}\chi'\right], \quad (13)$$

4) Propagadors

$$D_{\mu\nu}(k) = (i/(k^{2} - m^{2})) \left\{ -g_{\mu\nu} + \left[\frac{1}{(M^{2} - g_{1}^{2})} \right] \left[k_{\mu} k_{\nu} \left[(1/e^{2}) (ne^{2} + g_{1}^{2}) \right] \right] \right\} - \alpha (M^{2} - g_{1}^{2}) + (1/k^{2}) \left[(m^{2}\alpha/e^{2}) (M^{2} - g_{1}^{2}) - (g_{1}^{2} + g_{2}^{2}) \right] + (g_{1}g_{2}/k^{2}) (k_{\mu}k_{\nu}^{-} + k_{\mu}^{-}k_{\nu}) \right]$$

$$(14)$$

$$M^{2} = a^{2}i$$

Caso MT **9**1'

Neste caso vamos usar um outro método, para calcular os propagadores do fóton. Para isso reescrevemos a Lagrangeana (1), onde omitimos o termo de férmions por simples conveniencia, na formas 🖱

$$\mathcal{R} = (1/2) \rho^{\mathrm{T}} \mathcal{H} \rho_{\mathrm{T}}$$
(15)

(15) onde $\rho = \begin{pmatrix} \chi \\ \eta \\ \partial \\ \partial \end{pmatrix}$, de modo que temos por exemplo no caso do segundo gauge ($\dot{\theta}_{\mu} \theta = 0$);

$$\mathbb{M} = (\alpha/e^2) \begin{pmatrix} \alpha + (g_1^2 + g_2^2) & -(g_1g_2/2ne^2) & -(g_1g_2/2ne^2) \\ -(g_1g_2/2ne^2) & 0 & 0 \\ -(g_1g_2/2ne^2) & 0 & (1/2\alpha e^2) \end{pmatrix}$$
(14)

Invertendo a matriz acima obtemos a matriz

$$\mathbb{M}^{-1} = \left(\begin{array}{cccc} \langle \chi | \chi \rangle & \langle \chi | \eta \rangle & \langle \chi | \theta \rangle \\ \langle \eta | \chi \rangle & \langle \eta | \eta \rangle & \langle \eta | \theta \rangle \\ \langle \theta | \chi \rangle & \langle \theta | \eta \rangle & \langle \theta | \theta \rangle \end{array}\right), \tag{17}$$

onde os elementos $\langle \chi | \chi \rangle$, $\langle \chi | \eta \rangle$, etc., são as tunções de correlação de dois pontos entre os respectivos campos, a partir das quais podemos escrever por exemplo o propagador através da relação:

$$\langle A_{\mu}A_{\nu}\rangle = (1/e^{2}) \left[k_{\mu}k_{\nu} \langle \eta | \eta \rangle + k_{\mu}\tilde{k}_{\nu} \langle \eta | \chi \rangle + \tilde{k}_{\mu}k_{\nu} \langle \chi | \eta \rangle + \tilde{k}_{\mu}\tilde{k}_{\nu} \langle \chi | \chi \rangle \right],$$
(18)

e usando que $\vec{k} \cdot \vec{k} = -g + k \cdot k$, obtemos finalmente que:

$$\langle A_{\mu}A_{\nu} \rangle = n (k_{\mu}k_{\nu}/k^{2}) \left[k^{2} - (g_{2}^{2} + g_{2}^{2}) + \alpha (g_{1}g_{2}/\sqrt{n} e^{2}) \right] +$$

$$- (n/g_{1}g_{2}) \left[(k_{\mu}k_{\nu}^{-} + k_{\mu}^{-}k_{\nu})/k^{2} \right].$$

$$(19)$$

Finalmente pode-se verificar que as funções de Green invariantes de gauge são as mesmas que no modelo anômalo, para isso podemos definir a corrente como:

$$J_{\mu}\left[A^{\mu} + (1/e)\partial^{\mu}\theta\right] \equiv J_{\mu}A^{\mu}_{I}, \qquad (20)$$

onde A_{I}^{μ} é definido como o campo invariante de gauge. Observa-se ainda que os resultados acima podem ser comparados com aqueles encontrados na literatura, por exemplo no caso particular do modelo de Schwinger quiral [3,4] para o "gauge θ " no caso em que $\alpha = 0$, e para o "gauge de Lorentz generalizado" quando $\beta = (a - 1)^{-1}$ ou $\beta = 0$. Além disso vé-se que o "mal comportamento" do propagador de fóton quando e + 0 [4] em (14), mostra-se ser um artefato do gauge, pois este termo pode ser eliminado através de uma adequada escolha do parámetro de gauge α no "gauge θ "

REFERENCIAS:

- []] H. O. Girotti e K. D. Rothe, Int. J. Mod. Phys. A 4 (1989),3041.
- [2] C. A. Linhares, H. J. Rothe e K. D. Rothe, Phys. Rev. D 35 (1987), 2501.
- [3] K. Harada e I. Tsutsur, Z. Phys. C 39 (1988), 137.
- [4] N. M. Falck e G. Framer, 7. Phys. C 37 (1988), 321.

An alternative prescription for gauging Floreanini-Jackiw chiral bosons S. A. Dias^(*) and A. de Souza Dutra⁽¹⁾ ^(*)CBPF/DCP and ⁽¹⁾UNESP/Guaratinguetá/DFQ

We seek new couplings of chiral bosons to U(1) gauge fields. Lorentz covariance of the resulting constrained Lagrangian is checked with the help of a procedure based in the first-order formalism of Faddeev and Jackiw. We find Harada's constraint and another local one not previously considered. We analyze the constraint structure and part of the spectrum of this second solution and show that it is equivalent to an explicitly covariant coupling of Siegel's chiral boson to gauge fields, which preserves chirality under gauge transformations.

In the course of the analysis of chiral bosons properties, one natural step is to couple them to abelian and non-abelian gauge fields [1,2,3] in order to study the corresponding anomalies, or to provide an alternative approach to chiral models in two dimensions [4]. These couplings have been proposed both in Siegel's [5] explicitly covariant formalism [2,6] and in the approach of Floreanini and Jackiw (FJ)[7,8].

In the context of chiral theories in two dimensions, Harada has shown recently how to obtain a consistent coupling of FJ chiral bosons with a U(1)gauge field, starting from the chiral Schwinger model (CSM) and discarding the right banded degrees of freedom by means of a projection in phase space implemented by the *chiral constraint* $\pi_{\phi} \approx \phi'[8]$. The resulting theory had the same spectrum of the CSM with the additional characteristic that the massless mode was self-dual. There was no trace, at the end, of the right-handed fermion originally present (which, however, was necessary for the eigenvalue problem of computing the fermion determinant to be well defined [9]). It has been shown later by Bazeia [10] that Harada's approach was equivalent to the one of Belincci, Golterman and Petcher[2] under Faddeev and Jackiw's first-order formalism[11].

We investigate, in this letter, the possibility of obtaining different couplings for the FJ chiral boson, starting from the generalized Schwinger model, where both chiralities interact with the gauge field. We obtain the Lagrangian of the coupled system under a generalized chiral constraint and propose a check test which can straightforwardly decide whether the resulting coupling is Lorentz covariant or not. We observe that storting with the left handed chiral Schwinger model it is possible to couple chiral bosons to U(1) gauge fields in two Lorentz covariant ways, using different chiral constraints for one chirality ($\pi_{\phi} = \phi'$) and for the other ($\pi_{\phi} = -\phi' + e(A_0 - A_1)$). The constraints $\pi_{\phi} = -\phi'$ and $\pi_{\phi} = \phi' + e(A_0 + A_1)$ are the ones allowed for the right handed CSM. The theory obtained using $\pi_{\phi} = -\phi' + e(A_0 - A_1)$ is shown to be equivalent to a specific coupling of Siegel's chiral bosons with U(1) gauge fields which is symmetric moder chirality preserving gauge transformations.

Our starting point is the Lagrangian of the generalized Schwinger model (GSM),

$$\mathcal{L} = \overline{\Psi} \gamma^{\mu} \left(i \partial_{\mu} + e_R A_{\mu} \frac{(1+\gamma_b)}{2} + e_L A_{\mu} \frac{(1-\gamma_b)}{2} \right) \Psi \quad (1)$$

which is equivalent to its bosonized version[12,14]

$$\mathcal{L}_{II} = \frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{1}{\sqrt{\pi}} \left(\bar{g}_{1} \partial^{\mu} - \bar{g}_{2} \bar{\partial}^{\mu} \right) \phi A_{\mu} + \frac{\bar{M}^{2}}{2\pi} A_{\mu}^{2} \qquad (2)$$

where

$$\vec{g}_1 = \frac{\vec{e}_L + \vec{e}_R}{2}, \quad \vec{y}_2 = \frac{\vec{e}_L - \vec{e}_R}{2}, \quad \vec{M}^2 = \frac{\vec{e}_L \vec{e}_R + \vec{e}_L \vec{e}_R}{2}.$$
(3)

In (3) \hat{e}_L and \hat{e}_R are arbitrary couplings introduced by the regularization procedure[13] and \bar{e}_L and \bar{e}_R are defined as[12]

$$\bar{e}_L = \left(\bar{e}_L^2 + \left(\bar{e}_L - e_L\right)^2\right)^{1/2}, \quad \bar{e}_R = \left(\bar{e}_R^2 + \left(\bar{e}_R - e_R\right)^2\right)^{1/2}.$$
 (4)

The Hamiltonian obtained from \mathcal{L}_B is

$$\mathcal{H}_{B} = \frac{1}{2} \left(\pi_{\phi} - g_{1} A_{0} - g_{2} A_{1} \right)^{2} \\ + \frac{1}{2} \phi'^{2} + \phi' \left(g_{1} A_{1} + g_{2} A_{0} \right) - \frac{M^{2}}{2} A_{\mu}^{2}$$
(5)

with $\sqrt{\pi} g_i = \overline{g}_i$ and $\pi M^2 = \overline{M}^2$.

We project one chirality with the aid of a generalized chiral constraint

$$\Omega = \pi_{\phi} - \alpha \phi' \tag{6}$$

In (6), α can be a function of ϕ , ϕ' and A_{μ} but not of $\dot{\phi}$, in order that Ω remains constraint. We further impose the requirement on α that $\{\Omega, \Omega\}$ is not to be field dependent, so that it can be absorbed in the normalization of the functional integral

$$Z_{ch}[A] = \int \mathcal{D}\phi \ \mathcal{D}\pi_{\phi} \ b(\Omega) \ |\det\{\Omega,\Omega\}|^{\frac{1}{2}} \ \exp(i \int d^2x \ (\pi_{\phi} \ \dot{\phi} - \mathcal{H}_B)). \tag{7}$$

Under these assumptions the analysis can proceed along classical lines. Functionally integrating over the π_{ϕ} field in (7) we obtain our effective Lagrangian

$$\mathcal{L}_{\alpha} = \alpha \, \dot{\phi} \phi' - \frac{(\alpha^2}{2} + 1) \phi'^2$$

$$+ \phi' \left((\alpha g_1 - g_2) A_0 + (\alpha g_2 - g_1) A_1 \right) \\ - \frac{1}{2} \left(g_1 A_0 + g_2 A_1 \right)^2 + \frac{M^2}{2} A_{\mu}^2.$$
 (8)

Now, we ask which values of α are allowed in order to produce a Lorentz covariant theory. We exemplify our strategy with the non-gauged original FJ Lagrangian,

$$\mathcal{L}_{FJ} = \dot{\phi} \phi' - \phi'^2. \qquad (9)$$

Performing a Lorentz rotation,

$$\begin{pmatrix} \dot{\phi} \\ \phi' \end{pmatrix} \longrightarrow \begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix} \begin{pmatrix} \dot{\phi} \\ \phi' \end{pmatrix}$$
(10)

this Lagrangian changes to

$$\mathcal{L}_{FJ}^{H} = a(x) \dot{\phi}^{2} + b(x) \dot{\phi} \phi' + c(x) \phi'^{2} \qquad (11)$$

with

$$a(x) = \frac{(x^2 - 1)}{2x^2}, \quad b(x) = \frac{1}{x^2}$$
$$c(x) = -\frac{(x^2 + 1)}{2x^2}, \quad x = e^{\theta}.$$
 (12)

Using the first-order formalism of Faddeev and Jackiw we construct a firstorder Lagrangian to (11)

$$\mathcal{L}_{FJ}^{R,1} = \pi_{\phi} \dot{\phi} - \frac{x^2 \pi_{\phi}^2}{2(x^2 - 1)} - \frac{x^2 \phi'^2}{2(x^2 - 1)} + \frac{\pi_{\phi} \phi'}{x^2 - 1}.$$
 (13)

Now we notice that although \mathcal{L}_{FJ} describes a constrained system, this is not what happens to \mathcal{L}_{FJ}^R . It is thus legitimate to ask whether the resulting theory is equivalent to the previous one in the new reference frame, if the constraint is taken into account. Imposing that $\pi_{\phi} = \phi'$ we obtain simply

$$\mathcal{L}_{FJ}^{H,1}|_{x_{\phi}=\phi'}=\mathcal{L}_{FJ},$$
(14)

thus showing that under the chiral constraint assumption, both Lagrangians ((11) and (9)) are equivalent.

Let us make the same analysis for \mathcal{L}_{α} , eq. (8). The Lorentz rotation (10) produces (rotating also, obviously, A_0 and A_1),

$$\mathcal{L}_{n}^{H} = a(x) \dot{\phi}^{2} + b(x) \dot{\phi} \phi' + c(x) \phi'^{2} \\ + \left\{ (x^{2} - 1) \dot{\phi} + (x^{2} + 1) \phi' \right\} \{ d_{+}(x) A_{0} + d_{-}(x) A_{1} \}$$

$$-\frac{1}{2}(e_1 A_0 + e_2 A_1)^2 + \frac{1}{2}M^2 A_{\mu}^2$$
 (15)

with

.

$$a(x) = -\frac{(x^2 - 1)}{8x^2} (\alpha^2 (x^2 - 1) - 2\alpha (x^2 + 1) + x^2 - 1)$$

$$b(x) = -\frac{1}{4x^2} (\alpha^2 (x^3 - 1) - 2\alpha (x^4 + 1) + x^4 - 1)$$

$$c(x) = -\frac{(x^2 + 1)}{8x^2} (\alpha^2 (x^2 + 1) - 2\alpha (x^2 - 1) + x^2 + 1) \quad (16)$$

$$d_{\pm} = \frac{1}{4x^2} \{\alpha ((x^2 \pm 1) g_1 + (x^2 \mp 1) g_2) - ((x^2 \mp 1) g_1 + (x^2 \pm 1) g_2)\}$$

$$\equiv (\alpha e_{\pm} - e_{\mp})$$

The first-order Lagrangian after the imposition of the generalized constraint is $A a a = \alpha^2 + b(2\alpha - b)$

$$\mathcal{L}_{\alpha}^{\mu,1} = \alpha \, \phi \, \phi' + \frac{4 \, \mathrm{d} \, c - \alpha^{-} + b \left(2 \, \alpha - b\right)}{4 \alpha} \, \phi'^{2}$$

$$+ \frac{\left(2a \left(x^{2} + 1\right) + \left(x^{2} - 1\right) \left(\alpha - b\right)\right)}{2a} \, \phi' \left(\left(\alpha \, e_{+} - e_{-}\right) A_{0} + \left(\alpha \, e_{-} - e_{+}\right) A_{1}\right)$$

$$- \frac{1}{2} \left(e_{+} A_{0} + e_{-} A_{1}\right)^{2} - \frac{\left(x^{2} - 1\right)^{2}}{4a} \left(\left(\alpha \, e_{+} - e_{-}\right) A_{0} + \left(\alpha \, e_{-} - e_{+}\right) A_{1}\right)^{2}$$

$$+ M^{2} \, A_{\mu}^{2} \qquad (17)$$

This expression only equals (8) if

$$(n^2 - 1)\phi' - (g_1n + g_2)A_0 - (g_2n + g_1)A_1 = 0$$
(18)

Solving this equation for a we find the set of constraints which preserves relativistic covariance,

$$\pi_{\phi} = \pm \frac{1}{2} \left(4\phi'^2 + 4\phi' (g_2 A_0 + g_1 A_1) + (g_1 A_0 + g_2 A_1)^2 \right)^{1/2} + \frac{1}{2} (g_1 A_0 + g_2 A_1)$$
(19)

From (19) we see that there are only two cases where we can get $\{\Omega, \Omega\}$ field independent and simultaneously obtain a polynomial Lagrangian, namely i) $g_1 = g_2 = c$ (right handed chiral Schwinger model), with constraints

$$\pi_{\phi} = -\phi' \tag{20}$$

and

$$\pi_{\phi} = \phi' + c(A_0 + A_1); \qquad (21)$$

ii) $g_1 = -g_2 = e$ (left handed chiral Schwinger model), with constraints

$$\pi_{\phi}^{\prime} = \phi^{\prime} \tag{22}$$

and

$$\pi_{\phi} = -\phi' + c (A_0 - A_1). \qquad (23)$$

Cases (20) and (22) are the cases studied by Harada and found elsewhere in the literature [2,4,8,10]. Cases (21) and (23) have not been previously considered. To be definite we will start from case (ii) and complete the gauging of the chiral boson within the context of the left-handed chiral Schwinger model. Imposing (23) on (2), with $\overline{g}_1 = -\overline{g}_2 = \sqrt{\pi e}$, we obtain in the same way that we did before

$$\mathcal{L}_{CH} = -\dot{\phi}\phi' - \phi'^{2} + e\left(\dot{\phi} + \phi'\right)(A_{0} - A_{1}) \\ + \frac{M^{2}}{2}A_{\mu}A^{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
(24)

where we added a kinectical term to the resulting Lagrangian. From (24) we compute the canonical Hamiltonian

$$\mathcal{H}_{C} = \frac{(\pi^{1})^{2}}{2} + \pi^{1}A_{0}' + \phi'^{2} - e\phi'(A_{0} - A_{1}) - \frac{M^{2}}{2}A_{\mu}^{2}. \quad (25)$$

The constraint (23) is second class,

$$\{\Omega_2(x), \Omega_2(x)\} = +2\delta'(x^1 - y^1)$$
(26)

with $\Omega_2 = \pi_{\phi} + \phi' - e(A_0 - A_1)$. There is another primary constraint, $\Omega_1 = \pi^0$, whose consistence under time evolution produces

$$\dot{\Omega}_1 = \left\{ \Omega_1, \int dy^1 \left(\mathcal{H}_c + u_1 \Omega_1 + u_2 \Omega_2 \right) \right\}$$
$$= \partial_1 \pi^1 + c \phi' + M^2 A_0 + c u_2 = 0.$$
(27)

This determines u_2 , while u_1 is determined through $\dot{\Omega}_2 = 0$. The inverse of the constraint matrix is given by

$$C_{ij}(x,y) = \frac{1}{e^2} \begin{pmatrix} 2\delta'(x^1 - y^1) & e\delta(x^1 - y^1) \\ -e\delta(x^1 - y^1) & 0 \end{pmatrix}$$
(28)

and the non-null Dirac brackets are

$$\{\phi(x), \pi_{\phi}(y)\}^{*} = \delta(x^{1} - y^{1}) ; \{\phi(x), A_{0}(y)\}^{*} = \frac{1}{e}\delta(x^{1} - y^{1}) ;$$

$$\{\pi_{\Phi}(x), A_{0}(y)\}^{*} = \frac{1}{c}\delta^{'}(x^{1} - y^{1}) ;$$

$$\{A_{0}(x), A_{0}(y)\}^{*} = -\frac{2}{c^{2}}\delta^{'}(x^{1} - y^{1}) ; \{A_{0}(x), \pi^{1}(y)\}^{*} = -\frac{1}{c}\delta(x^{1} - y^{1}) ;$$

$$\{A_{1}(x), \pi^{1}(y)\}^{*} = \delta(x^{1} - y^{1}) .$$
 (29)

One can choose ϕ to be climinated from (25), after using the constraints strongly, and then arrive to the final Hamiltonian,

$$\mathcal{H} = \frac{\left(\pi^{1}\right)^{2}}{2} + \pi^{1}A_{0}' + \pi_{\phi}^{2} - e\pi_{\phi}(A_{0} - A_{1}) - \frac{M^{2}}{2}A_{\mu}^{2} \qquad (30)$$

Thanks to the non-standard commutation relations obeyed by A_0 , it is not easy to solve the equations of motion obtained from (30). To see something about the spectrum of this theory we can integrate functionally over the A_{μ} field to obtain an effective Lagrangian for the ϕ field,

$$\mathcal{L}_{eff} = \frac{1}{2} \phi \left(\frac{(e^2 - M^2) \, \Box^2 - M^4 \Box + M^2 \, (\Box + M^2) \, \partial_+ \partial_+}{M^2 \, (\Box + M^2)} \right) \phi \qquad (31)$$

Using $M^2 = e^2 a$, we see that there are poles in the following regions in the (k_+, k_-) -plane:

i)u≠ I.,

$$k_{-} = \pm a \left(\frac{\left(a^{2}e^{4} - 2\left(a - 2\right)e^{2}k_{+}^{2} + k_{+}^{4}\right)^{1/2} \pm \left(ae^{2} + k_{+}^{2}\right)}{2k_{+}\left(a - 1\right)} \right),$$

$$k_{+} = 0 \qquad (32)$$

ii)a = 1,

$$k_{-} = \frac{e^{2}k_{+}}{e^{2} + k_{+}^{2}} ,$$

$$k_{+} = 0$$
(33)

Although the expression for the k_{+} curve is not directly Lorentz covariant, we can see explicitly the presence of a self dual pole in the spectrum of the theory, with the correct chirality

Yet the appearance of only the A_{\pm} components of the A_{μ} field in the Lagrangian suggests that this kind of coupling could be obtained by a kind of "self dual" gauging, in which only the ∂_{\pm} derivative would be covariantized. "This has led us to consider Siegel's formalism for the right banded chiral boson

$$\mathcal{L}_{\delta} = \frac{1}{2} \partial_{+} \phi \, \partial_{+} \phi \, + \, \frac{1}{2} \lambda \left(\partial_{+} \phi \right)^{2}, \tag{34}$$

Performing the substitution

$$\partial_{-}\phi \longrightarrow \partial_{-}\phi + 2eA_{-}$$
 (35)

we get

$$\mathcal{L}_{S}^{g} = \frac{(\lambda+1)}{2}\dot{\phi}^{2} + \lambda\dot{\phi}\phi' + \frac{(\lambda-1)}{2}\phi'^{2} + e\left(\dot{\phi} + \phi'\right)(A_{q} - A_{1}). \quad (36)$$

The first-order Lagrangian is

$$\mathcal{L}_{S}^{g,1} = \pi_{\phi} \phi - \frac{1}{\lambda+1} \left\{ \frac{1}{2} \pi_{\phi}^{2} - \lambda \pi_{\phi} \phi' - e \left(\pi_{\phi} + \phi' \right) (A_{0} - A_{1}) + \frac{1}{2} e^{2} (A_{0} - A_{1}) \right\}.$$
(37)

Solving the constraint through the equation of motion for λ , we obtain

$$\pi_{\phi} \equiv -\phi' + e(A_0 - A_1) \tag{38}$$

and, after substitution in (37), we get \mathcal{L}'_{CH} given by

$$\mathcal{L}'_{CH} = -\dot{\phi}\phi' - \phi'^{2} + e\left(\dot{\phi} + \phi'\right)(A_{0} - A_{1})$$
(39)

which is the same as \mathcal{L}_{CH} , eq.(24), without the last two terms.

Finally, we would like to notice that the gauge symmetry of the model proposed in (36) is a kind of "chiral" gauge symmetry: the symmetry of the model is $\phi \rightarrow \phi + \varepsilon$ and $A_{-} \rightarrow A_{-} - \frac{1}{2\varepsilon}\partial_{-}\varepsilon$, $\varepsilon = \varepsilon(x^{-})$. This symmetry preserves the chirality of the chiral boson under gauge transformations. It is also responsible for more degrees of freedom than those present in the case considered by Harada[8], as we can take A_{+} as a gauge invariant quantity under these restricted transformations. If this model is an alternative description for the minimal chiral Schwinger model, is a very interesting question to be adressed in the near future.

We would like to thank Marco Antonio Andrade for introducing us to the DERIVE package and Dr. Juan Alberto Mignaco for continuous encouragement and useful criticisms. One of us (A.S.D.) is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). æ

References

- [1] S.Bellucci, R.Brooks and J.Sonnenschein, Nucl. Phys. B304 173 (1988).
- [2] S.Bellucci, M.F.L.Golterman, and D.N.Petcher, Nucl. Phys. B326 307 (1989).

- [3] J.Sonneaschein, Nucl.Phys. B309 752 (1988).
- [4] K.Harada, Phys.Rev. D42 4170 (1990).
- [5] W.Siegel, Nucl.Phys. B238 307 (1984).
- [6] J.M.F.Labastida, A.V.Ramallo, Phys.Lett. B222 231 (1898).
- [7] R.Floreanini, R.Jackiw, Phys.Rev.Lett. 59 1873 (1987).
- [8] K.Harada, Phys.Rev.Lett. 64 139 (1990).
- [9] L.Alvarez Ganné and P. Ginsparg, Nucl. Phys. B243 449 (1984); Ann. Phys. 161 423 (1985)
- [10] D.Razeia, Mod.Phys.Lett. A5 2497 (1990).
- [11] L.Faddoev, R.Jackiw, Phys.Rev.Lett 60 1692 (1988).
- [12] D.Boyanovsky, J.Schmidt and M.F.L.Golterman, Ann.Phys.(N.Y.) 185 111 (1988).
- [13] J.L.Alonso, J.L.Cortés, E.Rivas, Phys. Rev D41 2568 (1990).
- [14] Our conventions are $\gamma^0 = \sigma^1$, $\gamma^1 = -i \sigma^2$, $\gamma_5 = \gamma^0 \gamma^1 = \sigma^3$, $\eta_{\mu\nu} = \text{diag}(+, -), \epsilon^{01} = -\epsilon_{01} = +1, \tilde{\partial}_{\mu} = \epsilon_{\mu\nu} \partial^{\nu}$, $\gamma_5 \Psi_{L,R} = \mp \Psi_{L,R}, \quad \dot{\phi} = \partial_0 \phi, \quad \phi' = \partial_1 \phi,$ $\partial_{\pm} = \partial_0 \pm \partial_1, \quad A_{\pm} = A_0 \pm A_1.$

۰.

ACOPLAMENTO YANG-WILLS/MODELO SIGNA (2,0) EN VARIEDADES CON TORCÃO

CARLOS ALBERTO S. ALMEIDA-DEPTO. DE FÍSICA-UFCE J. ABDALLA HELAYÊL-NETO-CBPF

12

RESUNO: No superespaço (2,0) efetua-se o acoplamento do supermultipleto de Yang-Mills ao modelo e não linear. Isto é realizado através do gauging das isometrias do espaço-alvo do modelo e, neste caso, considerado como uma variedade genérica com torção.

A ação do modelo-s manifestamente invariante sob a supersimetria-(2,0) é a seguinte :

$$\mathbf{s}_{\mathbf{\sigma}} = \mathbf{i} \left[\mathbf{d}^{2} \mathbf{x} \ \mathbf{d} \boldsymbol{\theta}_{\mathbf{\tau}} \mathbf{d} \overline{\boldsymbol{\theta}}_{\mathbf{\tau}} \left[\mathbf{K}_{\mathbf{i}}(\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) \boldsymbol{\theta}_{-} \boldsymbol{\theta}^{\mathbf{i}} - \mathbf{K}_{\overline{\mathbf{i}}}(\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) \boldsymbol{\theta}_{-} \boldsymbol{\theta}^{\overline{\mathbf{i}}} \right] , \qquad (1)$$

onde o vetor $K_i(\Phi, \overline{\Phi})$, algumas vezes chamado de prepotencial, é definido no espaço alvo, cujas coordenadas são os supercampos escalares $\Phi, \overline{\Phi}$ do superespaço (2,0). Os índices latinos $i(\overline{I}) =$ $1, \ldots, n(\overline{n})$ denotam um espaço alvo 2n-dimensional. O prepotencial contém toda a informação sobre a geometria do modelo, uma vez que a partir dele podemos obter a métrica e a torção, ou seja

$$\mathbf{g}_{1\overline{j}} \equiv \frac{1}{2} \left(\partial_{1}\mathbf{K}_{\overline{j}} + \partial_{\overline{j}}\mathbf{K}_{1} \right) ; \quad \mathbf{b}_{1\overline{j}} \equiv \frac{1}{2} \left(\partial_{1}\mathbf{K}_{\overline{j}} - \partial_{\overline{j}}\mathbf{K}_{1} \right)$$
(2)

Vale lembrar que estes supercampos são "quirais", no sentido que obedecem aos vínculos $D_i \overline{\Phi}^i = \overline{D}_i \Phi^i = 0$.

Duas invariâncias de "gauge" estão presentes na ação (1):

$$\delta K_{i} = i\partial_{i} \Lambda(\Phi, \overline{\Phi}) \operatorname{com} \Lambda \operatorname{real}$$
(3)

$$\delta K_{i} = F_{i}(\phi); \quad \delta K_{i} = F_{i}(\overline{\phi}) \qquad \text{com } \partial_{j}F_{i} = \partial_{j}F_{i} = 0 \qquad (4)$$

Devido à óbvia semelhança com a transformação de Kähler, a menos do fato de que esta é definida para escalares, enquanto que (4) é definida para vetores, rotulemos esta última de transformação vetorial do tipo Kähler.

Notações e convenções sobre o superespaço (2,0) podem ser encontradas no trabalho Nodelo de Schwinger Quiral no Superespaço (2,0), apresentado neste mesmo volume.

164

Consideremos transformações nos supercampos (considenadas da variedade) tais que:

$$\delta \Phi^{i} = \lambda^{\alpha} k^{i}_{\alpha}(\Phi) ; \quad \delta \Phi^{\bar{i}} = \lambda^{\alpha} k^{i}_{\alpha}(\bar{\Phi}) , \qquad (5)$$

onde k^{i} é um vetor do espaço alvo e λ^{α} é um parâmetro global. O vetor $k^{i}(\Phi)$ ($\overline{k}^{i}(\Phi)$) é uma função holomórfica (anti-holomórfica), no sentido de que dependem apenas de um supercampo quiral(anti-quiral).

Sob as transformações (5), o prepotencial $K_j(\Phi, \overline{\Phi})$ comporta-se da seguinte forma

$$\delta K_{i} = K_{i} (\Phi, \overline{\Phi}') - K_{i} (\Phi, \overline{\Phi}) = (\partial_{j} K_{i}) \delta \Phi^{i} + (\partial_{j} K_{i}) \delta \Phi^{j} =$$
$$= (\partial_{j} K_{i}) \lambda^{\alpha} k_{\alpha}^{j} (\Phi) + (\partial_{j} K_{i}) \lambda^{\alpha} k_{\alpha}^{j} (\overline{\Phi})$$
(6)

valendo, também, é claro, o conjugado complexo da equação acima.

As condições para a invariância da ação (1) sob as transformações (5), podem ser resumidas na expressão:

$$\mathcal{L}^{\alpha} \mathsf{K}_{i} (\Phi, \overline{\Phi}) = \mathsf{F}_{i}^{\alpha} (\Phi) + i \partial_{i} \mathsf{L}^{\alpha} (\Phi, \overline{\Phi})$$
(7)

onde $\mathcal{X}_{\alpha}^{K}_{i}$ é a derivada de Lie do prepotencial na direção do vetor k^{j} e é definida como

$$\mathcal{L}_{\alpha}^{K} = K_{i,j} k_{\alpha}^{j} + K_{i,j} k_{\alpha}^{j} + K_{j} \partial_{i} k_{\alpha}^{j}$$
(8)

Lembramos que $L(\Phi, \overline{\Phi})$ é uma função escalar real. A partir da equação (7) podemos obter as condições para a invariância do modelo bosônico, a saber, que o vetor k^i seja um vetor de Killing da variedade e que a derivada de Lie do potencial de torção se anule, caracterizando que as transformações (5) são isometrias da variedade.

Nosso objetivo agora é introduzir supercampos de gauge através do procedimento de elevar as isometrias à condição de simetrias *locais*. Como sabemos, uma transformação de isometria deixa a métrica invariante, portanto o prepotencial $K_i(\Phi, \overline{\Phi})$, também o será (Ver eq. (2)), a menos de uma transformação vetorial de Kähler. En outras palavras, se a variação δK_i não for zero, deve ser no máximo igual à transformação de Kahler. Desta torma, podemos identificar

$$\delta K_{1} \stackrel{B}{} K_{1} (\Phi; \overline{\Phi}') - K_{1} (\Phi, \overline{\Phi}) = \lambda^{\alpha} \left(k_{\alpha}^{1} K_{1,1} + k_{\alpha}^{j} K_{1,j} \right) = \lambda^{\alpha} F_{1\alpha} (\Phi)$$
(9)

Considerando à dependência dos prepotenciais nos supercampos Φ a $\overline{\Phi}$, e levando em conta ainda a simetria da ação e da métrica, a 165 equação acima devem ser modificadas para

$$\delta K_{i} = \lambda^{\alpha} \left\{ k_{\alpha}^{j} K_{i,j} + k_{\alpha}^{j} K_{i,j} \right\} = \lambda^{\alpha} F_{i\alpha}(\phi) + i \lambda^{\alpha} \partial_{i} M_{\alpha}(\phi, \phi)$$
(10)

As tranformações locals do subgrupo de isometria são escritas na forma

$$\delta \Phi^{i} = \Lambda^{\alpha} k^{i}_{\alpha}(\Phi) \qquad \qquad \delta \Phi^{\bar{i}} = \bar{\Lambda}^{\alpha} k^{\bar{i}}_{\alpha}(\bar{\Phi}) \qquad \qquad (11)$$

onde $A=A^{\alpha}(x; \theta, \overline{\theta})Q_{\alpha}$ é un supercampo quiral parâmetro de gauge. Na forma finita estas transformações tornam-se

$$\phi^{i} \longrightarrow \phi^{i}^{i} = \exp(\mathbf{L}_{\tilde{\Lambda},\tilde{\mathbf{x}}}) \phi^{i}$$
; $\phi^{\tilde{i}} \longrightarrow \phi^{i}^{\tilde{i}} = \exp(\mathbf{L}_{\tilde{\Lambda},\tilde{\mathbf{x}}}) \phi^{\tilde{i}}$ (12)

onde os operadores ${\bf L}_{\tilde{A},k}$ e ${\bf L}_{\tilde{A},\tilde{k}}$ são definidos como

$$\mathbf{L}_{\Lambda,\bar{k}} \Phi^{i} = \left[\Lambda^{\alpha} k_{\alpha}^{j} \frac{\partial}{\partial \Phi^{j}}, \Phi^{j} \right] ; \quad \mathbf{L}_{\bar{\Lambda},\bar{k}} \Phi^{\bar{i}} = \left[\overline{\Lambda}^{\alpha} k_{\alpha}^{\bar{j}} \frac{\partial}{\partial \Phi^{\bar{j}}}, \Phi^{j} \right]$$
(13)

A fim de covariantizar o prepotencial K_i e expressar todas as variações de gauge em termos do supercampo $\Lambda(x; \theta, \overline{\theta})$, de tal forma a imitar o caso das transformações globais, propomos uma redefinição de campos onde esteja embutida a troca $\overline{\Lambda} \rightarrow iV$. Definimos um supercampo $\overline{\Phi}$, que corresponde a uma "covariantização" do supercampo $\overline{\Phi}$, tal que

$$\bar{\phi}^{i} \operatorname{sexp} \left(L_{i \vee, \overline{k}} \right) \bar{\Phi}^{i} \tag{14}$$

onde a transformação de gauge de V é fixada na forma abaixo

$$\mathbf{i} \mathbf{L}_{\mathbf{V}} \cdot \mathbf{\tilde{k}} = \mathbf{e} \quad \mathbf{E} \mathbf{\Lambda} \cdot \mathbf{\tilde{k}} \quad \mathbf{i} \mathbf{L}_{\mathbf{V}} \cdot \mathbf{\tilde{k}} \quad \mathbf{e}^{-\mathbf{L}} \mathbf{\tilde{\Lambda}} \cdot \mathbf{\tilde{k}} \qquad , \qquad (15)$$

Portanto , 🖣 transforma-se como

$$\tilde{\Phi}^{i} \longmapsto \tilde{\Phi}^{i} \stackrel{i}{=} \exp(\mathbf{L}_{A,\bar{k}}) \tilde{\Phi}^{i} \qquad (16)$$

No entanto, esta prescrição não é suficiente para tornar a ação do modelo- σ simultaneamente invariante sob simetria de gauge e transformações de Kähler *locala*. Para isso, sugere-se a introdução de um par de supercampos auxiliares quirais e anti-quirais, $\xi_{i}(\Phi)$ e $\overline{\xi_{i}}(\overline{\Phi})$, cujas transformações de Yang-Mills são tais que compensam a variação de isometria de K_i. No caso global estes supercampos auxiliares são tais que

$$\delta \xi_{i}(\Phi) = \lambda^{\alpha} F_{i\alpha}(\Phi) \quad ; \quad \delta \overline{\xi}_{i}(\overline{\Phi}) = \lambda^{\alpha} \overline{F}_{i\alpha}(\overline{\Phi}) \quad . \quad (17)$$

Formulamos a prescrição de *gauging* fazendo as substituições $\bar{\Phi} = \tilde{\Phi}$ e $\tilde{\xi} \longrightarrow \tilde{\xi}$, de tal forma que obtemos a seguinte lagrangeana

$$\mathcal{E}_{\xi} = \left[\mathcal{K}_{1} \left(\Phi, \tilde{\Phi} \right) - \xi_{1} \left(\Phi \right) \right] \nabla_{\perp} \Phi^{1} - \left[\widetilde{\mathcal{K}}_{1} \left(\Phi, \tilde{\Phi} \right) - \xi_{1} \left(\tilde{\Phi} \right) \right] \nabla_{\perp} \tilde{\Phi}^{1}$$
(18)
onde

$$\nabla \phi^{I} \equiv \partial_{-} \phi^{I} - g\Gamma^{\alpha}_{-} \kappa^{I}_{\alpha}(\phi) ; \nabla_{-} \tilde{\phi}^{I} \equiv \partial_{-} \tilde{\phi}^{I} - g\Gamma^{\alpha}_{-} \tilde{\kappa}^{I}_{\alpha}(\bar{\phi})$$
(19)

Na equação (18), $\tilde{K}_{|}(\Phi, \tilde{\Phi})$ indica o complexo conjugado de $K_{|}(\Phi, \tilde{\Phi})$.

Considerando que as derivadas covariantes (19) transformam-se como os supercampos $\Phi = \tilde{\Phi}$, e tendo em vista que

$$\delta \xi_{i}(\Phi) \equiv \Lambda^{\alpha} F_{i\alpha}(\Phi) \quad ; \quad \delta \tilde{\xi}_{i}(\tilde{\Phi}) \equiv \Lambda^{\alpha} \tilde{F}_{i\alpha}(\tilde{\Phi}) \quad , \quad (20)$$

a variação da Lagrangeana (18) é dada por

$$\delta \mathfrak{L}_{\boldsymbol{\xi}} = \Lambda^{\boldsymbol{\alpha}} \left[\left(\mathfrak{L}_{\boldsymbol{\alpha}}^{\mathbf{K}}_{i} - \mathfrak{L}_{\boldsymbol{\alpha}}^{\mathbf{\xi}}_{i} \right) \nabla_{--} \Phi^{i} - \left(\mathfrak{L}_{\boldsymbol{\alpha}}^{\mathbf{\tilde{K}}}_{i} - \mathfrak{L}_{\boldsymbol{\alpha}}^{\mathbf{\tilde{\xi}}}_{i} \right) \nabla_{--} \tilde{\Phi}^{i} \right] \qquad (21)$$

Portanto a condição para a invariância local da Lagrangeana (18) é que existam vetores R e \tilde{R} , tais que

$$\mathcal{Z}_{\alpha i} = \mathcal{Z}_{\alpha} (K_{i} - \xi_{i}) = 0 \qquad ; \qquad \mathcal{Z}_{\alpha i} = \mathcal{Z}_{\alpha} (\tilde{K}_{i} - \xi_{i}) = 0 \qquad (22)$$

Acerca dos supercampos auxiliares, assinalamos que no caso da variedade com torção, o gauging de um subgrupo de isometria requer a introdução de supercampos auxiliares, os quais são vetores da variedade alvo. No entanto, uma vez que eles são holomórficos ou anti-holomórficos, a métrica definida a partir dos vetore: $R_1 \neq a$ mesma obtida a partir dos vetores K_1 . Desta forma diferentes escolhas de ξ correspondem à mesma ação do modelo- σ em termos dos campos componentes.

A EXPANSÃO DO HEAT KERNEL NO ESPAÇO-TEMPO CURVO À TEMPERATURA FINITA

H. Boschi-Filho

Departamento de Física e Química Universidade Estadual Paulista - Campus de Guaratinguetá 12500 Guaratinguetá, Caixa Postal 205, SP, Brasil

C. P. Natividade

Departamento de Matemática Universidade Estadual Paulista - Campus de Guarntinguetá 12500 Guaratinguetá, Caixa Postal 205, SP, Brasil

Resumo. Neste trabalho encontramos a expansão do heat kernel no espaço-tempo curvo à temperatura finita. Usamos, então essa expansão para calcular as anomalias quiral e de traço, nessa situação.

O heat kernel no espaço-tempo curvo é bem conhecido [1] e tem sido utilizado em técnicas de rugularização em teoria quântica de campos desde a década de 60. A partir dos trabalhos de Fujikawa [2], envolvendo o cáculo de anomalias via método funcional, houve um renovado interesse por essa técnica.

Neste trabalho vamos calcular a expansão assintótica do heat kernel no espaço-tempo curvo à temperatura finita, usando para isto o formalismo de tempo imaginário [3]. Este trabalho é uma generalização de outro anterior, restrito ao espaço-tempo chato [4].

O heat kernel no espaço-tempo curvo, à temperatura zero, é usualmente definido como [1]

$$H^{(N)}(x, x'; t) = \langle x' | e^{-tD^2} | x \rangle$$

= $e^{-tD^2} V^{1/2}(x, x') I(x, x') \delta(x, x')$ (1)

onde $D^2 = D^{\mu}D_{\mu} + X$, D_{μ} é o operador de Dirac, V(x, x') é o determinante de Van Vleck-Morette e I(x, x') o deslocamento geodético paralelo. A expansão assimtótica para $t \to 0$ de sua parte diagonal (x = x') é dada por

$$H(x,x;t) \approx \frac{1}{(4\pi)^{N/2}} \sum_{m} a_{m}(x) t^{m} , \qquad (2)$$

onde N é a dimensão do espaço-tempo $e = det e_p^a$ e os $a_n(x)$ são os coeficientes de Sceley, que são usualmente calculados por fórmulas de recorrência [1]. Entretanto a técinca desenvolvida por Fujikawa para o cálculo de anomalias via integração funcional pode também ser usada para este fina. Esta abordagem é particularmente útil no formalismo de tempo imaginário.

À temperatura finita, o heat kernel pode, então , ser escrito como:

$$H_{\mu}^{(N)}(x,x';t) = e^{-itx^2} V^{1/2}(x,x') I(x,x') \delta_{\mu}(x,x') , \qquad (3)$$

onde a função delta generalizada, à temperatura finita, é dada por

$$\delta_{\mu}^{(N)}(x,x') = \sum_{n=-\infty}^{+\infty} \int \frac{d^{(N)}k}{(2\pi)^{N}} \exp\{ik^{\mu}\sigma(x,x')_{;\mu}\}\left(\frac{2\pi}{\beta}\right) \delta\left(k_{0} - \frac{2\pi}{\beta}(n+\frac{1}{2})\right), \quad (4)$$

análoga à forma correspondente no espaço-tempo rhato [3,4]. Cabe ressaltar que esta fórmula é valida para campos fermiônicos, que são antiperiódicos em relação à translações temporais. A fórmula correspondente para campos bosônicos é obtida trocando n+1/2 por n na função delta usual. Aplicando a técnica de Fujikawa para o cálculo dos coeficientes à temperatura finita [4], encontramos

$$a_{m}(x;\beta^{2}/t) = a_{m}(x) \left(1 + \sum_{n} (-1)^{n} \exp\left\{-\frac{n^{2}\beta^{2}}{4t}\right\}\right),$$
(5)

que substituida em (2) nos fornece a expressão do heat kernel no espaço-tempo curvo à temperatura finita. Dessa forma, os kernels às temperaturas finita e zero são relacionados por:

$$H_{\mu}^{(N)}(x,x';t) = H^{(N)}(x,x';t) \left(1 + \sum_{n} (-1)^{n} \exp\left\{-\frac{n^{2} \beta^{2}}{4t}\right\}\right), \tag{6}$$

Os coeficientes à temperatura zero, $a_m(x)$, são os usuais (spin 1/2) [1]:

.

$$u_0(x) = 1 \tag{7a}$$

$$\sigma_1(x) = \frac{1}{6}R - X \tag{7b}$$

$$\frac{a_2(x)}{6} = \frac{1}{12} \frac{\lambda_{\mu\nu} \lambda^{\mu\nu}}{6} + \frac{1}{180} \left(\frac{R_{\mu\nu\rho\tau}}{6} \frac{R^{\mu\nu\rho\tau}}{6} - \frac{R_{\mu\nu}}{6} \frac{R^{\mu\nu}}{6} \right) \\ = \frac{1}{6} \left(\frac{1}{5} R - X \right)_{;\mu}^{\mu} \left(\frac{1}{6} R - X \right)^2 , \qquad (7c)$$

As anomalius, em geral, podem ser escritas como uma soma divergente [2], o mesmo acontecendo à temperatura finita:

$$A_{\beta}(x) = \sum_{\mu} \left(\bar{\phi}_{\mu}(x) \gamma \phi_{\mu}(x) \right)_{\beta}, \qquad (8)$$

onde $\gamma = \gamma_5$ para a anomalia quiral e $\gamma = 1$ para a anomalia de traço [2]. Sua expressão regularizada é então dada por

$$A_{\beta}(x)\Big|_{reg} = \lim_{s \to 0} tr\left(\gamma K_{\beta}(x,x;s)\right), \qquad (9)$$

onde $K_{\beta}(x, x; s)$ é o kernel do operador potência, definido pela transformada de Mellin [5]

$$K_{\beta}^{(N)}(x,x;s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} dt \ t^{s-1} H_{\beta}^{(N)}(x,x;t) \ . \tag{10}$$

Substituindo (5), (6) e (10) na Eq. (9), fazendo a integração em t e tomando o limite em s, obtemos:

$$A_{\beta}(x)\Big|_{reg} = A(x)\Big|_{reg} = tr\Big(\gamma a_n(x)\Big)_{n=N/2}, \qquad (11)$$

logo as anomalias quiral e de traço são independentes da temperatura. Esse resultado para a anomalia quiral já é bem conhecido no espaço-tempo chato [3], assim como para a anomalia de traco nos espaço-tempos estáticos [6] ou conformalmente chatos [7]. O resultado apresentado aqui, então , pode ser entendido como uma generalização dos anteriores. Fisicamente, este resultado pode ser explicado com base no fato dessas anomalias serem fenômenos de grandes momentos e consequentemente de pequenos comprimentos de onda. Logo, a pequenas distâncias a estrutura global do espaço tempo não modifica essas quantidades, uma vez que sempre é possível aproximar um espaço-tempo curvo, nas vizinhanças de um ponto, por um espaço-tempo chato.

Um aspecto interessante que convém salientar é a característica topológica da anomalia quiral. Essa anomalia pode ser obtida através do teorema do índice, como é bem sabido [2], logo, era de se esperar que essa anomalia fosse independente da temperatura, já que a temperatura é uma característica global da variedade não modificando sua topologia. Entretanto a anomalalia de traço apesar de não ter tal origem topológica, também exibe um comportamento semelhante. Esse fato sugere um estudo mais profundo das possíveis relações topológicas com essa anomalia.

Cabe ainda lembrar que a anális: disentida aqui pode também ser estendida à anomalia gravitacional [8] assim como à de supercorrente [9].

Referências

- B.S. De Witt, Space-Time approach to Quantum Field Theory, in Les Houches sec. XL, Eds. B.S. De Witt e R. Stora, North-Holland, 1984.
- K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195; Phys. Rev. D24 (1980) 2848. Phys. Rev. Lett. 44 (1980) 1733.
- L. Dolan e R. Jackiw, Phys. Rev. D9 (1974) 3320. C. Bernard, Phys. Rev. D9 (1974) 3312.
- H. Boschi-Filho, C.P. Natividade e C. Farina, Heat Kernel expansion at Finite Temperature, preprint IF/UFRJ/91/12 e DFTUZ.91/13.
- 5. M.S. Alves, C. Farina e C. Wotzasek, Phys. Rev. D43 (1991) 4145.
- J.S. Dowker e G. Kennedy, J. Phys. A11 (1978) 895.J.S. Dowker, Class. Q. Grav. 1 (1984) 359. R. Camporesi, Phys. Rep. 196 (1990) 1.
- 7. T.F. Treml, Can. J. Phys. 68 (1990) 96.
- L. Alvarez-Gaumé e E. Witten, Nucl. Phys. B234 (1983) 269.
- M.T. Grisaru, in Recent Developments in Gravitation, eds. S. Deser e M. Levy (Plenum, New York e London, 1978). H. Suzuki, Phys. Rev. D33 (1986) 2948.
RADIATIVE CORRECTIONS IN (2+1)-DIMENSIONAL QED

B.M.Pimentel¹, A.T.Spzyki, and J.L.Tomazelli² Instituto de Física Teórica -¹Uñiversidade Estadual Paulista Rua Pampiona, 145 01405 - São Paulo - SP - Brazil E.mail UESP@BRFAPESP

Abstract

We have calculated the vacuum polarization tensor for (2+1)-dimensional quantum electrodynamics (QED) using the analytic regularization technique by means of a gauge invariant construct. We have thus demonstrated that the gauge boson acquires physical mass at the one-loop level in the Abelian case. A generalization for the non-Abelian case showed up straightforward from this result.

1. Introduction

Gauge theories in (2+1)-dimensions^[1,2] are interesting because of their association with high temperature phenomena in four dimensions^[3]. They present, however, a challenging theoretical ambiguity in their physical result: gauge field mass may be induced radiatively at the one-loop level, depending on the choice of the method for regularizing ultraviolet (UV) divergent integrals. For instance, the Pauli-Villars method does not generate such a gauge boson mass (also called topological mass), both for Abelian and non-Abelian theories even up to two-loop level, in contrast with other techniques (see, for example, refs. [2,4,5,6]).

Among several regularization techniques available to tackle UV divergent integrals, there is one known as analytic regularization^[7], which essentialy consists in considering an analytic extention for the fermion propagator to ensure convergence in the Feynman amplitudes. However, care must be taken, since naive implementation of this technique may violate Ward's identity^[8] and so it requires a certain criterion to be implemented such that gauge invariance is preserved.

In this work we shall address this problem through a construct which preserves gauge invariance in the analytic regularization procedure and employ such a method to evaluate the one-loop photon self-energy for QED in three-dimensional space-time.

¹With partial support of CNPq, Brazil

²Supported by Capes, Brazil

2. Analytic Regularized One-Loop Photon Self-Energy

In three-dimensional space time the algebra for Dirac gamma matrices is realized using the Pawli-matrices

$$\gamma^0 = \sigma^3 , \ \gamma^1 = i\sigma^1 , \ \gamma^2 = i\sigma^2 , \qquad (1)$$

$$\gamma^{\mu}\gamma^{\nu} = g^{\mu\nu} - ie^{\mu\nu\alpha}\gamma_{\alpha} , \ g_{\mu\nu} = ding(1, -1, -1) .$$
 (2)

Consider now the vacuum polarization diagram. The general structure for the regularized polarization tensor expressed in a gauge-invariant form reads

$$\Pi_{\mu\nu}(k) = \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right) \Pi^{(1)}(k^2) + im\epsilon_{\mu\nu\alpha}k^{\alpha}\Pi^{(2)}(k^2), \qquad (3)$$

where $\epsilon_{\mu\nu\alpha}$ is the usual three-dimensional Levi-Civita tensor. Note that the equivalent for the last term in Eq.(3) is absent in a four-dimensional theory.

Following closely ref. [8], and using the gauge invariant analytic regularization there ontlined, the regulated expression for the polarization tensor is given by

$$\Pi_{\mu\nu}^{(\lambda)}(k) = -2im^{2\lambda}f(\lambda)\int_0^1 d\xi \int \frac{d^3p}{(2\pi)^3} \frac{N_{\mu\nu} + P_{\mu\nu}}{(M^2 - p^2 - i\epsilon)^{2+\lambda}}$$
(4)

where

$$\mathcal{N}_{\mu\nu} = g_{\mu\nu}(M^2 - p^2 - i\epsilon) + \frac{2}{3}(1+\lambda)p^2 g_{\mu\nu} \quad , \tag{5}$$

and

$$\mathcal{P}_{\mu\nu} = -(1+\lambda) \left[2\xi(\xi-1)k^2(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}) + im\epsilon_{\mu\nu\alpha}k^{\alpha} \right] , \qquad (6)$$

with

$$M^{2} = m^{2} - \xi(1 - \xi)k^{2} .$$
 (7)

It is convenient to rewrite Eq.(4) in the form (3), where

$$\Pi^{(1)}(k^2) \equiv 4im^{2\lambda} f(\lambda)(1+\lambda)k^2 \int_0^1 d\xi \ \xi(\xi-1) \int \frac{d^3p}{(2\pi)^3} \frac{1}{\left(M^2 - p^2 - i\epsilon\right)^{2+\lambda}} ,$$
(8)

$$\Pi^{(2)}(k^2) \equiv 2im^{2\lambda} f(\lambda)(1+\lambda) \int_0^1 d\xi \int \frac{d^3p}{(2\pi)^3} \frac{1}{(M^2 - \mu^2 - i\epsilon)^{2+\lambda}}$$
(9)

$$\Pi_{GB}^{(1)} \equiv -2im^{2\lambda}f(\lambda)g_{\mu\nu}\int_{0}^{1}d\xi \int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{(M^{2}-\mu^{2}-i\epsilon)^{1+\lambda}} , \quad (10)$$

$$\Pi_{GB}^{(2)} \equiv -\frac{4}{3}im^{2\lambda}f(\lambda)(1+\lambda)\dot{g}_{\mu\nu}\int_{0}^{1}d\xi\int\frac{d^{3}p}{(2\pi)^{3}}\frac{p^{2}}{\left(M^{2}-p^{2}-i\epsilon\right)^{2+\lambda}}$$
 (11)

The gauge-breaking terms $\Pi_{GH}^{(1)}$ and $\Pi_{GH}^{(2)}$ add up to zero, since on evaluation the two contributions given by Eqs. (10) and (11) cancel each other out. This means that the regulated polarization tensor $\Pi_{\mu\nu}^{(\lambda)}$ is already gaugeinvariant even *before* going to the limit $\lambda \to 0$.

3. Mass Generation for the Photon Field

The polarization tensor leads to the modified gauge boson propagator

$$D_{\mu\nu}(k) = \frac{-i}{k^2 - e^2 \Pi(k^2)} \left\{ g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} - i\epsilon_{\mu\nu\sigma} \frac{k^{\alpha}}{k^2} M(k^2) \right\} , \quad (12)$$

where

$$II(k^{2}) \equiv II^{(1)}(k^{2}) + mII^{(2)}(k^{2})M(k^{2})$$
(13)

and

$$M(k^2) \equiv \frac{e^2 m \Pi^{(2)}(k^2)}{1 - \frac{e^2 \Pi^{(1)}(k^2)}{k^2}} .$$
(14)

From Eq.(8) one verifies that $\Pi^{(1)}(0) = 0$. As a result, the only contribution to the gauge boson mass comes from the $\Pi^{(2)}(0)$ term. After performing the momentum integral this term results in

$$II^{(2)}(0) = -2\frac{(\pi)^{\frac{3}{2}}}{(2\pi)^{3}}m^{2\lambda}f(\lambda)\frac{\Gamma(\lambda+\frac{1}{2})}{\Gamma(\lambda+1)}\int_{0}^{1}d\xi\frac{1}{(m^{2}-i\epsilon)^{\lambda+\frac{1}{2}}}.$$
 (15)

If we now take the limit $\lambda \rightarrow 0$ we finally obtain

$$11^{(2)}(0) = -\frac{1}{4\pi m} , \qquad (16)$$

so that a topological mass is induced at the one-loop level, in contrast with the Pauli-Villars regularization method where $\Pi^{(2)}(0) = 0$.

4. Conclusion

We have considered the three-dimensional quantum-electrodynamics regularized via analytic extension for the fermion propagator and shown the

and

transversality of the one-loop vacuum polarization tensor. First and originally envisaged for four dimensional gauge theories, this formalism of analytic regularization embedding gauge invariance by construction was shown to produce a one-loop radiatively corrected photon propagator with a dislocated pole in such a way that we can attribute a non-vanishing mass to the real photon. This contrasts with the Pauli-Villars regularization, where the topological mass term in the regularized vacuum polarization tensor does not contribute for such photon mass. We would like to point out here that the odd-parity contribution from fermions is proportional to the sign of their mass, and is therefore naturally cancelled out by the regulator fields in the Pauli-Villars method. On the other hand, since the analytic regularization has no additional fields of that sort, it leaves the original fermions' effect unchanged.

Generalization to the non-Abelian case presents no difficulties since up to the one-loop level, besides the analogous Feynman diagram for QED we would have the additional contributions from diagrams involving gluon self-interaction vertices as well as diagrams with ghost loops, whose corresponding Feynman amplitudes can be regularized by means of the same gauge invariance preserving formalism. However, in this case the only contribution to the topological mass term comes from a closed fermion loop. Thus, the non-Abelian calculation is formally the same, the only difference lying on another coupling constant as well as colour group overall factors.

5. References

[1] R. Jackiw and S. Templeton, Phys. Rev. D 23 (1981) 2291.

[2] S. Deser, R. Jackiw and S. Templeton, Ann. Phys. (NY) 140 (1982) 372.

[3] S. Weinberg, in "Understanding the Fundamental Constituents of Matter" (A. Zichichi, Ed.), Plenum, New York, 1978; A. Linde, Rep. Progr. Phys. 42 (1979) 389; D. Gross, R. Pisarsky and L. Yaffe, Rev. Mod. Phys. 53 (1981) 43; S. Deser, R. Jackiw and S. Templeton, Phys. Rev. Lett. 48 (1982) 975.

[4] C. P. Martin, Phys. Lett. B 241 (1990) 513.

[5] L. Alvarez-Gaumé, J. M. F. Labastida and A. V. Ramallo, Nucl. Phys.[3 334 (1990) 103.

[6] Y -C. Kao, M. Suzuki, Phys. Rev. D 31 (1985) 2137.

[7] C. G. Bollini, J. J. Giambiagi and A. Gonzales Dominguez, Nuovo Cimento 31 (1964) 550.

[8] P. Breitenlohner and H. Mitter, Nucl. Phys. B 7 (1968) 443.

FERMIONS AND O(3)-NONLINEAR SIGMA LIODEL IN A THREE-DIMENSIONAL SPACE-TIME.

J. R. S. do Nascimento and E. R. Beserra de Mello Departamento de Física, Universidade Federal da Paraíba Cz. P. 5008 - CEP 58.059 - Juão Pessoa - PB Brasil

ABSTRACT

In this paper we study the O(3)-nonlinear σ model soliton coupled with a isospin-1/2 fermion doublet by the Yukawa-type interaction. Describing the bosonic Q = 1 sector by collective coordinate, we show that a purely fermionic action can be obtained for this system. We also calculate the induced Hopf term for the bosonic sector by integrating out the fermionic degrees of freedom, and also the induced fermionic current.

1 - INTRODUCTION

It is well known that the O(3)-nonlinear sigma model (NLoM) defined in a 2+1dimensional space-time presents topologically stable configurations, solitons, that are characterized by a charge Q defined in the next section. These solitons describe continuous maps from the compactifield coordinate space S^2 into the group space S^2 . Since the second homotopy group $H_2(S^2) = Z$, the NLoM admits infinite class of solitons⁽¹⁾.

In this paper we shall study the interaction of the Q = 1 soliton sector with a isospin-1/2 fermionic doublet using a Yukawa-type coupling. Describing the bosonic sector by a collective coordinates, we shall be able to quantize, in a semiclassical way, the total system and also to express it by a purely fermionic action. In order to obtain the induced Houf terms and the topological current we shall develop a perturbation theory in the Yukawa coupling constant.

H-THE SOLFFON-FERMION SYSTEM

The 241 dimensional O(3)-NLoM is described by the following Lagrangian:

$$L(t) = \frac{1}{2f^2} \int d^3x \, (\partial_\mu \varphi^a) \, (\partial^\mu \varphi^a), \qquad (2-1)$$

$$\frac{176}{4}$$

where $\varphi^{a}(\vec{x}, t)$, for n=1,2,3, are real bosonic field that ratisfy the constraint condition $\varphi^{a}\varphi^{a} = 1$; so, the field manifold is equivalent to a sphere S^{2} .

The sector Q = 1 can be represented by the isovector $\psi(\vec{r}) = (\hat{\pi} \sin g(\vec{r}), \cos g(\vec{r}))$, where \vec{x} is a 2-dimensional unit radial vectors, and g(r) being a function that obey the boundary condition g(0) = 0 and $g(\infty) = \pi_{\gamma}$. The topological charge defined by

$$Q = \int d^2x J^*(x), \qquad (2-2)^2$$

where the identically conserved current J^{μ} is

$$J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\lambda} \epsilon^{abc} \varphi^{a} \partial_{\nu} \varphi^{b} \partial_{\lambda} \varphi^{c}. \qquad (2-3)$$

We can study the interaction of an isospinor-1/2 Dirac fermion ψ with the soliton field $\varphi(Z)$, via the Yukawa coupling. So, the fermionic lagrangian density is given by

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - g_{\mu}\bar{\psi}\rho\psi, \qquad (2-4)$$

where ψ has four complex components: $\psi = col(\psi_1^+, \psi_1^-, \psi_2^+, \psi_2^-)$ where the indices 1,2 refer to isogvin (charge) and + ... to spin. The gamma matrices are given by $\gamma^{\mu} = (\sigma^3, i\sigma^3, i\sigma^2)$

Now, let us go back to our original problem. The Q = 1 sector configuration is invariant under a combined spatial and isospin U(1) transformation⁽²⁾. Let the sub-group of SU(2) generated by τ^2 be this symmetry group, i.e., $V(x) = e^{ix(x)\frac{2}{T}} \in U(1)$. So, under this transformation we have

$$\varphi(\vec{x}) \longrightarrow \varphi'(\vec{x}) = V^{-1}\varphi(\vec{x}) V = \begin{pmatrix} \cos g(\tau) & e^{-i(\alpha+\theta)} \sin g(\tau) \\ \\ e^{i(\alpha+\theta)} \sin g(\tau) & -\cos g(\tau) \end{pmatrix}$$
(2 - 5)

The interaction lagrangian density of this Dirac fermion with this new configuration,

$$\mathcal{L} := \hat{\psi}(i \, \rho - m) \psi - g_{\mu} \bar{\psi} \rho' \phi, \qquad (2 - 6)$$

can be writen us

$$\mathcal{L} \coloneqq \tilde{\psi}(i \not l m g_{y} \varphi) \psi' + \dot{\phi}(l) \tilde{\psi} \gamma^{0} \frac{\tau^{3}}{2} \psi' \qquad (2 - 7a)$$

if we assume that $\alpha = \alpha(t)$ and $\psi \in V^{-1}\psi$. Drogging the prime induct in the irraname field, the lagrangian is.

$$L_{F,\mu} = \int d^2x \, \bar{\psi}(i \,\beta - m - g_y \varphi(\bar{x})) \psi + \dot{\alpha}(t) \int d^2x \, \bar{\psi} \gamma^{\nu} \frac{r^2}{2} \psi \qquad (2 - 7b)$$

The bosonic lagrangian for the configuration (2 ~ 5) is:

$$L_{NL_{\sigma M}} = -M + \frac{1}{2} I \dot{\alpha}(t)^{2}, \qquad (2 - \delta a)$$

where

$$M = \frac{\pi}{f} \int_{0}^{\infty} dr r_{i} \left[(g'(r))^{2} + \frac{1}{r^{2}} \sin^{2} g(r) \right], \qquad (2 - 8b)$$

$$I = \frac{2\pi\lambda}{f}, \qquad (2 - 8c)$$

We can see that (2-8a) is equivalent to a free rotator lagrangian.

The total lagrangian for our system is written by

$$L_T = \mathbf{L}_{NLoM} + L_{F,\alpha} = -M + \frac{1}{2} I \dot{\alpha}(t)^2 + \dot{\alpha}(t) Q + L_F, \qquad (2 - 9\dot{a}) - \frac{1}{2} I \dot{\alpha}(t)^2 + \dot{\alpha}(t) Q + L_F,$$

with

$$Q = \int d^2x \,\bar{\psi}\gamma^0 \frac{\tau^2}{2} \psi, \qquad (2-9b)$$

and

$$L_F = \int d^2x \,\bar{\psi}(i\,\beta - m - g_{\mu}\varphi(\vec{x}))\psi \qquad (2 - 9c)$$

One can see that in L_T , $\alpha(t)$ is a cyclic variable, so its conjugate momentum P is conserved

$$I' \doteq \frac{\partial L_T}{\partial \dot{\alpha}} = I \dot{\alpha}(t) + Q \approx \kappa.$$

We can eliminate $\phi(t)$ in favor of P and it fend to parely fermionic hamiltonian

$$H = M + \frac{(\kappa - Q)^2}{2I} + \int d^2 x \, \psi^{\dagger} h_0 \psi \qquad (2 - 10a),$$

.

$$h_0 = \vec{\alpha}_* \vec{p} + \beta \left(m + g_y \varphi(\vec{x}) \right). \tag{2.306}$$

.

III - SOME PLATURBATIVE RESULTS

III - 1. The induced Hopt terms for the $NL_{\sigma}M$.

The effective labrangian to the h(t) field can be obtained by the diagram shown in Fig. 1, that is obtained by integrating out the fermionic degrees of freedom.

Fig. 1 - Lowest order in $\hat{\alpha}(t)$ in the bosonic effective hyperspine.

We shall concernate ourselves only in the first diagrams, that, as we shall see, provides the Hopf term for the bosonic sector.

$$L_{eff}^{(1)}(\dot{\alpha}) = -\frac{\dot{c}(f)}{2} \int d^3x \, Tr\left[S(x,x)\gamma^0 \frac{\tau^3}{2}\right], \qquad (3-1)$$

where the trace is over the Dirac and isospin matrices.

The full fermion propagator S(x, y) (....) must obey the differential equation:

$$D(x)S(x,y) = \delta^2(x \cdot y),$$

with D(x) being the Dirac operator below

$$D(x) = i \int m \cdot g_y \varphi(\vec{x}).$$

We can obtain S(x, y) by defining

$$S(x,y) = \int_{\varepsilon} \frac{dE}{2\pi} e^{-iE_{x}^2 - i\omega} S_{U}(\vec{x},\vec{y})$$

where C is a causal contour in the complex E plane,

The fermionic propagator can be obtained only by a pertubative expression given by following series in power of g_p .

$$\begin{split} S_{E}(\vec{x},\vec{y}) &= S_{E}^{(0)}(\vec{x}-\vec{y}) + g_{y} \int d^{3}z_{1} S_{E}^{(a)}(\vec{x}-\vec{z}_{1})\varphi(\vec{z}_{1})S_{E}^{(0)}(\vec{z}_{1}-\vec{y}) + \\ g_{y}^{2} \int \int d^{3}z_{1}d^{4}z_{2} S_{E}^{(a)}(\vec{x}-\vec{z}_{1})\varphi(\vec{z}_{1})S_{E}^{(0)}(\vec{z}_{1}-\vec{z}_{2})\varphi(\vec{z}_{2})S_{E}^{(0)}(\vec{z}_{2}-\vec{y}) + \dots \end{split}$$

Introducing the Fourier transforms of $S_E(\vec{x}, \vec{y})$ and $\varphi(\vec{x})$, we have

$$S_{\mathcal{B}}(\vec{x}, \vec{y}) = \int \int \frac{d^2 \vec{p}_f}{(2\pi)^2} \frac{d^2 \vec{p}_i}{(2\pi)^2} e^{(\vec{x}\vec{p}_f - \vec{y}\vec{p}_i)} S_{\mathcal{B}}(\vec{p}_f, \vec{p}_i), \qquad (3 - 2a)$$

wnere

$$\begin{split} S_{B}(\tilde{\mu}_{f}, \tilde{p}_{i}) &= S_{E}^{(0)}(\bar{p}_{f})(2\pi)^{2} \delta^{2}(\bar{p}_{f} - \bar{p}_{i}) + \\ g_{y} \int \frac{d^{2}k_{1}}{(2\pi)^{2}} S_{E}^{(0)}(\bar{p}_{f}) \varphi(\vec{k}_{1}) S_{E}^{(0)}(\bar{p}_{i})(2\pi)^{2} \delta^{2}(\bar{p}_{f} - \bar{p}_{i} - \vec{k}_{1}) + \\ g_{y}^{2} \int \int \frac{d^{2}k_{1}}{(2\pi)^{2}} \frac{d^{2}k_{2}}{(2\pi)^{2}} S_{E}^{(0)}(\bar{p}_{f}) \varphi(\vec{k}_{2}) S_{E}^{(0)}(\vec{k}_{1} + \bar{p}_{i}) \varphi(\vec{k}_{1}) S_{E}^{(0)}(\vec{p}_{i}) \times \\ (2\pi)^{2} \delta^{2}(\bar{p}_{f} - \bar{p}_{i} - \vec{k}_{1} - \vec{k}_{2}) + \dots \end{split}$$
(3 - 2b)

with

$$S_E^{(0)}(\vec{p}) = \frac{\gamma^0 E - \frac{1}{P^2 - \mu^2 - m^2}}{E^2 - \mu^2 - m^2} \qquad (3 - 2c)$$

Now, its order to obtain the induceed Hopf term for the NL σ M we have to use the perturbation expansion (3-2b) in the calculation of the effective action (3-t).

$$L_{eff}^{(1)}(\dot{\alpha}) = -\frac{\dot{\alpha}(i)}{2} \lim_{e \to b^+} \int \int \frac{dB}{2\pi} e^{-iE\epsilon} \frac{d^2 j}{(2\pi)^2} Tr \left[S_E(j\bar{i},\bar{j})\gamma_b x^b \right]. \tag{3-3}$$

Our calculation for the induced Hopf term will be developed in the fourth and sixth order in the parameter g_y in the series (3.2b)

 $n + \Theta(g_y^4).$

Colculating the $\Theta(g_y^4)$ in $S_E(\vec{p}_f,\vec{p}_f)$ given in (3-2a) and substatting in (3-3) we get:

$$\begin{split} L_{cff}^{(1)}(\dot{\alpha}(\vec{s})) &= -g_{v}^{4} \frac{\dot{\alpha}(t)}{2} \int \int \int \frac{d^{2}q_{1}}{(2\pi)^{2}} \frac{d^{2}q_{2}}{(2\pi)^{2}} \frac{d^{2}q_{3}}{(2\pi)^{2}} \varphi^{n}(\vec{q}_{1}) \varphi^{b}(\vec{q}_{2}) \varphi^{c}(\vec{q}_{3}) \times \\ \varphi^{4}(-\vec{q}_{1}-\vec{q}_{2}-\vec{q}_{3}) f^{abcd}(\vec{q}_{1},\vec{q}_{2},\vec{q}_{3}) \qquad (3-4a) \end{split}$$

where

$$\Pi^{abrd}(\vec{q}_{1},\vec{q}_{2},\vec{q}_{3}) \approx \lim_{e \to 0^{+}} \int \int \frac{dE}{(2\pi)} \frac{d^{2}p}{(2\pi)^{2}} e^{-iE_{1}} Tr \Big[S_{E}^{(0)}(\vec{p}) S_{E}^{(0)}(\vec{p} - \vec{q}_{1}) S_{E}^{(0)}(\vec{p} - \vec{q}_{1} - \vec{q}_{2}) \times S_{E}^{(0)}(\vec{p} - \vec{q}_{1} - \vec{q}_{2} - \vec{q}_{3}) S_{E}^{(0)}(\vec{p}) \mathcal{T}_{0} \mathcal{T}^{a} \mathcal{T}^{b} \mathcal{T}^{c} \mathcal{T}^{d} \mathcal{T}^{b} \Big], \qquad (3 - 4b)$$

So, alfer some steps we get:

$$\Pi^{abcd}(\vec{q}_1, \vec{q}_2, \vec{q}_3) = \frac{3m}{16\pi} \epsilon^{ij}(q_2)_i(q_3)_j \int_0^1 dz_1 \int_0^{1-r_1} dz_2 \times \int_0^{1-z_1-z_2} dz_3 \frac{[2(z_1+z_2)-1]}{a^{\frac{3}{2}}} A^{abcd}, \qquad (3-5a)$$

where

$$A^{cbcd} = Tr \tau^{a} \tau^{b} \tau^{c} \tau^{d} \tau^{3}, \qquad (3-5b)$$

and

$$a = m^2 + f(q_i, z_i).$$

Unfratomately inserting (3-5) into (3-4a) and making an inverse Wick rotation it is not possible to get a numerical value for the coefficient of the induced Hopf term, and taking the limit for 1 species or small momenta $q_{1,2}$ $\left[\int_{-\infty}^{abrd} \frac{d}{dt} = 0 \right]$. So, to Hopf term is malaced number.

 $1_{0} - 0(g_{p}^{6}).$

The Calculation of the effective action in order (g_p^6) can be done in the same way as the previous calculation, but is much harder. After we have made the Feynman reparimetrization $p \mapsto p + \sum_{i=1}^{6} q_i z_i$, neglected terms with q_1^2 , odd power of E, etc, performing the trace over the gamma matrices, and also using the REDUCE and MAPLE program in some steeps of this calculation, we found that in the limit as *m* is large the Hopf term is obtained.

$$L_{eff} = -\left(\frac{g_{\nu}}{m}\right)^{6} \frac{m}{[m]} \vartheta \dot{\alpha}(t), \qquad (3-6)$$

where ϑ is a non-null numerical constant of order 0,1.

III-2 The Induced Topologial current

Although the calculation of the induced topological current has be done by others authors using atters models⁽³⁾ and techniques⁽³⁾, we also would like to present our calculation for this model using the perturbation method developed previously. So, let us start with the standard expression for the fermionic current.

$$\langle J^{p}(x) \rangle = \langle T \bar{\psi}_{(x)} \gamma^{p} \psi_{(x)} \rangle, \qquad (3-7)$$

and obtain this expectation value in presence of a general backgraound bosonic field $\varphi^a_{(a)}$. We shall consider as the interaction action

$$S_{I} = \int d^{2}x g_{x} \tilde{\psi}_{(x)} \varphi(x) \psi_{(x)}. \qquad (3-6)$$

Because the topological current for the NLoM, Eq.(2-2b), is a tri-linear expression in the field $\varphi^{\mu}(x)$, all that we have to do is to work out (3-7). By three insertion of the perturbation, connected by the unperturbed fermionic propagator, in momentum space, we have

$$< J^{p}(x) > -\int \int \int \frac{d^{2}y_{1} - d^{2}y_{2} - d^{2}y_{2}}{(2\pi)^{3}} \frac{e^{-ix(q_{1}+q_{2}+q_{3})}}{(2\pi)^{3}} H^{p}(q_{1}+q_{2}+q_{3})$$
(3 - 9n)

where

$$\Pi^{\rho}(q_{1} + q_{2} + q_{3}) = g_{\nu}^{1} \int \frac{d^{2}p}{(2\pi)^{3}} Tr \Big\{ \gamma^{\rho} S^{(0)}(p) \varphi(q_{1}) S^{(0)}(p - q_{1}) \varphi(q_{2}) \times S^{(0)}(p - q_{1} - q_{2} - q_{3}) \Big\}.$$
(3 - 9b)

The expression above can be obtained by the use of the Feynman reparametrization, collecting all the terms proportional to m^0 and m^2 and performing the trace over the gamma and Pauli matrices; the result, in the limit as *m* is large, is

$$\begin{split} \Pi^{\rho}(q_{1}+q_{2}+q_{3}) &= -\left(\frac{g_{\gamma}}{|\imath q_{1}|}\right)^{a} \frac{1}{192\pi} e^{\rho_{\mu}\nu} e^{abc} \Big[29(q_{1})_{\mu}(q_{2})_{\nu} + \\ &+ 14(q_{1})_{\mu}(q_{3})_{\nu} + 3(q_{2})_{\mu}(q_{3})_{\nu} \Big] \varphi^{a}(q_{1}) \varphi^{b}(q_{2}) \varphi^{c}(q_{3}). \quad (3-10) \end{split}$$

Now, inserting (3-10) into (3-9a) we get, for $g_y = m$,

$$\langle J^{\rho}(x) \rangle = \frac{m}{|m|} \frac{1}{16\pi} \epsilon^{e\mu\nu} \epsilon^{abc} (\partial_{\mu} \varphi^{b}) (\partial_{\nu} \varphi^{c}), \qquad (3-11)$$

that is in agreement with provious results given in Refs. (3,4).

IV - CONCLUSION AND DISCUSSION

In this paper we have shown that the Q = 1 soliton sector of the NLoM coupled with isopinor- $\frac{1}{2}$ fermions by a Yulawa coupling can be expressed by a purely fermionic action. For this system it is also possible to develop a perturbative series for the fermion propagator and obtain some perturbative results: i) For the induced Hopf term we have shown that, although it formally can be expressed as a fourth powerpof the bosonic field $\varphi^{a}(x)$, it only appears in the sixth order in g_{y} in the perturbative series. ii) The topological current agrees, unless a factor $\frac{1}{2}$ with its formal expression.

REFERENCES

- 1 A.A.Belavin and A.E. Poliyakov, JETP Lett. 22 (1975), 245 ...
- 2 Mail Bowel, D. Kapaoah and L C R. Wijewardhana, Nucl. Phys. B 271 (1986), 417
- a. T. Januzewich, Phys. Lett. B 146 (1985) 337
- 4 & Goatstone and F. Wilszel, Phys. Rev. Let. 47 (1981), 986; Y.-B.Chen and F. Wilszel, Ing. Journal of Mon. Phys. B 3 (1989), 1252.

O ESPECTRO DO OSCILADOR DE DIRAC VIA ÁLGEBRA DE OSCILADOR GENERALIZADO DE WIGNER-HEISENBERG

Jambunatha Jayaraman (Departamento de Física-CCEN, UFPB, 58059 - João Pessoa-PB), Rafael de L. Rodrigues e A.N.Vaidya (Instituto de Física-UFRJ, 21941 - Rio de Janeiro - RJ)

RESUMO

No presente traballio, incorporamos o oscilador de Dirac dentro da estrutura da álgebra de Wigner-Heisenberg na sua forma super-realizada. Tal conexão nos permite a conversão do problema espectral do oscilador de Dirac para o problema correspondente de uma matriz simples Hermitiana no espaço de número para a partícula de Wigner, proporcionando-nos uma fácil determinação do espectro de energia completo. Do nosso método algébrico, apontamos a assimetria inerente do espectro para energia positiva e negativa e indicamos também a conexão com o oscilador SUSI tridimensional associado ao oscilador de Dirac.

1. INTRODUÇÃO

A equação do oscilador de Dirac⁽¹⁾ ($c = \hbar = 1$)

.

$$i\frac{\partial}{\partial t}\psi_D = H_D\psi_D, \quad H_D = \underline{\alpha} \cdot (\underline{p} - i\underline{p}\beta) + M\beta \quad (\underline{\alpha} = \Sigma_1\underline{\alpha}, \beta = \Sigma_3), \quad (1)$$
$$([\Sigma_1, \sigma_i] = 0 \quad (ij = 1, 2, 3)).$$

tem atraido muita atenção na literatura recente⁽³⁾ devido os aspectos supersimétricos (SUSI) do seu espectro de energia. No entanto, a interessante conexão de H_D com o oscilador generalizado de Wigner-Heisenberg (WH) parece não ter sido abordada na literatura. No presente trabalho, incorporamos H_D dentro da estrutura da álgebra WH super-realizada (Seção 2) de modo a extrair facilmente as propriedades especiais do seu espectro (Seção 3). A Seção 4 contém os comentários.

2. A ÁLGEBRA WH SUPER-REALIZADA EM TRÊS DIMENSÕES

A Hamiltoniana de Wigner $H(\underline{a}, \underline{L}+1)$ e seus operadores escada $a^{\pm}(\underline{a}, \underline{L}+1)$ nas suas formas super-realizadas dadas por (Jayaraman e Rodrigues⁽³⁾)

$$a^{L}(\underline{a} \cdot \underline{L} + 1) = \frac{1}{\sqrt{2M\omega}} \left\{ \pm \left(\frac{\partial}{\partial r} + \frac{1}{r}\right) \pm \frac{1}{r} (\underline{a} \cdot \underline{L} + 1) \Sigma_{3} - M\omega r \right\} \Sigma_{1} = \left\{ a^{L}(\underline{a} \cdot \underline{L} + 1) \right\}^{\dagger}, \quad (2)$$

$$\begin{aligned} \mathcal{H}(\underline{\alpha}\cdot\underline{L}+1) &= \\ \begin{pmatrix} \mathcal{H}_{-}(\underline{\alpha}\cdot\underline{L}) &= \frac{1}{2M} \left\{ -\left(\frac{\beta^{2}}{M^{2}}+\frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{1}{r^{2}}\underline{\alpha}\cdot\underline{L}(\underline{\alpha}\cdot\underline{L}+1) + Mw^{2}r^{2} \right\} & 0 \\ 0 & \mathcal{H}_{+}(\underline{\alpha}\cdot\underline{L}) &\equiv \mathcal{H}_{-}(\underline{\alpha}\cdot\underline{L}+1) \end{pmatrix}, \quad (3) \end{aligned}$$

satisfazem as seguintes relações de (anti-)comutação da Álgebra WII em três dimensões (3D):

$$\left[II(\underline{\sigma} \cdot \underline{L} + 1), a^{\pm}(\underline{\sigma} \cdot \underline{L} + 1)\right]_{-} = \pm \omega a^{\pm}(\underline{\sigma} \cdot \underline{L} + 1), \qquad (4)$$

$$\frac{1}{2} \left[a^{-} (\underline{\sigma} \cdot \underline{L} + 1), a^{+} (\underline{\sigma} \cdot \underline{L} + 1) \right]_{+} = \frac{1}{\omega} H(\underline{\sigma} \cdot \underline{L} + 1).$$
(5)

Também os $a^{\pm}(\underline{q} \cdot \underline{L} + 1)$ satisfazem a seguinte relação generalizada da comutação quântica:

$$\left[a^{-}(\underline{\sigma} \cdot \underline{L} + 1), a^{+}(\underline{\sigma} \cdot \underline{L} + 1)\right]_{-} = 1 + 2(\underline{\sigma} \cdot \underline{L} + 1)\Sigma_{3}.$$
 (6)

Tai forma super-realizada da álgebra WH, contida nas equações (2)-(6), foi desenvolvida por nós⁽³⁾ como uma técnica do operador para achar, de modo fácil, a resolução espectral dos potenciais relacionados ao oscilador. (Veja os detalhes em Jayaraman e Rodrigues⁽³⁾ para obter os espectros de $H(\underline{\sigma} \cdot \underline{L} + 1), H_{-}(\underline{\sigma} \cdot \underline{L}) \in H_{+}(\underline{\sigma} \cdot \underline{L})$ por operações puramente algébricas.)

3. O ESPECTRO DO OSCILADOR DE DIRAC

.

Após uma transformação unitária feita por *U*, a equação de autovalor $H_D\psi_D = E_D\psi_D$ se torna

$$\tilde{H}_{D}\chi_{\nu} = E_{D}\chi_{D} \quad , \quad \tilde{H}_{D} = UH_{D}U^{\dagger}, \chi_{D} = U\psi_{D}, U = \begin{pmatrix} 1 & 0 \\ 0 & \sigma_{r} = \frac{g_{r}}{r} \end{pmatrix} \quad . \tag{7}$$

onde

.

$$\bar{H}_D = \Sigma_1 p_r + \left(\frac{\varrho \cdot \underline{L} + 1}{r} - M\omega r\right) \Sigma_2 + M\Sigma_3 = \left\{i\sqrt{2M\omega}(Q_- - Q_+) + M\Sigma_3\right\}$$
(8)

$$=i\sqrt{2M\omega}\left\{\frac{1-\Sigma_3}{2}a^-(\underline{\varrho}\cdot\underline{L}+1)-\frac{1+\Sigma_3}{2}a^+(\underline{\varrho}\cdot\underline{L}+1)\right\}+M\Sigma_3$$
(9)

com $a^{l}(\underline{a} \cdot \underline{b} + 1)$ justamente os operadores escada em (2) da Hamiltoniana de Wigner em (3). Tratamos abaixo o caso de $\underline{a} \cdot \underline{b} + 1 \rightarrow \ell + 1$ explicitamente.

Sobre o conjunto completo dos estados $|n; \ell + 1 \rangle \equiv |n \rangle$ $(n = 0, 1, 2, \dots)$ da partícula de Wigner valem as seguintes propriedades⁽⁴⁾:

$$\begin{split} H(\ell+1)|n &> = E^{\{n\}}(\ell+1)|n > , E^{\{n\}}(\ell+1) = (\ell+\frac{3}{2}+n)\omega, < n|n' > = \delta_{nn'}(n,n'=0,1,\cdots), \ (10)\\ a^{-}(\ell+1)|2m > = \sqrt{2m}|2m-1 > , a^{-}(\ell+1)|2m+1 > = \sqrt{2m+1+2(\ell+1)}|2m > ,\\ a^{+}(\ell+1)|2m > = \sqrt{2m+1+2(\ell+1)}|2m+1 > , a^{+}(\ell+1)|2m+1 > = \sqrt{2m+2}|2m+2 > ,\\ \Sigma_{3}|2m > = |2m > , \Sigma_{3}|2m+1 > = -|2m+1 > (m=0,1,2,\cdots). \end{split}$$

Expandindo a parte radial de χ_D em termos da base $|n \rangle$, isto é, $\chi_D = \sum_{m=0}^{\infty} C_{2m}|2m \rangle + \sum_{m=0}^{\infty} C_{2m+1}|2m + 1 \rangle$ e com uso de (11) em (7) a (9), obtemos após simplificação, que

$$\begin{bmatrix} -M & i\sqrt{4M\omega n} \\ -i\sqrt{4M\omega n} & M \end{bmatrix} \begin{bmatrix} C_{2n-1} \\ C_{2n} \end{bmatrix} \approx E_D^{(n)}(\ell+1) \begin{bmatrix} C_{2n-1} \\ C_{2n} \end{bmatrix} \quad (n=0,1,\cdots,C_{-1}\equiv 0) \quad (12)$$

a qual fornece a resolução espectral:

$$E_D^{(0)}(\ell+1) = M, \quad E_{D;\pm}^{(n)}(\ell+1) = \pm \sqrt{M^2 + 4M\omega n} \quad (n=1,2,\cdots)$$
(13a)

com

$$\chi_{D}^{(0)}(\ell+1) = |0\rangle, \ \chi_{D;\pm}^{(n)}(\ell+1) \propto \left\{ \left(\mathcal{B}_{D;\pm}^{(n)}(\ell+1) + M \right) |2n\rangle + i\sqrt{4M\omega n} |2n-1\rangle \right\} (n=1,2,\cdots).$$
(13b)

A não-dependência de $\mathcal{B}_{D;\pm}^{(n)}(\ell+1)$ em ℓ significa que existe um grau de degenerescência infinito desses autovalores.

A repetição da análise acima para $g \cdot L + 1 \rightarrow -(\ell + 1)$ fornece

$$E_{D;\pm}^{(n)}\{-(\ell+1)\} = \pm \sqrt{M^2 + 2M\omega(2n+2\ell+3)} \quad (n=0,1,\cdots;\ell=0,1,\cdots)$$
(14a)

com

$$\chi_{D_{i}+}^{(n)}|-(\ell+1)| \propto \Sigma_{1}\left\{\left(E_{D_{i}+}^{(n)}[-(\ell+1)]-M\right)|2n>-i\sqrt{2M\omega(2n+2\ell+3)}|2n+1>\right\}(n=0,1,\cdots).$$
 (14b)

A ausência do antovalor -- M para a energia significa uma assimetria do espectro do oscilador de Dirac entre as energias positivas e negativas.

As autofunções físicas ϕ_D na representação de Dirac podem ser facilmente obtidas através da transformação inversa de U sobre χ_D .

A conexão de \bar{H}_D^{\dagger} com $H(\underline{a} \cdot \underline{L} + 1)$ e H_{SUSI} segue-se das equações (8), (9), (3) e (6):

$$H_{\rm SUSI} = \frac{1}{2M\omega} (\bar{H}_D^2 - M^2) = H(\underline{a} \cdot \underline{L} + 1) - \frac{\omega}{2} \{1 + 2(\underline{a} \cdot \underline{L} + 1)\Sigma_3\}$$
(15a)

$$= [Q_{-1}Q_{+1}]_{+1}$$
(15b)

$$Q_{-}^{2} = Q_{+}^{2} = 0, \quad [I_{SUSY}, Q_{T}]_{-} = 0$$
 (15c)

4. COMENTÁRIOS

Una questão interessante sobre a existência ou não de uma interação que inverte a assimetria do espectro deduzido acima pode ser respondida afirmativamente. Tal interação não mínima corresponde à $p \to \pi = p + in\beta$ em vez de $p \to \pi = p - in\beta$ como em (1). A não equivalência dos espectros nestes dois casos segue-se da ausência de uma transformação unitária a qual deve transformar $\mu \to \alpha \beta \to \beta$ mas $\alpha \beta \to -\alpha \beta$.

REFERÊNCIAS

- 1 M. Moshinsky e A. Szczepaniac, J. Phys. A: Math. Gen. 22, L817 (1989)
- 2 Voja O. Castanas, A. Frank, R. López e L.F. Urrutia, Phys. Rev. D43, 544 (1991) para as outras referências.
- 3 J. Jayaraman e Rafael de L. Rodrigues, J. Phys. A: Math. Gen. 23, 3123 (1990)
- 4 J. K. Sharma, C. L. Mehta e E.C.G. Sudarshan, J. Math. Phys. 19, 2089 (1978)

ESTADOS COERENTES VIA ALCEBRA DE VIGNER-HEISENBERG

R. L. Rodrigues (Departamento de Ciências Exatas e da Natureza-UFPB, Cajazeiras-PB, 58.900)

A. N. Valdya (Instituto de Fisica-UFRJ, Rio de Janeiro-RJ, 21.945)

J. Jayaraman (Departamento de Fisica-UFPB, João Pessoa-PB, 58.000)

Resumo, Desenvolvemos um formalismo geral para se construir os estados coerentes canónicos de potenciais gerais tipo oscilador com barreira centrifuga. Mostramos que eles são não-ortogonais, super-completos e normalizáveis. Extensões para os estados coerentes generalizados são discutidas.

I. INTRODUÇÃO

Num artigo recente, Jayaraman e Rodrigues (JR) [1] mostraram a utilidade do método algébrico de Wigner-Heisenberg (WH) [2-5] para se resolver os problemas espectrais de sistemas quânticos que possuem conexões com osciladores. Neste trabalho, construiremos os Estados Coerentes Canônicos (ECC) de um oscilador generalizado, embutido no setor bosônico do Hamiltoniano de Wigner (veja eq.(3)), como uma superposição dos seus repectivos autoestados, de modo análogo áqueles do oscilador harmônico simples [6]. Utilizando o sistema de unidades em que M=1= ω =1, a super-realização JR da álgebra WH é alcançada através dos seguintes operadores escada mutuamente adjuntos:

$$\alpha_{(\frac{1}{2})}^{(\frac{1}{2})} = \frac{\sum_{i=1}^{2} \left\{ \pm \frac{1}{i_{x}} + \frac{1}{2x} \sum_{i_{x}} - x \right\} = \left\{ \alpha_{(\frac{1}{2})}^{\frac{1}{2}} \right\}^{\frac{1}{2}}$$
(1)

.

E, assim, nos proporcionando um Hamiltoniano de Wigner diagonal com dois setores (bosónico e fermiónico),

$$H_{\frac{1}{2}} = \frac{1}{2} \begin{bmatrix} \Omega_{\frac{1}{2}} \end{bmatrix}, \Omega_{\frac{1}{2}} \end{bmatrix} = \begin{pmatrix} H_{\frac{1}{2}} \\ H_{\frac{1}{2}} \end{bmatrix}$$

cujo setor bosónico é o Hamiltoniano de um oscilador harmónico mais uma barreira centrifuga, a saber,

$$H(\frac{1}{2}-1) = \frac{1}{2} \left\{ -\frac{d^{2}}{dx^{2}} + x^{2} + \frac{1}{x^{2}} \left(\frac{c}{2} - 1 \right) \frac{c}{2} \right\}, c \in \mathbb{R}$$
(3)

A partir da relação de comutação escada da álgobra WI,

$$[H(\varsigma), O^{\pm}(\varsigma)] = \pm O^{\pm}(\varsigma) \qquad (4)$$

podemos derivar uma relação de comutação generalizada:

$$\left[O(\frac{1}{2}),O(\frac{1}{2})\right]=1+c\Sigma, \qquad (5)$$

E das propriodades das matrizes de Fauli, Σ_{i} (1=1,2,3), obtemos:

$$\left[\Sigma_{3}, U^{\dagger}(\xi)\right]_{\xi} = 0 \implies \left[\Sigma_{3}, H(\xi)\right] = 0 \qquad (6)$$

As eqs.(2) e (4) juntamente com as eqs. derivadas (5) e (6), constituem a álgebra Wil, a qual é para-bose de um grau de liberdade.

Os autoetados do setor bosónico, $| \psi_{\ell_{2}}^{(m)} \cdot i \rangle >$, pertencem ao autoespaço associado aos quanta pares. Os operadores escada destes quanta, $\beta^{*}(\xi)$, são realizados por operadores quadráticos, obtidos a partir da relação de comutação escada da álgebra WII:

$$\vec{F}(\frac{1}{2}) = \frac{1}{2} \left\{ \frac{d^2}{d_1 t} + x^2 - \frac{C}{2xt} (\frac{C}{2} - 1) + 2xd + 1 \right\} = \frac{1}{2} \left\{ \frac{d^2}{d_1 t} + x^2 - \frac{C}{2xt} (\frac{C}{2} - 1) + 2xd + 1 \right\} = \frac{1}{2} \left\{ \frac{d^2}{d_1 t} + x^2 - \frac{C}{2xt} (\frac{C}{2} - 1) + 2xd + 1 \right\} = \frac{1}{2} \left\{ \frac{d^2}{d_1 t} + x^2 - \frac{C}{2xt} (\frac{C}{2} - 1) + 2xd + 1 \right\} = \frac{1}{2} \left\{ \frac{d^2}{d_1 t} + x^2 - \frac{C}{2xt} (\frac{C}{2} - 1) + 2xd + 1 \right\} = \frac{1}{2} \left\{ \frac{d^2}{d_1 t} + x^2 - \frac{C}{2xt} (\frac{C}{2} - 1) + 2xd + 1 \right\} = \frac{1}{2} \left\{ \frac{d^2}{d_1 t} + \frac{1}{2xt} + \frac{1}{2xt} (\frac{C}{2} - 1) + \frac{1}{2xt} + \frac{1}{2x$$

$$\begin{bmatrix} \dot{H}(\frac{1}{2}-1), \dot{B}(\frac{1}{2}) \end{bmatrix} = \pm 2 \dot{B}(\frac{1}{2})$$
 (8)

Da relação de comutação escada dada por (8), vemos que esses operadores deslocam os quanta pares em duas unidades, i.é, $2m \rightarrow 2mt2$, ou equivalentemente, $m \rightarrow mt1$. Neste caso, obtemos:

$$B(\frac{1}{2}) | \Psi(\frac{1}{2}-1) \rangle = \frac{2m(2m+c-1)}{12} | \Psi(\frac{m-1}{2}-1) \rangle . \quad (9)$$

$$B'(\frac{1}{2}) | \mathcal{V}_{-}^{(m_{1})} = \{2(m+1)(2m+c+1)\} | \mathcal{V}_{-}^{(m+1)}$$
(10)

TELESTADOS COEDENTES CARÓNECOS DO SETOR BOSÔNECO

Os ECC do setor bozanico do Hamiltoniano de Wigner são definidos como sendo os autoestados do operador de aniquitação dos quanta pares ,

$$B(\xi)|F,\xi-1>=F|F,\xi-1>$$
 (11)

onde o autovalor β pode assumir valores complexos. Existem outras definições possiveis [8]. Expandindo os ECC na base, $\langle | \psi_{(\frac{r}{2}-1)} \rangle$, obtemos a seguinte expressão para os coeficientes da expansão, g_{rr} :

$$q_{m} = \beta \left\{ 2m(2m+c-1) \right\} q_{m-1}^{-1/2} = \left(\frac{\beta_{2}}{2} \right) \left\{ \frac{\beta_{1}}{2} \right\} \left(\frac{\beta_{1}}{2} \right) \left($$

onde |? é a função Gama ordinária. Agora, usando a condição de normalização, obtemos os seguintes ECC normalizados:

$$|\mathcal{B}, \underline{\varsigma} - 1 \rangle = \left\{ \left[\left(\frac{\varsigma + 1}{2} \right) \right] \left[\left(|\mathcal{P}| \right) \right] \left\{ \left(\frac{|\mathcal{P}|}{2} \right)^{\frac{\varsigma - 1}{4}} \int_{-\infty}^{\infty} \frac{\left(\frac{\mathcal{B}}{2} \right)^{m}}{\left(\frac{1}{2} \right)^{\frac{\varsigma - 1}{4}}} \int_{-\infty}^{\infty} \frac{\left(\frac{\mathcal{B}}{2} \right)^{m}}{\left(\frac{1}{2} \right)^{\frac{\varsigma - 1}{4}}} \right] \left\{ \frac{\mathcal{B}}{\mathcal{B}} \right\}^{\frac{1}{2}}$$
(13)

onde as funções de Bessel modificadas $\prod_{\mathcal{M}} (X)$ são dadas por:

$$I_{\mathcal{A}}(\mathbf{x}) = \sum_{m=0}^{\infty} \frac{\left(\frac{\mathbf{x}}{2}\right)^{2m+\mathcal{A}}}{m! \Gamma(m+\mathcal{A}+1)}$$
(14)

Note que o estado de vácuo também é um ECC, o qual está associado ao autovalor zero. Considerando o produto escalar entre dois ECC associados a autovalores diferentes, obtemos:

$$\langle \xi_{j\frac{\nu}{2}} - 1 \rangle = \frac{\sum_{m=0}^{10} \frac{1}{2} \left(\xi^{m} \beta_{4} \right)^{m} \left[m! \Gamma'_{m} + \frac{c_{4}}{2} \right]^{1/2}}{\Gamma'_{1} \left(\frac{c_{4}}{2} \right)^{1-\frac{\nu}{4}} \left[\prod_{j=1}^{1} \left[\frac{1}{2} \right]^{1-\frac{\nu}{4}} \right] \left[\prod_{j=1}^{1} \left[\frac{1}{2} \right]^{1-\frac{\nu}{4}} \right]^{1-\frac{\nu}{4}}}$$
(15)

Isto nos assegura a não-ortogonalidade dos ECC. A importante propriedade de completeza juntamente com a não-ortogonalidade, nos permite fazer a expansão de um estado arbitrário, $|\psi(\frac{G}{2}-f)\rangle$, numa base constituida de ECC. Em particular, podemos expandir um ECC em tal base, o que equivale a dizer que os ECC são super-completos. Isto será mostrado em outra parte.

11. CONCLUSÕES

Construimos os Estados Coerentes Canônicos do setor bosônico do Hamiltoniano de Wigner super-realizado. Eles são os autoestados de um operador de aniquilação quadrático, independente do número de quanta. Os ECC são não-ortogonals, super-completos e normalizáveis.

Ao contrário dos ECC para-bose deduzidos por Sharma, Mehta e Sudarshan [7], estes podem ser identificados com aqueles do oscilador radia) tridimensional (8), do oscilador isotrópico 3D de spin 1/2 [9], dos osciladores isotônico 10 e radial D-dimensional Especificamente, tal correspondência ocorre quando a [10]. constante característica da álgebra Wil, c/2 , for substituída por, respectivamente, (!+i), ! - momento angular crbital; por (o.L+1), σ -matriz de spin 1/2 de Pauli e L-operador momento angular orbital em 3 dimensões; por ($\lambda + 1$), $\lambda \in \mathbb{R}$ e, no caso D-dimensional, por $\left[t_{p}+\frac{D-3}{2}\right], \quad t_{p}$ -momento angular orbital em D-dimensões. 0s operadores 1.675 e $\frac{1}{2}H(\frac{1}{2}-1)$ são geradores do grupo SL(2, R). Logo, podemos construir os estados coerentes generalizados pela ação de um elemento unitário, desse grupo, subre o vácuo. Um trabalho referente a esta generalização está sendo desenvolvido por nós.

Este trabalho foi financiado parcialmente pelo CNPq.

REFERÊNCIAS

- [1] J. Jayaraman e R. L. Rodrigues, J. Phys. A: Math. Gen. 23, 3123, (1990)
- (2) E. P. Wigner, Phys. Rev. 77, 711, (1950)
- [3] L. Yang, Phys. Rev. 84, 788 (1951)
- (4) Y. Ohnuki e S. Kamefuchi, J Math. Phys. 19, 67, (1978)
- [5] N. Mukunda, E. C. G. Sudarshan, J. K. Sharma e C. L. Mehta, J. Math. Phys. 21, 2386, (1980)
- [6] R. J. Clauber, Phys. Rev. 131, 2766, (1963)
- [7] J. K. Sharma, C. L. Mehta e E. C. G. Sudarshan, J. Math. Phys. 19, 2089, (1978)
- [8] R. L. Rodrigues, A. N. Valdya e J. Jayaraman, XII Encontro Nacional de Física de Particulas e Campos, (1991)
- [9] [dem
- [10] R. L. Rodrigues, A. N. Vaidya e J. Jayaraman IX Encontro de Fisica do Norte e Nordestu (1991)

ESTADOS COERENTES DO OSCILADOR RADIAL 3D.

R.	L	. Rode	rigues (D	eparlamento	de	Ciênci	as Ex	alas	.e da
				Nal.ureza-UF	FPB,	Ca jazeli	ras-PB,	58,90)0)
٨.	Ņ.	<u>Yaidya</u>	(Instituto	de Física-U	FRJ.	Rio de	Janeiro	⊳-ŀRJ,	21.945)

J. Jayaraman (Departamento de Física-UFPB, J. Pessoa-PB, 58.000)

Resumo. Encontramos os estados coerentes canônicos e generalizados do oscilador radial 3D, através de operadores derivados da super-realização da Aigebra de Wigner-Heisenberg. Usamos os estados coerentes de Perelomov do grupo SL(2,R) para obter o espectro desse oscilador.

1. INTRODUÇÃO

Construiremos os autovalores de energia do Oscilador Radial (OR) via o operador resolvente, na representação de Schwinger [1], sobre uma base de Estados Coerentes Generalizados (ECG). Os EC podem ser definidos de três maneiras, em geral, inequivalentes: (i) EC canônicos, são os autoestados de um operador de aniquilação independente do número de quanta [2]; (ii) EC de Incerteza minima, são as soluções de uma equação diferencia) deduzida da relação de Incerteza de Heisenberg [3]; (111) os ECC são aqueles obtidos pela ação de um operador sobre o vácuo (estado fundamental). Tal operador pode ser unitário e pertencer a um certo grupo [4], ou um funcional complicado [5]. No caso do oscilador harmónico simples, estas definições são equivalentes [6]. Aqui utilizaremos as definições ()) e ()). Os ECC radiais de um operador de aniguilação, dependente do número de quanta foram construidos para o OR 3D [7]. Então, quais são os ECC do OR 3D como autoestado de um operador de aniquilação independente dos quanta? Utilizando a super-realização do Jayanaman e Rodrigues (JR) da Algebra de Wigner-Heisenberg (WH) [81, oblemos a resposta desta questão.

A áigebra WII para o OR 3D, disculidas na seção 3 da ref. [8], é a seguinte:

$$H(e_{11}) = \frac{1}{2} \left[a_{1}e_{11} \right], a_{1}e_{11} \right], \left[a_{1}e_{11} \right], H(e_{11}) = U(e_{11})$$
(1)

192

$$\left[\hat{Q}(e+1), \hat{Q}(e+1)\right] = 1 + 2(e+1)\Sigma_3 , \qquad (2)$$

onde os operadores escada do super-oscilador radial de Wigner e o Namiltoniano do setor bosônico são, respectivamente:

$$O_{1\ell+1}^{t} = \frac{1}{\sqrt{2}} \sum_{i} \left\{ \pm \left(\frac{d}{d_{i}} + \frac{1}{r} \right) \mp \left(\frac{\ell(r+1)}{r} \sum_{i} - r \right) \right\}$$
(3)

$$H(\ell) = \frac{1}{2} \left\{ -\frac{d^2}{d_{r2}} - \frac{2}{r} \frac{d}{d_r} + r^2 + \frac{\ell(\ell+1)}{r^2} \right\}$$
(4)

Seguindo o maquinário para se construir os operadores escada, independentes dos quanta, do setor bosônico [9], obtemos:

$$[11e], B^{\dagger}e+1] = \pm 2B^{\dagger}e+1$$
 (5)

onde os operadores de criação, β^{\dagger} , e de aniquitação, β^{-} , do oscilador radial são:

$$B_{1(\ell+1)}^{\dagger} = \frac{1}{2} \left\{ \frac{d^{2}}{dr^{1}} + \frac{2}{r} \frac{d}{dr} + \frac{2}{r} \frac{d}{dr} + \frac{r^{2}}{dr} - \frac{\ell(\ell+1)}{r^{2}} + 3 \right\}$$
(6)

Esses operadores quadráticos diminuem ou aumentam os quanta em duas unidades,

$$B(e+1)|R_{1}^{(m)}\rangle = \left\{2m(2m+2\ell+1)\right\}^{\frac{1}{2}}|R_{1}^{(m-1)}\rangle$$
 (7)

$$\beta(\ell+1)|\hat{R}(\ell)\rangle = \frac{1}{2}(m+1)(2m+2\ell+3)|^{1/2}|\hat{R}(\ell)\rangle$$
 (8)

11. ESTADOS COERENTES CANÔNICOS E GENERALIZADOS

Agora, construiremos os ECC radiais, $|\mu_i| > , \#\ell_i$, como sendo uma superposição dos autoestados do OR 3D. Eles são os autoestados do operador de aniquilação, $G_{\ell}(\ell_i)$, do OR 3D:

$$\mathcal{B}(\ell,1)|\upsilon,\ell\rangle = \alpha |\upsilon,\ell\rangle \qquad (9)$$

Apesar deles serem não-ortogonals,

$$< \frac{1}{2}, \frac{1}{4}, \frac{1}{4} > = \left(\frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \left[\frac{1}{2} \right]^{\frac{1}{2}} \left[\frac{1}{2$$

eles são normalizáveis, e dados por:

$$|0^{1}, \ell \rangle = \left\{ \Gamma'(\mathcal{A}_{1}+1) \prod_{\mathcal{A}_{1}} \Gamma(1\alpha \mathcal{A}_{1}) \right\}_{\mathcal{A}_{1}}^{-1/2} \left(\frac{|\alpha|}{2} \right)^{\mathcal{A}_{2}} - \frac{q}{4} \sum_{m=0}^{\infty} \frac{(\alpha/2)^{m}}{4^{m!} [\Gamma'(m+\mathcal{A}_{1}+1)]^{1/2}}, (11)$$

onde $\underline{\prod}$) são as funções de Bessel modificadas, \int^{T} é a função Gama e $\mathcal{M} = \mathcal{C} + 3/2$. A importante, propriedade de completeza será demonstrada num trabalho que vamos submetê-lo a publicação numa revista internacional.

Agora, calcularemos os Estados Coerentes Generalizados(ECG) associados ao grupo de simetria SL(2,R). A partir de (3-5), obtemos a seguinte realização da álgebra de Lie do SL(2,R);

$$[K_0, K_+] = K_+, [K_0, K_-] = -K_-, (12)$$

$$[K_{+}, K_{+}] = +2K_{+}, K_{\pm} = \frac{1}{2}B(l+1), K_{\pm} = \frac{1}{2}H(l) + (13)$$

De acordo com a nossa realização acima, $k_{(K-1)}$, $K = \ell + 3/2$ dão os autovalores do operador de Casimir do SL(2, R). Os ECG de Perelomov associados a essa álgebra geradora do espectro do OR 3D, são dados por:

$$|\sigma,\kappa\rangle = (1 - |\sigma|^2)^{\kappa} \sum_{m=0}^{\infty} \left\{ \frac{\Gamma(2\kappa+n)}{n! \Gamma(2\kappa)} \int_{\sigma}^{m} |\kappa,m\rangle (14) \right\}$$

onde a medida de integração é a seguinte:

$$d\mu(|\sigma|) = (\frac{2\kappa - 1}{\pi})(1 - |\sigma|^2)^{-2} d^2$$
(15)

Estes ECG são análogos aos do potencial Coulombiano na equação de Klein-Gordon [10] e, assim, são não-ortogonais e super-completos.

III. A FUNÇÃO DE GREEN E O ESPECTRO

A função de Green definida sobre uma base constituida dos ECG, $\{\mu;\kappa\}$, é uma soma parcial de funções de Green, 1.é,

$$G(\sigma,\sigma') = \sum_{\ell=0}^{n-1} G_{\ell}(\sigma',\sigma') = \sum_{\kappa} \langle \sigma, \kappa | G_{\ell} | \sigma', \kappa \rangle, \quad (16)$$

onde G_E é o operador resolvente, o qual na representação de Schwinger toma a seguinte forma exponencial:

$$G_{E} = (1+|e|) - E^{-1} = i \int_{0}^{1} e^{x} p \{-i|H|e|-E|A| dA.$$
(17)

De (14) e (17) em (16), a função de Green torna-se:

$$G_{E}(\sigma,\sigma') = i \sum_{\ell=0}^{N-1} \left(1 \cdot \frac{|\sigma'|}{2}\right)^{2\ell+3} \left(1 - \frac{|\sigma'|^{2}}{2}\right)^{2\ell+3} \left(\frac{|\sigma'|^{2}}{4}\right)^{2\ell+3} \left(\frac{|\sigma'$$

Os pólos do traço do operador resolvente, na base dos EG,

$$T_{r} G_{E} = \left(\sum_{k=1}^{n} \sum_{m=1}^{n} \left(\left(l - \left(l \right) \frac{3}{2} + 2m \right) \right)^{-1} \right)$$
(16)

são os autovalores de energia do OR 3D.

IV. CONCLUSÕES

Construimos os Estados Coerentes Canónicos e Generalizados (ECC e ECG) para um oscilador harmónico radial 3D, via operadores derivados da áigebra de Wigner-Heisenberg super-realizada. Calculamos a função de Green e o espectro, através do operador resolvente, na representação de Schwinger, definido sobre uma base constituída dos ECG do OR 3D.

Este trabalho foi financiado parcialmente peio CNPq.

REFERENCIAS

- [1] J. Schwinger, Phys. Rev. 82, 664, (1951)
- [2] R. J. Glauber, Phys. Rev. 131, 2766, (1963)
- [3] M. M. Nieto e L. M. Simmons, Jr. Phys. Rev. Lett. 41, 207, (1978)
- [4] A. M. Perejomov, Comm. Math. Phys. 26, 222, (1972)
- [5] M. M. Nieto e L. M. Simmons, Jr. Phys. Rev. D 20, 1321, (1979)
- [6] J. R. Klauder e B. S. Skagerstan, Coherent States (World Scientific, 1985), página 429
- [7] M. M.Nieto, Phys. Rev. D 22, 391, (1980)
- [8] J. Jayaraman e R. L. Rodrigues, J. Phys. A: Math. Gen. 23, 3123, (1990)
- [9] K. L. Rodrigues, A. N. Vaidya e Jayaraman, XII Encontro Nacional de Física de Furticulas e Campos (1991)
- [10] H. Boschi fillo e A. N. Valdys, J. Phys. A: Math. Gen. 22, 3223, (1989)

The Feynman - Dyson proof of Maxwell equations and magnetic monopoles

Adolfo Maia Jr. and Waldyr A. Rodrigues Jr.

Departamento de Matemática Aplicada, IMECC-UNICAMP, Universidade Estadual de Campinas, 13083 Campinas, SP,Brazil

Abstract. Using a violation of the Jacobi Identity^{3,4} we are able to generalize the Feynman's Proof of the Maxwell Equations including magnetic monopoles.

In 1990 Dyson¹ published a proof due to Feynman that the Maxwell equations follow from Newton's equation

$$m\ddot{x}_j = F_j(x, \dot{x}, t) \tag{1}$$

and the quantum mechanical canonical rules

$$[x_j, x_k] = 0 \tag{2}$$

$$m[x_j, \dot{x}_k] = i \hbar \delta_{jk} \,. \tag{3}$$

Soon after, Lee² extended the Feynman's proof to non \cdot abelian gauge fields, obtaining the Yang-Mills equations. In his paper, Lee suggested that magnetic monopoles can be introduced, through Feynman's approach using the dual Lorentz force equation

$$F_j = B_j - \varepsilon_{jk\ell} \dot{x}_k \dot{E}_\ell \,. \tag{4}$$

It is possible to obtain the magnetic monopoles without postulating the dual Lorentz force. This is shown below.

In his proof Feynman have used twice the well known Jacobi Identity

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0.$$
(5)

Magnetic monopoles appear when we have a violation of Jacobi Identity for the kinetic momenta $p_k = m \dot{x}_k$.

We follow Dyson-Feynman¹ closely and point out the necessary changes to include magnetic monopoles.

From (1) and (3) we have

•

$$[x_j, \dot{F}_k] = -m[\dot{x}_j, \dot{x}_k]. \tag{6}$$

Now, we use the Jacobi Identity (5) for operators x_j and \dot{x}_k in the form

$$[x_{\ell}, [\dot{x}_j, \dot{x}_k]] \neq [\dot{x}_j, [\dot{x}_k, x_{\ell}]] + [\dot{x}_k, [x_{\ell}, \dot{x}_j]] = 0.$$
(7)

From (3) it's easy to see that the two last terms in the left-handed side of above equation, vanish.

So (7) can be writen

$$[x_{\ell}, [\dot{x}_j, \dot{x}_k]] = 0.$$
(8)

This equation means that the commutator $[\dot{x}_j, \dot{x}_k]$ is a function of x and t only. So, from (6) and (8) we can define the magnetic field H as

$$[\mathbf{x}_j, F_{\epsilon}] = \left(\frac{-i\hbar}{m}\right) \epsilon_{jk\ell} H_{\ell} \tag{9}$$

and the eletric field as

$$E_j = F_j - \varepsilon_{jk\ell} \dot{x}_k H_\ell \tag{10}$$

and, of course, H_{ℓ} and E_{j} are also functions of x and t only.

Substituting (6) and (9) in the Jacobi Identity in the form

$$\varepsilon_{jk\ell}[\dot{x}_\ell, [\dot{x}_j, \dot{x}_k]] = 0. \tag{11}$$

We conclude that

$$[\dot{x}_t, H_t] = 0 \tag{12}$$

which is equivalent to

$$\operatorname{div} \vec{H} = 0. \tag{13}$$

Now, as shown by Jackiw³ and Wu and Zec⁴, the existence of magnetic monopoles implies the violation of Jacobi Identity (11) and this is the very definition of magnetic charge, namely

div
$$\vec{H} = \frac{1}{\hbar^2} \varepsilon_{jk\ell}[p_\ell, [p_j, p_k]] = \rho_{mag}$$
 (14)

where we have rewritten (11) in terms of kinetic momenta $p_j = m \dot{x}_j$.

Using (6) we can rewrite (9) as

$$H_{\ell} = \frac{-im^2}{\hbar^2} \varepsilon_{jk\ell} [\dot{x}_j, \dot{x}_k] \,. \tag{15}$$

The total time derivative of (15) is

$$\frac{\partial II_{\ell}}{\partial t} + \dot{x}_{m} \frac{\partial II_{\ell}}{\partial x_{m}} = \frac{-im^{2}}{h^{2}} \varepsilon_{jk\ell} [\ddot{x}_{j}, \dot{x}_{k}].$$
(16)

After some calculations on the right-hand side the above equation we get

$$\frac{\partial II_{\ell}}{\partial t} - \epsilon_{jk\ell} \frac{\partial E_j}{\partial x_k} = -\dot{x}_{\ell} \frac{\partial II_k}{\partial x_k}.$$
 (17)

The right-handed side of this equation defines the magnetic current, using (14)

$$-\dot{x}_{\ell}\rho_{\rm hwag}=j_{\ell} \tag{18}$$

and so we obtain the second generalized Maxwell equation

$$\frac{\partial ll_{\ell}}{\partial t} - \epsilon_{jk\ell} \frac{\partial E_j}{\partial x_k} = j_{\ell}. \tag{19}$$

The other two non-homogeneous Maxwell equations

.

$$\operatorname{div} \vec{E} = \rho_{\text{eletric}} \tag{20}$$

$$\operatorname{cur}\ell \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{j}_{\text{eletric}}$$
 (21)

are interpreted in Feynman-Dyson approach as defining the very eletric charge and current.

This have caused a certain uncasiness⁵⁻¹⁰ because apparently there is no physical or mathematical principle to fix the non-homogeneous equations such that the

complete set of Maxwell equations results Lorentz invariant.

Nevertheless, we agree with Farina and Vaydia⁵, and Hojman and Shepley¹⁰ that it is necessary to introduce a parameter with units of velocity. This arbitrary parameter is shown to be independent of the observer¹¹ using weaker assumptions on isotropy and homogeneity of space than the original conditions used by Einstein, obtaining in this way the Lorentz transformations. But, unfortunately we can not yet fix the non-homogeneous equations from the postulates (1), (2), (3).

Another shortcoming is related to a Lagrangian formulation of magnetic monopoles theories. Hojman and Shepley¹⁰ have shown that if we don't have a Lagrangian for a physical system we can't quantize it.

However the monopole theory, where the monopole didn't arise from a change of the topology of the world manifold, is an example of a quantum system for which there doesn't exist a Lagrangian¹² giving simultaneously the field equations and the equations of motion of changes and monopoles. So, it would be interesting to investigate how and why this kind of monopole overrides the Hojman and Shepley's theorem. To end we call the reader's attention that we have shown elsewhere¹³ that the equations of motion for both charges and monopoles follows directly from the generalized Maxwell equations without any ad-hoc postulate, a result complementar to the above one.

REFERENCES

- Freeman J. Dyson, "Feynman's proof of the Maxwell equations." Am. J. Phys. 58, 209-211 (1990).
- 2 C.R. Lee, "The Feynman-Dyson proof of the Gauge field equations." Phys. Lett. A 148, 146-148 (1990).
- Roman Jackiw, "Three-Cocycle in Mathematics and Physics." Phys. Rev. Lett. 54, 159-162 (1985).
- 4 Yong-Shi Wu; A. Zee, "Cocycles and Magnetic Monopoles." Phys. Lett. 152, 98-102 (1985).
- 5 Arvind Vaidya; Carlos Farina, "Can Galilean mechanics and full Maxwell equations coexist peacefully?"

Phys. Lett. 153, 265-267 (1991).

6 - I.E. Farquhar, "Comment on "The Feynman-Dyson proof of the gauge field equations.""

Phys. Lett. 151, 203-204 (1990).

See also the same author in:

Am. J. Phys. 59, 87 (1991).

- 7 Norman Dombey, "Comment on "Feynman's proof of the Maxwell equations."" Am. J. Phys. 59, 85 (1991).
- Robert W. Brehme, "Comment on Feynman's proof of the Maxwell equations."" Am. J. Phys. 59, 85-86 (1991).
- 9 James L. Anderson, "Comment on Feynman's proof of the Maxwell equations." Ann. J. Phys. 59, 86 (1991).
- Sergio A. Hojman; L.C. Shepley, "No Lagrangian? No quantization!" J. Math. Phys. 32, 142-146 (1990).
- 11 Harvey R. Brown and Adolfo Maia Jr., "Light-Speed constancy versus Light-Speed Invariance in the Derivation of Relativistic Kinematics." British J. Phil. Sci. (to appear 1992).

199a

12 - Waldyr A. Rodrigues Jr., "A Comment on Generalized Electromagnetism and Dirac Algebra." Econd. Phys. Lett. 2, 05,00 (1990).

Found. Phys. Lett. 3, 95-99 (1990).

13 - Waldyr A. Rodrigues Jr.; Adolfo Maja Jr.; Marcio A. Faria-Rosa and Erasmo Recami, "The Classical problem of the Charge and Pole motion. A satisfactory formalism by Clifford Algebras."

Phys. Lett. B 220, 195-199 (1989).

•

•

-

The Vacuum Energy of QED with Four-Fermion Interaction

.

J. C. Montero, A, A. Natale, V. Pleitez,

and

J. A. S. Sobrinho Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405–São Paulo, SP Brazil

Abstract

We consider quantum electrodynamics in the quenched approximation including a four-fermion interaction with coupling constant g. The effective potential at stationary points is computed as a function of the coupling constants α and g and an ultraviolet cutoff Λ , showing a minimum of energy in the (α, g) plane for $\alpha = \alpha_c = \pi/3$ and $g = \infty$. When we go to the continuum limit $(\Lambda \to \infty)$, keeping finite the dynamical mass, the minimum of energy moves to $(\alpha = 0, g = 1)$, which correspond to a point where the theory is trivial.

There are several works devoted to the analysis of a non-trivial phase of quantum electrodynamics (QED) in the strong-coupling regime, where it has been shown that the chiral symmetry is spontaneously broken [1]. For the existence of such symmetry breaking, the gauge-coupling constant α must have a particular relation to an ultraviolet cutoff (A), from which it can be inferred that the theory has a non-trivial ultraviolet fixed-point [2]. The existence of a fixed-point changes completely the argument that renormalized QED is a trivial theory [3]. As long as these calculations were made in the quenched approximation, where the coupling constant is not allowed to run, it is far from obvious that we may define a renormalization group β function [4], and from it we are able to determine the presence of the fixed point. Moreover, the results were obtained solving the Schwinger Dyson equations (SDE) in the ladder approximation, and it is not an easy task to determine how accurate these solutions are. However, a strong support for these calculations comes out from lattice simulations, where the same broken symmetry phase was found at strong coupling [5,6].

Another important result is that, in the planar limit the dimension of the four-fermion operators approach dimension four at the critical coupling constant α_c then, to study the fixed points we must include this four-fermion interaction [7] with dimensional coupling constant G. It is interesting to keep in mind that this four-fermion interaction introduced by hand, could be dynamically generated by the theory [6]. The dynamical generation of new interactions at a fixed point occurs also for example in $\eta\phi^{6}$ theory [8]. It has also been shown that solutions to the gap equation for an arbitrary value of G will break the scale symmetry unless G approaches a fixed-point value [7]. On the other hand, it is well know that weak coupling solutions of the Schwinger-Dyson equations does not produce spontaneous breaking of the chiral symmetry [9,10]. However, when four-fermion interactions are added, spontaneous breaking occurs even for weak gauge coupling, but in this case a critical line in the (α, G) plane appears [11,12].

Even though the triviality of QED does not have any phenomenological consequence, because it will probably be unified to the other interactions before we arrive at the Landau's pole, it is crucial to know if the simplest and (perhaps) the best known gauge theory we have, behaves well at high energies. It is clear that if the theory is not trivial at strong coupling, and chiral symmetry is broken when the coupling constant is larger than a certain critical value, say $\alpha > \alpha_c$, the vacuum energy must be well defined and different from zero. In the case of QED without four-fermion interaction it was verified that the theory has a minimum of energy, exactly at $\alpha = \alpha_c$ [13]. In this work, we will compute an effective potential for composite operators [14] at stationary points in the case of QED with a four-fermion interaction, looking for minimum of energy in the (α, g) plane, $(g = G\Lambda^2/4\pi^2)$.

The chiral invariant four-fermion interaction to be added to the QED

Lagrangian is [7]

$$L_4 = (G/2) \left[(\overline{\psi}\psi)^2 - (\overline{\psi}\gamma_5\psi)^2 \right]. \tag{1}$$

In the chiral limit, in the quenched (ladder) approximation and in the Landan gauge, the Schwinger-Dyson equation for the fermion self-energy, $\Sigma(p^2)$ takes the form [7],

$$\Sigma(x) = \frac{g}{\Lambda^2} \int_0^{\Lambda^2} dy \frac{y \Sigma(y)}{y + \Sigma^2(y)} + \lambda \int_0^{\Lambda^2} dy \frac{\Sigma(y)}{y + \Sigma^2(y)} \Big[\frac{y}{x} \theta(x - y) + \theta(y - x) \Big], \quad (2)$$

where, we have made a Wick rotation and integrated over the angular variables, with $x = p^2$, $\lambda = 3\alpha/4\pi = 3e^2/16\pi^2$ and $g = G\Lambda^2/4\pi^2$. Eq. (2) can be solved by standard methods [7,11,12], and a critical line can be determined from these solutions. This critical line separates the spontaneously broken and unbroken phases of the chiral symmetry. It has also been argued that the whole critical line is the fixed point i.e., we have in this case a "fixed line" [11].

With the non-perturbative solutions of the Schwinger-Dyson equation for the fermionic propagator we can start the calculation of the effective potential of QED. In the Euclidean space and after integrating over the angular variables the effective potential for composite operators [14] is given by :

$$V(\Sigma) = -\frac{1}{8\pi^2} \int_0^{\Lambda^2} dx x \left[\ln \left(1 + \frac{\Sigma^2(x)}{x} \right) - \frac{2\Sigma^2(x)}{x + \Sigma^2(x)} \right] \\ + \frac{1}{8\pi^2} \int_0^{\Lambda^2} dx \frac{x\Sigma(x)}{x + \Sigma^2(x)} \int_0^{\Lambda^2} dy \frac{y\Sigma(y)}{y + \Sigma^2(y)} F(x, y, \lambda, \Lambda), \quad (3)$$

where

$$F(x, y, \lambda, \Lambda) = \frac{\lambda}{x} \theta(x-y) + \frac{\lambda}{y} \theta(y-x) + \frac{y}{\Lambda^2}$$

By using Eq. (2) as an identity in Eq. (3), we obtain the following expression:

$$\Omega = -\frac{1}{8\pi^2} \int_0^{\Lambda^2} dx \left[x \ln\left(1 + \frac{\Sigma^2(x)}{x}\right) - \frac{x \Sigma^2(x)}{x + \Sigma^2(x)} \right]. \tag{4}$$

In virtue of the condition $\delta V/\delta \Sigma = 0$ which implies (2), Ω means the value of the effective potential at the extreme points. Notice that Ω is always negative for any non-trivial solution $\Sigma(x)$. Without going into the details [15], we now discuss the existence of a minimum for the vacuum energy. In Fig. 1 we show a plot of $(8\pi^2/\Lambda^4)\Omega$ against α for several values of g. Notice that the case g = 0 is not reduced directly to the one in Ref. [13], where a simpler approximation to the solution of the Schwinger-Dyson equation was used and where the upper limit of Eq. (4) was approximated to infinity. From Fig. 1 we can see that the minimum of energy tends towards the point $\alpha = \alpha_c$. To illustrate the behavior of Ω as a function of g we show, in Fig. 2 tells us that the deepest minimum occurs for $\alpha = \alpha_c$. For larger or smaller values of α all curves of Fig. 2 lie above the curve with $\alpha = \alpha_c$. Strictly speaking the minimum will occur at ($\alpha = \alpha_c, g = \infty$). The position of the minimum in the (α, g) plane is shown in Fig. 3 by the thick solid curve. At the point ($\alpha_{0}, 0$) the value of ($8\pi^2/\Lambda^4$) Ω is -0.0012, and it becomes deeper and deeper as we increase the value of g and approximate $\alpha = \alpha_c$.

In Fig. 3 we show also another curve (dot-dashed) which can be interpreted as follows. Away from the critical line the fermion self-energy is approximately constant, therefore the solution for the gap equation leads to a consistency condition [16]:

$$1 = \left(\frac{\alpha}{4\alpha_c} + g\right) \left[1 - \frac{\Sigma^2}{\Lambda^2} \ln \frac{\Lambda^2}{\Sigma^2}\right].$$
 (5)

Eq. (5) in the limit $\Sigma^2/\Lambda^2 \rightarrow 0$, gives a mean-field curve, $g = 1 - \alpha/4\alpha_c$ described by the dot-dashed straight-line in Fig. 3. For larger values of g(above this curve) we approach a trivial Nambu-Jona-Lasinio theory [16]. Therefore, if we allow for large values of g we conclude that the minimum of energy happens for values of the coupling constants where the theory is trivial, and it is clear from Fig. 3 that values of minima are above the meanfield curve described by Eq. (5). However, we have also to keep in mind that the curve $g = 1 - \alpha/4\alpha_c$ was obtained with a crude approximation and it should be regarded more as a qualitative result. The question now is: how arbitrary is g? This point is of fundamental importance because if g is limited to some finite value, we do have a definite minimum of energy in the (α, g) plane (see Fig. 3), otherwise the minimum will be located at g equal to infinity where the theory is certainly trivial.

In our calculations we have a free mass parameter Λ that can be factorized in such a way that Λ enters in Ω only as a multiplicative factor. In fact, the quantity Ω/Λ^4 is independent of Λ . We can ask what happens if we consider the continuum limit $\Lambda \to \infty$. In order to take $\Lambda \to \infty$ scriously we must know the behavior of g and α as a function of A and this limit must fulfill the hypothesis of Miransky and others [2,7] about the existence of a fixed-point. In that case we can have a possible limit that results in $g_1 \alpha$ and m finite and therefore a definite minimum of energy. We notice that there is a possibility of taking this limit even if not in a rigorous way. We can argue that when $\Lambda \rightarrow \infty$, g and α are related through the critical line. In this case, A goes to infinity but \overline{m} goes to zero keeping m constant and so Ω , i.e., the limits on Λ and \overline{m} are taken in such way that their product is equal to κ over the critical line, where κ has a definite value. In this case all points of minimum in the curve lie under the mean-field line showed in Fig. 3 coinciding with the critical line. However, Ω for $\alpha = \alpha_c$ and g = 1/4is not the deeper minimum. In fact Ω becomes deeper and deeper as we decrease the value of α and approach $\alpha = 0$ and g = 1. This result tells us that in this picture i.e., $\Lambda \to \infty$ and g and α related by the critical line, the 4-fermion interaction alone is more efficient to break chiral-symmetry than both interactions together. Notice that the minimum of energy at $(\alpha = 0, q = 1)$ is the only one that also corresponds to a point (according to Eq. (5)) where the theory is trivial. The above procedure is useful to illustrate the possibility that when Λ goes to infinity we can have a well defined minimum of energy.

In conclusion, we computed the vacuum energy of QED with fourfermion interaction. Starting from the solutions of the Schwinger-Dyson equation for the fermion self-energy, we determined the values of minima of energy in the (α, g) plane. The minimum we have found is located at $(\alpha = \alpha_c, g = \infty)$, and we argued that this point corresponds to one where the theory is trivial. The theory has an unique mass parameter which is given by the ultra-violet cutoff A. When we go to the continuum limit $(\Lambda \to \infty)$ we only obtain a sensible result imposing the same condition of Miransky and others [2,7] i.e., we must impose a relation between α, g, m and Λ in such a way that when $\Lambda \to \infty$ and m is kept finite α and g go to some specific critical line. However, performing the calculation over the critical line, with $\Lambda/m \to \infty$, we found the global minimum at $(\alpha = 0, g = 1)$ which is again a point that characterize a trivial theory. All these conclusions probably do not hold if the four fermion is generated dynamically, when a well defined minimum of energy could appear as a function of a certain critical value of α .

Acknowledgments

This work was partially supported by Conselho Nacional de Pesquisa (A. A. N. and V. P.), Conselho de Aperfeiçoamento de Pessoal de Nivel Superior (J. A. S. S) and Fundação de Amparo à Pesquisa do Estado de São Paulo (J. C. M).

References

- [1] For a review see E. Dagotto, presented at the Cargese Lectures, Cargese, France, 1990; University of California, Santa Barbara report N_0 NSF-ITP-90-149 (unpublished); see also in Proceedings of the Conference on Strong Coupling and Beyind, Nagoya, Japan, 1990 (unpublished).
- [2] P.I. Fourin, V.P Gusynin, V.A. Miransky and Yu. Sitenko, Riv. Nuovo Cimento 6, 1(1983); V.A. Miransky, Nuovo Cimento 90A, 149(1985).
- [3] L. D. Landau, in Niels Bohr and the Development of Physics, edited by W. Pauli (McGraw-Hill, New York, 1955).
- [4] B. Holdom, Phys. Rev. Lett. 62, 997(1989).
- [5] J. B. Kogut, E. Dagotto and A. Kocić, Nucl. Phys. B317, 253,271(1989).
- [6] E. Dagotto, J.B. Kogut and A. Kocić, Phys. Rev. D43, R1763(1991).
- [7] C.N. Lenng, S.T. Lovc and W.A. Bardeen, Nucl. Phys. B273, 649(1986); W. Bardeen, C.N. Lenng and S.T. Love, ibid. B323, 493(1989).
- [8] W.A. Bardeen, M. Moshe and M. Bander, Phys. Rev. Lett. 52, 1188(1984).
- [9] T. Maskawa and H. Nakajima, Prog. Theor. Phys. 52, 1326(1074); ibid 54, 860(1975).
- [10] J.C. Montero and V. Pleitez, Phys. Rev. D35, 2579(1987).
- [11] K.-I Kondo, H. Mino and K. Yamawaki, Phys. Rev. D39, 2430(1989); T. Nonoyama, T.B. Suzuki and K. Yamawaki, Prog. Theor. Phys. 81, 1238(1989).
- [12] T. Appelquist, M. Soldate, T. Takeuchi and L.C.R. Wijewardhana, in Proc. 12th. Johns Hopkins Workshop on current Problems in Particle Theory, Baltimore, Maryland, 1988, ed. G. Domokos and S. Kovesi-Domokos (World Scientific Co. 1989).
- [13] A.A. Natale, Phys. Lett. B250, 139(1990).
- [14] J.M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D10, 2428(1974). For a general review see R. W. Haymaker, Riv. Nuovo Cimento, 14 No. 8 (1991).
- [15] J.C. Montero, A.A. Natale, V. Pleitez and J.A.S. Sobrinho, preprint IFT-Unesp, to appear in Z.Phys.C
- [16] A. Kocić, S. Hands, J.B. Kogut and E. Dagotto, Nucl. Phys. B347, 217(1990).

FIGURE CAPTIONS

Fig. 1. Ω calculated from Eq.(4) for $\alpha > \alpha_c$ and the following values of g: g = 0(a), 0.25(b), 0.50(c), 0.75(d), 1.00(c).

Fig. 2. Ω calculated from Eq.(4) for the three different regions: Ω_1 for $\alpha = 0.8\alpha_c$ (dot-dashed curve); Ω_2 for $\alpha = \alpha_c$ (solid curve) and Ω_3 for $\alpha = 1.4\alpha_c$ (dashed curve).

Fig. 3. The critical line (solid curve). The line separating the regions with trivial and non-trivial solutions obtained from Eq.(5) (dot-dashed curve). The local minima of Ω (thick solid curve).

19.1

Unobservability of the Sign Change of Spinors Under a 2π Rotation in Neutron Interferometric Experiments

J.E.Majorino and J.R.R.Zeni

Instituto de Física, Universidade Estadual de Campinas, 13081, Campinas, SP, Brazil

and

W.A.Rodrigues, Jr.

Instituto de Matemática, Estatística e Ciência da Computação, Universidade Estadual de Campinas, 13081,Campinas, SP, Brazil

Abstract

We show that the neutron interferometric experiments do not imply that the neutron wave function must be described by a Pauli c-spinor wave function that changes sign under a 2π rotation. We argue that the papers supporting the opposite view have jumbled up the time evolution of the Pauli c-spinor wave function with its transformation law under rotations. Even more, we show that the experiment can be well described using a Pauli algebraic spinor wave function that does not change sign nuder a 2π rotation.

PACS: 03.65.8z 03.65.Fd

There are essentially three different definitions of spinors in the literature: (i) the covariant definition, where a particular kind of covariant spinor (c-spinor) is a set of complex variables defined by their transformations under a particular kind of spin group; (ii) the *ideal* definition, where a particular kind of *algebraic* spinor (e-spinor) is an element of a lateral ideal (defined by the ideal definition, where a particular kind of *algebraic* spinor (e-spinor) is an element of a lateral ideal (defined by the idempotent e) in an appropriate Clifford algebra (when e is a primitive idempotent we call it an a-spinor, instead of e-spinor); and (iii) the *operator* definition, where a particular kind of operator spinor (o-spinor) is a Clifford number in an appropriate Clifford algebra $\mathbb{R}_{p,q}$ determining a set of tensors by bilinear mappings. In [1,2] we have clarified the relations between and the possible equivalence of all these kinds of spinors and in [3,4] we studied the corresponding spinor lields as sections of appropriate bundles over a manifold modelling spacetime.

Physicists use almost exclusively c-spinor fields (despite the fact that operator spinor fields have been introduced by Ivanenko and Landau [5] already in 1928 and rediscovered by Kähler[6] in 1961) as the representatives of spin 1/2 fermionic matter. As is well known, a c-spinor wave function has the property of changing its sign under an active 2π rotation, which is not the case for algebraic or operator spinor wave functions interpreted as sections of appropriate Clifford bandles [4]. Which kind of spinor fields, covariant or algebraic/operator gives the best mathematical and physical representation of fermionic matter is a very important problem, since algebraic and operator spinor fields can be written as sums of non-homogeneous differential forms [1,2,4,5,7,8] thus challenging the "majority view" that spinors are objects more fundamental than tensors [9,10,11]. (We emphasize here that when a spinor fields are interpreted as sections of the so called Spin-Clifford bundle they have the usual transformation law [4].)

Hernstein [12], Aharanov and Susskind [13] and Moore [14] proposed experiments for the verification of the sign change of c-spinors under an active 2π rotation. Hegerfeldt and Krauss [15] put forth a critical remark on the Aharanov and Susskind argument, showing that it is in flaw (a point on which we agree). Also Jordan [16] invoked the spin statistics theorem for spin 1/2 particles to argue that 2π rotations are unobservable.

After the neutron interferometric experiments [17,18,19] the controversy on the interpretation of the sign change of the neutron c-spinor wave function in a magnetic field went out, as it is well illustrated by the many papers that appeared on this subject [20–30]. It seems to be the "majority

view" that the neutron interferometric experiments do indeed prove that the neutron wave function must be described by a Pauli c-spinor wave function (on the nonrelativistic limit appropriate for the experiment) that changes sign under an active 2π rotation.

Here we challenge such a viewpoint. Indeed, we are going to show that the neutron interferometric experiment as described e.g. in [30] can be perfectly explained when the spin 1/2 neutron matter is described by a Pauli a-spinor wave function that does not change sign under a 2π active rotation. What happens is simply that the unitary evolution operator for such a wave function is an element of Spin(3) \simeq SU(2) ! For what follows nonrelativistic (first quantization) quantum mechanics will suffice. We are going to use *elementary* definitions of the c-spinor and a-spinor wave functions, i.e. we are not going to present these objects as sections of some vector bundle. (The interested reader may consult e.g. [4] on that topic.)

We take as arena of physical phenomena the Newtonian spacetime $N = \mathbb{R}^3 \times \mathbb{R}$ and define a Pauli c-spinor wave function as a mapping

$$\Psi: N \to \mathbb{C}^2 \tag{1}$$

where \mathbb{C}^2 is a two-dimensional vector space over the complex field \mathbb{C} . The space \mathbb{C}^2 is equipped with the spinorial metric

$$\beta_p: \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}; \ \beta_p(\Psi, \Phi) = \Psi^{\dagger} \Phi$$
⁽²⁾

where $\Psi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$ and \dagger stands for Hermitian conjugation. The spinorial metric is invariant under the action of SU(2) \simeq Spin₊(3) (in fact it is invariant under the action of U(2) [2]). As it is well known Pauli c-spinors carry the fundamental representation $D^{1/2}$ of SU(2). Under an active rotation R in the Euclidian space \mathbb{R}^3 the Pauli c-spinor wave function transforms as

$$\Psi \stackrel{R}{\mapsto} U(R)\Psi, U(R) \in SU(2) \tag{3}$$

and if R is a 2π rotation around a given axis, then $\Psi \stackrel{2\pi}{\mapsto} -\Psi$. In a given magnetic field $B : N \to \mathbb{R}^3$ the neutron wave function Ψ satisfies as it is well known [31] Pauli's equation

$$i\frac{\partial\Psi}{\partial t} = H_i\Psi - \frac{\nabla^2\Psi}{2m} \tag{4}$$

where we use units such that $\hbar = 1$, m is the neutron mass and

--

$$H_i = -\boldsymbol{\mu} \cdot \boldsymbol{B} = -\boldsymbol{\mu} (\boldsymbol{\sigma}_1 B_1 + \boldsymbol{\sigma}_2 B_2 + \boldsymbol{\sigma}_3 B_3) \tag{5}$$

where σ_j , j = 1, 2, 3 are the Pauli spin matrices, B_j , j = 1, 2, 3 are the components of **B** in a given reference frame of \mathbb{R}^3 and μ is the neutron's magnetic moment. In what follows we are interested only in the spin precession motion and so we consider instead of eq.(4) the equation

$$i\frac{\partial\Psi}{\partial t} = H_t\Psi, \ \Psi: t \mapsto \Psi(t) \in \mathbb{C}^2 \tag{6}$$

We choose **B** in the z-direction and then write $H_i = -\mu B\sigma_3$. We now write $\Psi = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \sum c_j |j|$ and observe that $\sigma_1 \sigma_2 \sigma_3 |1| > = i|1|$ and $\sigma_1 \sigma_2 \sigma_3 |2| > = -i|2|$. Then eq.(6)

can be written

$$\sigma_1 \sigma_2 \sigma_3 \frac{\partial \Psi}{\partial t} = -\mu B \sigma_3 \Psi. \tag{7}$$

We now define the Pauli a-spinor wave function and write the (Pauli) equation satisfied by this object for the situation of the neutron interferometric experiment. We first recall [1,2] that the Pauli algebra \mathbb{R}_3 is the Clifford algebra generated by 1 and e_j , j = 1, 2, 3 such that $e_i e_j + e_j e_i = 2\delta_{ij}$ where $\{e_j; j = 1, 2, 3\}$ is a basis of the Euclidian vector space $V \simeq \mathbb{R}^3 \hookrightarrow \mathbb{R}_3$. We take $\{\sigma_i; i = 1, 2, 3\}$ as a basis of V°, the dual space of \mathbb{R}^3 , with $\sigma_i(e_j) = \delta_{ij}$ and call $\mathbb{P}(\simeq \mathbb{R}_3)$ the Clifford algebra generated by 1 and the σ_i , i = 1, 2, 3. A Pauli a-spinor wave function in then defined as a mapping

$$\psi: N \to \{\mathbb{P}e\} \tag{8}$$

where $e = \frac{1}{2}(1 + \sigma_3)$ is a primitive idempotent of **P** and **{Pe}** is the class of equivalent minimal left ideal of **P** generated by e, i.e. ψ is a sum of non-homogeneous differential forms [3,4,7]. Under an active rotation R in \mathbb{R}^3 the Pauli a-spinor wave function transforms as

$$\psi \stackrel{R}{\mapsto} u(R) \psi u^{-1}(R) \tag{9}$$

where $u \in \text{Spin}_{+}(3)(\simeq \text{SU}(2)) \subset \mathbb{P}$. (More precisely this is the transformation law when $(x, \psi(x))$ is taken as a section of the Clifford bundle. See [3,4] for details.) This has as a consequence that under a 2π rotation $\psi \stackrel{2\pi}{\longrightarrow} \psi$. The spinorial metric defined by eq.(2) can also be defined within the Pauli algebra [1,2] but it is not necessary here.

The spinorial basis generated by $e = \frac{1}{2}(1+\sigma_3)$ is $\{e,\sigma_1e\}$ [1,2] and we can write $\psi = c_1e + c_2\sigma_1e$ with $c_1, c_2 \in \mathbb{C}$, generated by $\{1, i\}$. Also $i = \sigma_1\sigma_2\sigma_3$ is the volume element of \mathbb{R}^3 and $i\Lambda_p$ is essentially $*\Lambda_p$, where $\Lambda_p \in \Lambda(\mathbb{T}^*\mathbb{R}^3)$ is a p-form and * is the flodge dual operator. To write the (Pauli) equation satisfied by ψ for the neutron interferometric experiment we need only to take $\psi: t \mapsto \{I^p e\}$ and to make in eq.(7) the substitutions $\Psi \mapsto \psi$, $\sigma_i \mapsto \sigma_i$, (i = 1, 2, 3). We get

$$\frac{\partial \psi}{\partial l} = \mu B(\mathbf{i}\sigma_3)\psi. \tag{10}$$

The solution of this equation is

$$\psi(t) = \exp(\mu B i \sigma_3 t) \psi(0) \tag{11}$$

where $\text{Spin}_{+}(3) \ni u(t) = \exp(\mu B i \sigma_3 t) = \cos(\mu B t) + \sigma_1 \sigma_2 \sin(\mu B t)$ [33].

Equation (11) shows that the predictions for the neutron interferometric experiment when one uses a Pauli a-spinor wave function are the same as when a Pauli c-spinor wave function is used. Since these two kinds of spinor wave functions have different transformation laws under rotations (eq.(3) and eq.(9)), it follows that the experiment *does not prove* that the fermionic matter of the neutron must be described by a Pauli c-spinor wave function.

Before we end we must add that the notion of algebraic spinor fields leads to a new point of view [4] concerning the spinor structure of spacetime and the relation between bosons and fermions (supersymmetry) [34]. Also our translation of the Pauli equation satisfied by Ψ into the (Pauli) equation satisfied by ψ provides a geometrical meaning for the imaginary unit $i = \sqrt{-1}$, a fact that may have nontrivial consequences as already emphasized by Restences [35–38] who has been since long using algebraic and operator spinor wave functions for the interpretation of the relativistic quantum mechanics of the electron.

At least, to those who might not be convinced by our arguments, we recall the fact that there are many two-state quantum systems described by equations identical to eq.(6). Indeed as shown in Chap. 11-3 of [31] this is the case of the amonia molecule (a boson) in an eletric field. In a (possible) interferometric two-slit experiment with amonia molecules, with one of the paths passing through an eletric field E, we could see for an appropriate E a phase change $\phi \mapsto -\phi$. Nevertheless we are sure that in such a case nobody would claim that we are observing a 2π rotation of a spinor!

References

- [1] V.L. Figueiredo, E.C. de Oliveira and W.A. Rodrigues, Jr., Int. J. Theor. Phys. 29, 371 (1990).
- [2] V.L. Figueiredo, E.C. de Oliveira and W.A. Rodrigues, Jr., Algebras, Groups and Geometries 7, 153 (1990).
- [3] W.A. Rodrigues, Jr. and E.C. de Oliveira, Int. J. Theor. Phys. 29, 397 (1990).
- [4] W.A.Rodrigues, Jr. and V.L. Figueiredo, Int. J. Theor. Phys. 29, 413 (1990).
- [5] D. Ivanenko and L.D. Landau, Z. Phys. 48, 340 (1928).
- [6] E. Kähler, Rend. Mat. ser. V 21, 425 (1962).
- [7] W. Graf, Ann. Inst. Henri Poincaré XXIV, 85 (1978).
- [8] I.M. Been and W. Tucker, Comm. Math. Phys. 89, 341 (1983).
- [9] R. Penrose and W. Rindler, Spinors and Spacetime, vols. 1 and 11, Cambridge Univ. Press, Cambridge, second print (1986).
- [10] A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles, Macmillan, New York (1964).
- [11] M. Sachs, General Relativity and Matter, D. Reidel, Dordrecht, Boston and London (1964).
- [12] H. Bernstein, Phys. Rev. Lett. 18, 1102 (1967).
- [13] Y. Aharanov and L. Susskind, Phys. Rev. 155, 1428 (1967).
- [14] G.T. Moore, Am. J. Phys. 38, 1177 (1970).
- [15] G.C. Hegerfeldt and K. Krauss, Phys. Rev. 170, 1185 (1968).
- [16] T.F. Jordan, Phys. Lett. 98A, 457 (1983).
- [17] H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Banspiess and U. Bonse, Phys. Lett. A54, 425 (1975).
- [18] A.G. Klein and G.I. Opat, Phys. Rev. Lett. 37, 238 (1976).
- [19] S.A. Werner, R. Colella, A.W. Overhauser and C.F. Eagen, Phys. Rev. Lett. 35, 1035 (1975).
- [20] A. Zeilinger, Z. Phys. B25, 97 (1976).
- [21] G. Eder and A. Zeilinger, N. Cimento 34B, 76 (1976).
- [22] H.J. Bernstein In U. Bonse and H. Rauch (eds.), Neutron Interferometry, Clarendon, Oxford, pp. 231-240 (1979).
- [23] G. Badurek, H. Rauch and J. Summhammer, Physica B151, 92 (1988).
- [24] F. Mezei in U. Bouse and H. Rauch (eds.), Neutron Interferometry, Clarendon, Oxford, pp. 265-272 (1979).

- [25] F. Mczei, Physica B151, 74 (1988).
- [26] II.J. Bernstein and A. Zeilinger, Phys. Lett. A75, 169 (1980).
- [27] B. Alefeld, G. Badurek and H. Rauch, Phys. Lett. A83, 32 (1981).
- [28] A.O. Barut and M. Božić, Physica B151, 180 (1988).
- [29] A.O. Barut, M. Božić, Z. Marić and H. Rauch, Z. Phys. A328, 1 (1987).
- [30] A.O. Barut and M. Božić, Phys. Lett. A149, 431 (1990).
- [31] R.P. Feynman, R. Leighton and M. Sands, The Feynmon Lectures on Physics, vol. 3, Addison-Wesley., Reading, Mass. (1965).
- [32] A. Maia, Jr., E. Recami, M.A. Faria-Rosa and W.A. Rodrigues, Jr., J. Math. Phys. 31, 502 (1990).
- [33] J.R.R. Zeni and W.A. Rodrigues, Jr., "A Thoughtful Study of Lorentz Transformations by Clifford Algebras", Int. J. Mod. Phys. A (accepted for publication, 1991).
- [34] I.M. Been and R.W. Tucker, J. Phys. A: Math. and Gen. 16, 4147 (1983).
- [35] D. Hestenes, J. Math. Phys. 8, 798 (1967); ibiden 14, 893 (1973).
- [36] D. Hestenes, Spacetime Algebra, Gordon and Breach, N. Y. (1966).
- [37] D. Hestenes, Clifford Algebra to Geometric Calculus, D. Reidel, Dordrecht, Boston and London (1984).
- [38] D. Hestenes, Found. Phys. 20, 1213 (1990).

Alvaro DE SUNZA DUNKA

, UNESPZCampus de Guaratinquets DEU

Av. Dr. Ariberto Pereira da Cunta 333, Guaratingueta SP URASII

11:12:12:00

and

Centro Brasi Leiro de Pesquisas Essecas/DCP Av. Dr. Xavier Sigaud 150 Brca - Rio de Janeiro (6) BRASH 6112-22290

Abstract: Starting from a gauge principle for a scalar busine show that one can get, an 101 dimensions, the Tagramitan density of the generalized Schwinger model (1896) in its businized version. This occur for a particular value of the regularization parameter. Then we show how to get the model with the arbitrary parameter Unrough the introduction of the Wess-Zumino field.

+Fermancel address.

As is well known, some two-dimensional models prevents the interesting feature of dynamical mass generation for the gauge bosons, and this happen without loss of gauge invariance. In fact this is a mechanism that would be wellcome in higher dimensions, particularly in S(t, in order to acchieve a standard model without Higgs fields.

The the other band the possibility of transformation of terminant fields into besonic aces it is one of the more interesting features of the two dimensional models. The hosporzation technique is very important is order to qut congertorbative informations trum a given model. Is fact this type of approach is movidays being studied to bigber dimensions [1], through the operatorial posture.

In this latter we entend to show that, from the well known quince procepte, we can obtain these bosonized theories in 11 dimensions in the abelian case. This is done by observing that the tree scalar tagrangian density

21.4

$$\mathfrak{L} = (1/2) \partial_{\mu} \phi \, \partial^{\mu} \phi \,, \qquad (1)$$

is invariant under the global translaction:

ļ

$$\phi(\mathbf{x}) + \phi(\mathbf{x}) + \mathbf{v}, \qquad (2)$$

where v is a constant. As usual, now we impose that this model the invariant under a local translation

$$\phi(\mathbf{x}) \rightarrow \phi(\mathbf{x}) + v(\mathbf{x}), \qquad (3)$$

This is made by the introduction of a gauge vector field, that has the usual transformation

$$E_{\mu}(x) \rightarrow E_{\mu}(x) - (1/q)\partial_{\mu}v(x) , \qquad (4)$$

where q is a dimensional coupling constant. With these elements in hands, it is not difficult to see that the invariant lagrangian density shall be

$$\mathfrak{L} = (1/2)\partial_{\mu}\phi \,\partial^{\mu}\phi + g \,\mathbb{E}_{\mu} \,\partial^{\mu}\phi + (g^{2}/2)\mathbb{E}_{\mu} \,\mathbb{E}^{\mu}. \tag{5}$$

In fact the above Lagrangian density is valid in an arbitrary number of dimensions. Here we will restrict our analysis to 1+1 dimensions. Up to now we do not have identified the gauge field E_{μ} with the photon field A_{μ} , but in two dimensions we can relate these fields through the general expression

$$\mathbf{E}^{\mu} \doteq (\mathbf{u}_{1} \mathbf{g}^{\mu\nu} + \mathbf{u}_{2} \mathbf{e}^{\mu\nu}) \mathbf{A}_{\mu}. \tag{6}$$

Using this relation we get for the Lagrangian density:

$$\mathfrak{L} = (1/2)\partial_{\mu}\psi \ \partial^{\mu}\psi + \eta \ (\mathbf{r}_{1} \ \mathbf{q}^{\mu\nu} + \mathbf{r}_{2} \in^{\mu\nu}) \ \partial_{\mu}\psi \ \mathbf{h}_{\nu} + 215$$

+
$$(q^2/2)(c_1^2 + c_2^2)h_{\mu}h^{\mu}$$
, (7)

chosing the complime constant q as being the electron charge, that is the dimensional parameter in two dimensions; and identifying c_{i} and c_{2} with complime parameters of the GSM (2), q_{1} and q_{2} respectively, we have that

$$\boldsymbol{\mathcal{X}} = (172) \boldsymbol{\vartheta}_{\mu} \boldsymbol{\phi}^{\mu} \boldsymbol{\phi}^{\mu} \boldsymbol{\phi}^{\mu} + \boldsymbol{e}(\boldsymbol{\eta}_{\mu} \boldsymbol{\eta}^{\mu\nu} + \boldsymbol{\eta}_{\mu} \boldsymbol{a}^{\mu\nu}) \boldsymbol{\vartheta}_{\mu} \boldsymbol{\phi}^{\mu} \boldsymbol{A}_{\mu} + (\boldsymbol{e}^{2}/2) \boldsymbol{A}_{\mu} \boldsymbol{A}^{\mu}, \quad (0)$$

where we used imposed that $g_1^2 + g_2^2 = 1$ [?]. The above (tagrangian density, up to the arbitrary regularization parameter, is just the bosonized version of the GSM [3],

$$\mathfrak{L} = (1/2)\partial_{\mu}\phi \ \partial^{\mu}\phi + \mathfrak{e}(q_{\mu}q^{\mu\nu} + q_{2}\sigma^{\mu\nu}) \ \partial_{\mu}\phi \ \partial_{\nu} + (a \mathfrak{e}^{2}/2) \partial_{\mu}\Lambda^{\mu} \quad (9)$$

that in the particular cases in which $q_1 \neq 1 \neq -q_2$, and that $q_1 = 0$, $q_2 \neq 1$, recalls the chiral Schwinger model and the Schwinger one respectively [4,5].

However, as can be seen from above, the Lagrangian density of the bosonized GSM, was obtained in a particular value of the regularization parameter. Now we will see how to introduce this arbitrary parameter. This will be made through the use of the Wess-Zumino field.

This is made through the transformations:

$$\phi \rightarrow \phi + \mathbf{k}_{\rm c} \omega_{\rm s}$$
 (10a)

$$\mathbf{A}_{\mu} \neq \mathbf{A}_{\mu} \in (\mathbf{k}_{\mathbf{z}}/\mathbf{e}) \quad \sigma_{\mu} \theta_{\mu} \tag{10b}$$

that after substitution in (9) and rearranging gives:

$$\begin{split} \mathfrak{L} &= (172) d_{\mu} \psi \ \vartheta^{\mu} \psi + \mathfrak{e} (g_{1} \ \mathfrak{g}^{\mu\nu} \rightarrow \mathfrak{g}_{2} \ \mathfrak{s}^{\mu\nu}) d_{\mu} \psi \partial_{\mu} \leftarrow (\mathfrak{a} \mathfrak{s}^{2}/2) \Theta_{\mu} \Theta^{\mu} \\ &+ (\mathfrak{k}_{1} + \mathfrak{g}_{1} \mathfrak{k}_{2}) d_{\mu} \psi \ \vartheta^{\mu} \psi + (172) (\mathfrak{k}_{2}^{2} + 2\mathfrak{g}_{1} \mathfrak{k}_{1} \mathfrak{k}_{2} + \mathfrak{a} \mathfrak{k}_{2}^{2}) d_{\mu} \psi \ \vartheta^{\mu} \psi \\ &= 216 \end{split}$$

$$\mathbf{e} = \mathbf{e} \left[(q_1 \mathbf{k}_1 + \mathbf{a} \mathbf{k}_2) \partial^{\mu} \mathbf{A}_{\mu} + q_2 \mathbf{k}_1 \mathbf{e}^{\mu\nu} \partial_{\mu} \mathbf{A}_{\nu} \right]. \tag{11}$$

Now we can eliminate one of the constants k_1 and k_2 , by imposing that the crossed term in the fields ϕ and ϕ varishes. This condition raises from the fact that such term would corresponds to an interaction between the termion fields and the Wess-Zuminn one, and this would renders the theory anomalous. Using this condition to eliminate the constant k_1 , we obtain

$$\mathcal{L} = (1/2)\partial_{\mu}\phi \quad \partial^{\mu}\phi \quad + e(\eta_{1} - \eta_{2}^{\mu\nu}) \quad + \eta_{2} - e^{\mu\nu})\partial_{\mu}\phi \quad + e(\eta_{1} - \eta_{2}^{\mu\nu}) \quad + e^{\mu\nu}\partial_{\mu}\phi \quad + e^{\mu}\partial_{\mu}\phi \quad + e^{\mu\nu}\partial_{\mu}\phi \quad + e^{\mu\nu}\partial_{\mu}\phi \quad + e^{\mu}\partial_{\mu}\phi \quad + e^{\mu\nu}\partial_{\mu}\phi \quad + e^{\mu}\partial_{\mu}\phi \quad + e^{\mu}$$

$$(ae^{2}/2)AA^{\mu} + \chi_{WZ}$$
 (17a)

. . .

where

$$\mathcal{L}_{WZ} \approx (k_2/2) (a - q_1^2) \partial_{\mu} \partial^{\mu} \partial^{\mu} \partial + e k_2 \partial \left[(a - q_1^2) g^{\mu\nu} + q_1 g_2 e^{\mu\nu} \right] \partial_{\mu} \Lambda_{\mu},$$
(13)

and making the finite renormalization $\theta \to -(1/k_2)\theta$, we get finally the correct non-anomalous GSM, with the Wess-Zumino fograngian density

$$\mathcal{X}_{WZ} = (1/2) \left(\mathbf{a} - q_1^2 \right) \partial_{\mu} \theta \ \partial^{\mu} \theta - \mathbf{e} \ \theta \left[\left(\mathbf{a} - q_1^2 \right) q^{\mu\nu} + q_1 q_2 e^{\mu\nu} \right] \partial_{\mu} A_{\nu}, \quad (14)$$

that is the correct Wess-Zumino Lagrangian density, as can be verified from the particular cases of chiral Schwonger model $(q_1 - 1 + q_2)$ and the vectorial Schwonger one $(q_1 - 0, q_2 - 1)$ (6).

REFERENCES:

11] F. G. Marino, Phys. Lett. B 263 (1991) 63

121 C. Wolzasek and C. Naon, Z. Phys. C 46 (1909) 445.

13] D. Doyanovsky, J. Schmidt and M. F. F. Golterman, Ann. Phys. (N.Y.) 195 (1908) 111.

14] R. Jackiw and R. Rajaraman, Phys Rev Lett, 54 (1985) 1219.

[5] J. Schwinger, Phys. Rev. 128 (1962) 2425.

161 K. Harado and L. Lautsur, Phys. Lett. H 103 (1987) 311.

ESTADOS SUPER-COERENTES DO OSCILADOR RADIAL SUSI 3D

 R. L. Rodrigues (Departamento de Ciências Exatas e da Natureza-UFPB, Cajazeiras-PB, 58.900)
 A. N. Vaidya (Instituto de Fisica-UFRJ, Rio de Janeiro-RJ, 21.945)
 J. Jayaraman (Departamento de Fisica-UFPB João Pessoa-PB, 58.000)

Resumo. Encontramos os estados super-coerentes canônicos do oscilador radial SUSI 3D. Mostramos que eles são de três tipos: bosônico, fermiônico e super-simétrico (SUSI).

. .

I. INTRODUÇÃO

Os estados coerentes podem ser definidos de várias maneiras. sondo algumas delas equivalentes [1]. Eles têm uma vasta aplicação em física [2]. Uma extensão dos estados coerentes do oscilador harmónico simples são os Estados Super-Coerentes Canónicos (ESCC) do oscilador harmónico supersimétrico (SUSI) 1D, os quais são os autoestados de um operador de aniquilação SUSI de primeira ordem [3]. Estes estados geram espaço de IIIlbert bidimensional: um estado é fermiônico puro, e o outro é uma mistura de estados bosônico e fermiónico.i.é, um estado SUSI. Aqui, faremos a extensão dos estados coerentes radials. Da conexão entre o oscilador radial SUSI 39 e o oscilador radial generalizado de Wigner, oblén-se uma , em termos da super-realização realização das super-cargas. de Jayaraman e Rodrigues (JR) da áigebra de Wigner-Heisenborg (WI!) [4]. No sistema de unidades em que $h=1=M=\omega$, tal realização da SUSI em mecánica quântica é a seguinte:

$$H_{SS} = H(e+1) - \frac{1}{2} \sum_{3} (1 + 2(e+1)\Sigma_{3}) = [Q_{2}, Q_{3}], \qquad (1)$$

$$[H_{ss}, O_{\pm}] = 0, \ O_{\pm}^{2} = 0 \quad e \quad O_{\pm}^{2} = 0.$$
 (2)

onde $H(\ell + I)$ é o Hamiltoniano do oscilador radial generalizado de Wigner (6), comuta com a coordenada fermiónica, Σ_3 . E as super-cargas são dadas por:

$$Q_{-} = \frac{1}{2}(1 - \Sigma_{3})Q(l+1)$$
, $Q_{+} = \frac{1}{2}(1 + \Sigma_{1})Q(l+1)$, (3)

10Ate 27 24. **

onde $Q^{t}(\ell+1)$, são os operadores escada da particula de Wigner.

$$[H(e+1), \Omega^{\pm}(e+1)] = \pm \Omega^{\pm}(e+1)$$
 (4)

.:

Como H(l+1) e Σ_3 comutam, então H_{SS} e H(l+1) também comutam. Neste caso, podemos diagonalizar este Hamiltoniano SUSI na mesma base dos estados espinoriais de Wigner. Denotando os estados associados aos quanta pares e impares, por $|\phi_m\rangle$ c $|\psi_m\rangle$, respectivamente, obtemos :

$$H_{ss}|\phi_{n}\rangle = 2m|\phi_{n}\rangle, \quad H_{ss}|\gamma_{m}\rangle = 2(m+1)|\gamma_{m}\rangle.$$
 (5)

O espectro deste sistema SUSI é degenerado para m≥1. O vácuo é um estado singleto de energia zero, logo a SUSI é não quebrada.

II. ESTADOS SUPER-COERENTES CANÓNICOS

Os ESCC são os autoestados de um operador de aniquilação SUSI do OR 3D. A partir da áigebra WH obtemos três tipos desse operador, os quais são escritos em termos do operador de aniquilação da particula de Wigner. O primeiro, é diagonilzável na base dos estados super-coerentes fermiônicos puros {7},

$$A_{1}(\ell+1) = \frac{1}{2}(1+\Sigma_{3}) \{ Q(\ell+1) \}^{2}.$$
 (6)

Este operador de aniquilação, possuem as seguintes propriedades:

$$A_{s}(l+1)|\psi_{m}\rangle = 2\left\{m(m+l+\frac{4}{2})\right\}^{3/2}|\psi_{m-s}\rangle, \quad A_{s}(l+1)|\psi_{m}\rangle = 0.$$
(7)

Então, expandindo os ESCC na base dos autoestados ortonormals, pertencentes ao autoespaço associado aos quanta pares, de dimensão um, deduzimos a seguinte forma espinoriai:

$$|\xi_{F},\ell\rangle = \begin{pmatrix} |\xi,\ell\rangle_{-}\\ 0 \end{pmatrix} = |\xi,\ell\rangle_{-} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 (8)

onde os kets $|\xi, \ell >$ são os estados coerentes do OR 3D da ref. [5]. Estes ESCC são os análogos radiais dos estados super-coerentes fermiônicos puros do oscilador SUSI 1D da ref. [4]. O operador de aniquilação do OR SUSI 3D que, atua sobre os autoestados pertencentes uos quanta impares,

$$A_{2}(l+1) = \frac{1}{2}(1-\Sigma_{3}) \left\{ O(l+1) \right\}^{2} . \tag{10}$$

÷

é diagonalizado pelos ESCC bosónicos puros,

$$|\eta_{\theta'}\ell\rangle = \begin{pmatrix} O \\ |\eta_{\ell}\rangle_{\star} \end{pmatrix} = |\eta_{\ell}\rangle_{\star} \begin{pmatrix} 4 \\ O \end{pmatrix}$$
 (11)

onde os kets $|n,l\rangle_+$, são os ECC não-normalizados do OR 3D com momento angular adicionado de uma unidade , (*l*+1), a saber:

$$|\eta_{1} l\rangle_{+} = \sum_{m=0}^{\infty} \left\{ \frac{\Gamma'(l+3)_{2}}{\Gamma'(m+l+3)_{2}} m! \right\}^{\binom{1}{2}} [m_{1} l\rangle_{+}^{m}$$
(12)

O operador de aniquilação SUSI que atua sobre os autoestados associados aos quanta pares ou impares (estados fermiónicos ou bosónicos) e, consequentemente diagonalizável pelos ESCC SUSI,

$$A_{3}(l+1) = \{O(l+1)\}^{2}$$
. (13)

. .

tem as seguintes propriedades:

$$A_{s}^{(\ell+1)}|\phi_{m}\rangle = 2 \left\{ m(m+\ell+4/2) \right\}^{\frac{4}{2}} |\phi_{m-s}\rangle, \quad (14)$$

$$A_{j}(\ell+1)|\psi_{m}\rangle = 2\left\{m(m+\ell+3/2)\right\}^{3/2}|\psi_{m-1}\rangle \qquad (15)$$

Expandindo os ESCC SUSI na base $\{|\psi_{u}\rangle, |\psi_{m}\rangle, |\psi_{m}\rangle\}$, obtemos:

$$|\theta_{\rm S},\ell\rangle = b_{\rm c} |\theta_{\rm B},\ell\rangle + d_{\rm c} |\theta_{\rm F},\ell\rangle = \begin{pmatrix} d_{\rm c} |\xi,\ell\rangle \\ b_{\rm c} |n,\rho\rangle \end{pmatrix}$$
(16)

onde

$$A_3 | \theta_s, \varrho \rangle = \theta | \theta_s, \varrho \rangle , A_2 | \theta_s, \varrho \rangle = \eta | \eta_s, \varrho \rangle , A_2 | \theta_s, \varrho \rangle = F|_{\xi, \varrho \rangle}.$$
(17)

Estes estados Super-Coerentes Canonicos (ESCC) possuem também as duas propriedades importantes dos estados coerentes usuais: ... não-ortogonalidade e completeza. Estas propriedades serão mostradas por nos num trabalho mais detalhado sobre os estados coerentes do oscilador radial SUSI 3D, o qual está sendo preparado para submetê-lo a publicação numa revista científica internacional.

III. CONCLUSÕES

Construimos os ESCC do OR SUSI 3D. Mostrumos que eles são de três tipos: (i) estados canonicos, análogos dos estados super-coerentes fermiónicos puros do oscilador SUSI 1D [3], (ii) ESCC bosónicos puros e (iii) ESCC SUSI. Todos esses estados super-coerentes são super-completos e não-ortogonals. Assim como fol possivel esta extensão dos estados coerentes canónicos, podemos encontrar os estados coerentes generalizados associados à álgebra OSP(1/2) da SUSI em mecânica quântica. Um trabalho nesta linba esta sendo desenvolvido por nós.

Este trabalho foi financiado parcialmente pelo CNPq.

REFERENCIAS

- (1) M.M. Nleto e L. M. Simmons, Jr. Phys. Rev. D20, 1321 (1979)
- . [2] J. R. Klauder and B. S. Skagerstam, Coherent States, World Scientific, Singapore, (1985)
 - [3] C. Aragone e F. Zypman, J. Phys. A: Math. Cen. 19, 2267, (1986)
 - [4] J. Jayaraman e R. L. Rodrigues, J. Phys. A: Math. Gen. 23, 3123, (1990)
 - (5) R. L. Rodrigues, A. N. Valdya e J. Jayaraman, Proceedings do XII Encontro Nacional de Fisica de Particulas e Campos (1991)
 - (6) Adotaremos a convenção de estados bosônico e fermiônico usada na ref. (4). A convenção empregnda na ref. (5) é o contrário desta.

221

ESTADOS COERENTES DO OSCILADOR HARNÔNICO ISOTROPICO 3D DE SPIN 1/2

R. L. Rodrigues (Departamento de Ciências Exatas e da Natureza-UFPB, Cajazeiras-PB, 58.900)

A. N. Vaidya (instituto de Fisica-UFRJ, Rio de Janeiro-RJ, 21.945) : ,'^{1;} J. Jayaraman (Departamento de Fisica-UFPB, João Pessoa-PB, 58000)

 $s_{ij} = (b_{ij})_{ij}$

Resumo. Os estados coerentes esféricos são construidos via a técnica algébrica de Wigner-Heisenberg de três graus de liberdade. Eles são os autoestados do operador de aniquilação esférico de um oscilador harmônico isotrópico 3D de spin 1/2.

I. INTRODUÇÃO

Faremos um desenvoivimento análogo ao da nossa construção dos Estados Coerentes Canônicos (ECC) para um oscilador generalizado , o qual emergiu do setor bosônico de um Hamiltoniano de Wigner [1]. Usaremos o sistema de unidades em que h=1=m=ω.

A super-realização da álgebra de Wigner-Heisenberg (WH) proposta por Jayaraman e Rodrigues (JR) possibilitou uma simples resolução espectral do oscilador harmónico isotrópico 3D não relativistico e de spin 1/2 [2]. Este sistema é descrito pela seguinte equação de Schrödinger independence do tempo:

$$H[e:-b] \Psi = \frac{1}{2} \left\{ -\frac{2^2}{3r^2} - \frac{2}{r} \frac{\partial}{\partial r} + r^2 + \frac{g. \pm (g. \pm +1)}{r^2} \right\} \Psi = E_{-} \Psi \qquad (1)$$

cujo Hamiltoniano aparece embutido no setor bosônico do Hamiltoniano de Wigner 3D. Na eq.(1), usamos as identidades [2,3] envolvendo as matrizes de spin 1/2 de Pauli, $\sigma_1(1=1,2,3)$,

$$(\underline{\sigma},\underline{\tau})[\underline{\sigma},\underline{\tau}+1] = \underline{\mathcal{I}}[\underline{\sigma}, \underline{\sigma},\underline{r}] = \sigma_{\mathbf{v}} \underline{r} + \underline{i} \sigma_{\mathbf{r}} (\underline{\sigma},\underline{\tau}+1) \qquad \sigma_{\mathbf{r}} = \underline{\underline{\sigma}}, \underline{\tau} \quad (2)$$

$$\alpha^{2} = 1 \quad [\alpha + 1, \alpha] = 0 \quad g \cdot f = \alpha \cdot \beta + \frac{1}{2} \sigma \cdot (\alpha \cdot 1 + 1) \quad (3)$$

A super-realização JR dos operadores escada, mutuamente adjuntos,

$$\Omega^{\frac{1}{2}}(\varphi, L+1) = \frac{1}{\sqrt{2}} \left\{ \pm \left(\frac{3}{6r} + \frac{1}{r}\right) \pm \frac{1}{r} \left(\frac{\sigma}{r} + \frac{1}{r} + 1\right) \sum_{3} - r \right\} \sum_{1} = \left\{ O^{\overline{1}}(\ell+1) \right\}^{\frac{1}{r}}$$
(4)

nos proporciona uma álgebra Wi em 3D:

$$H(\mathfrak{G}, \underline{+1}) = \frac{1}{2} \left[Q(\mathfrak{G}, \underline{+1}), Q(\mathfrak{e}+1) \right]_{+}$$
(5)

$$\left[H(q, L+1), Q^{\dagger}(q, L+1)\right] = \pm Q^{\dagger}(q, L+1)$$
⁽⁶⁾

A relação de comutação generalizada derivada desta álgebra é:

$$[a(\underline{a},\underline{b}+1), a(\underline{a},\underline{b}+1)] = 1 + 2(\underline{a},\underline{b}+1) \underbrace{\prod}_{3}$$
(7)

As coordenadas fermiònicas Σ_1 (1=1,2,3) são as matrizes de Pauli também, mas não descrevem o spin e, por sua vez, comutam com as matrizes de spin 1/2, σ_1 .

As autofunções do operador matricial $(\sigma, L+1)$ são os bem conhecidos harmónicos esféricos de spin.

$$|+>=|l=j_{j}=l+\frac{1}{2}, m_{j}>$$
, $|->=|(l+1)\frac{1}{2}, j=(l+1)\frac{1}{2}, m_{j}>$. (8)

Pode-se mostrar que $(\underline{\sigma}, \underline{l}, 1)$ comuta com todos os elementos da Algebra WH 3D. Então, seus autovalores vão rotular as representações irredutiveis que varrem os autoespaços de $H(\underline{\sigma}, \underline{l}, 1)$, para um valor fixo do momento angular total, $j=\ell+1/2=(\ell+1)-1/2$.

Os autovetores da particula de Wigner no autoespaço de $(\underline{\sigma}, \underline{\iota}+1)$ $\rightarrow (l+1)$, formam um conjunto completo associado aos quanta pares ou impares, satisfazendo a seguinte equação de autovalor:

$$||(g + 1)| ||_{l_{\frac{1}{2}, jmj}}^{(n)} > = E(e_{1})| ||_{l_{\frac{1}{2}, jmj}}^{(m)} > E(e_{1}) = l_{\frac{1}{2}+n}$$
(9)

De (5)-(7), nesse autocspaço, obtemos as seguintes realizações para o operador de aniquilação dos quanta da particula de Wigner:

$$\tilde{\alpha}(\ell+1) | \gamma_{\ell_{\frac{1}{2},j-j}}^{(2m+1)} > = \frac{1}{2} (m+j+1) | \gamma_{\ell_{\frac{1}{2},j-j}}^{\ell_{\frac{1}{2}}} \rangle$$
(10)

$$O(l+1) \gamma_{l\frac{1}{2}, j-j}^{(2m)} > \gamma_{l\frac{1}{2}, j-j}^{(2m)} > \gamma_{l\frac{1}{2}, j-j}^{(2m-1)} >$$
(11)

A projeção do comutador $\left[H(2:+1), \{O(2:+1)\}^2\right]$, no autoespaço associado aos quanta pares, nos dá os operadores escada esféricos do oscilador isotrópico 3D de spin 1/2, $B^{\frac{1}{2}}(2:+1)$.

$$B[g:\pm 14] = A^{\dagger}(g:\pm 1.)A^{\dagger}[-(g:\pm 1.)] = \{B[g:\pm 1.)\}^{\dagger}, \quad (12)$$
$$= \frac{1}{2}\{(\frac{3}{2}+\frac{4}{2})^{2}-2r\frac{3}{5r}+r^{2}-\frac{(g:\pm)(g:\pm 1.)}{r^{2}}-3\}, \quad (13)$$

onde

$$A^{T}[\tau(r' + 1)] = \frac{1}{r_{2}} \left\{ \frac{1}{r_{1}} \left\{ \frac{1}{r_{1}} + \frac{1}{r_{2}} \right\} \tau = \frac{1}{r_{2}} \left\{ \frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{r_{2}} \right\} \tau = \frac{1}{r_{1}} \left\{ \frac{1}{r_{1}} + \frac{1}{r_{2}} +$$

A partir de (10)-(14), vemos que os operadores quadráticos, mutuamente adjuntos satisfazem as seguintes propriedades:

$$B[\underline{\alpha}:\underline{+1})|ml\frac{1}{2},jm_j\rangle = 2\{m(m+j)\}^{1/2}|(m-1)l\frac{1}{2},jm_j\rangle . (15)$$

$$B^{\dagger}(\underline{\rho}:\underline{+1}) | m | \frac{1}{2}, jm_{j} \rangle = 2 \{ (m+1)(m+j+1) \} | (m-1) | \frac{1}{2}, jm_{j} \rangle$$
(16)

Propriedades semelhantes se verificam também no autoespaço pertencentes aos quanta impares e, por sua vez, os operadores de criação e de aniquilação, deduzidos por nós, independem do número de quamta.

11. ESTADOS COERENTES CANÔNICOS ESFÉRICOS

Os autoestados esféricos do operador de aniquilação, \mathcal{B}_{-} , estão associados ao autovalor complexo, γ . Eles são exatamente os ECC do oscilador hamónico isotrópico 3D de spin 1/2. Em plena analogia com a ref.[1], obtemos os ECC normalizados como uma expansão na base ortonormal, $\{|ml_{\frac{1}{2}}, jm_{j} > \}$, ou seja:

$$|\Upsilon_{j}\rangle = \left\{ \left(\frac{2}{|T|}\right)^{j} \left[\left(|T|\right) |T| j+1 \right) \right\}^{-3/2} \sum_{m=0}^{40} \frac{\left(\frac{T}{2}\right)^{m}}{|m|! |T|(m+j+1)|^{4/2}}$$
(17)

onde $I_j(|\gamma|)$ são as funções de Bessel modificadas, a saber,

$$I_{i}(11) = \sum_{m=0}^{\infty} \frac{(11)}{m! \Gamma(m+i+4)}$$
(18)

A propriedade de não-ortogonalidade é evidenciada abaixo pelo produto escalar entre dois ECC associados a autovalores distintos,

$$\langle \Upsilon_{jj} | \chi_{jj} \rangle = \left\{ \left(\frac{2}{|\Upsilon|} \frac{2}{|\chi|} \right)^{j} \mathbf{I}_{j} \left(\Upsilon^{j} \right) \mathbf{I}_{j} \left([\chi] \right) \left(\frac{1}{2} \sum_{j=0}^{10} \left(\frac{\chi^{\#} \chi}{2} \right)^{m} \right)^{m} \right\}$$
 (18)

Estes estados coerentes conônicos esféricos satisfazem a uma propriedade de completeza e, portanto, são super-completos. Esta propriedade será demonstrada por nós num trabalho que está sendo preparado para ser submetido a publicação internacional.

III. CONCLUSÕES

A partir da super-realização JR da Algebra WI 3D, obtemos o operador de aniquilação de um oscilador harmónico isotrópico 3D de spin 1/2, cujos autoestados são exatamente os estados coerentes canônicos esféricos deste oscilador. Eles possuem as propriedades de não-ortogonalidade e completeza. Os operadores escada obtidos aqui não dependem do número de quanta. Esta construção nos permite várias aplicações em física quântica. Além das possíveis extensões daquelas aplicações usadas no tratamento unidimensional [5], podemos analisar a fase de Berry [6] sobre uma base constituida destes estados coerentes 3D.

Este trabaiho foi financiado parcialmente pelo CNPq.

REFERÊNCIAS

- R. L. Rodrigues, A. N. Valdya e J. Jayaraman, XII Encontro Nacional de Fisica de Particulas e Campos (1991)
- [2] J. Jayaraman e R. L. Rodrigues, J. Phys. A: Math. Cen. 23, 3123, (1990)
- [3] P. M. Mathews e K. Venkatesan, A Tex Book of Quantum Mechanics, (New Delhi, Tata MacGraw. IIII, pgs. 335-7 (1986))
- [4] L. C. Bledenhan Found Phys. 13, 13, (1983)
- [5] J.R. Klauder e B. S. Skagerstam, Coherent States (World Scientific, Singapore, 1985)
- [6] M. V. Berry, Proc. R. Soc. London. Ser. A 392, 45 (1984)

CÁLCULO ALGÉBRICO DE PROPAGADORES EM ESPAÇOS CURVOS

S. J. RABELLO & A. N. VAIDYA

Universidade Federal do Nio de Janeiro

Instituto de Física ,Cx.P. 68.528, 21944 Rio de Janeiro ,Brasil.

<u>Resumo</u>.Utilizando a reprosentação de Schwinger, fórmulas BCH , . e a Algebra de Lie do grupo SO(2,1) obtivemos as funções de Green do campo escalar em alguns modelos cosmológicos.

O estudo do comportamento de campos quânticos na presença de campos gravitacionais externos é de vital importância no entendimento de fenômenos como a evaporação de buracos negros, o universo primordial, etc (Birrel & Davies 1982 [1]). Neste estudo é necessário obter as funções de Green da teoria, através das quais podemos obter as diversas quantidades de interesse como as ações efetivas e taxas de produção de pares.

O que vamos fazer neste trabalho é obter as funções de Green do campo escalar com acoplamento conforme em alguns modelos cosmológicos, que satisfazem [1]:

$$\left(\Delta_{LB} + m^2 + \frac{1}{6}R\right)G(x, x') = -\frac{1}{\sqrt{-8}}\delta^4(x-x')$$
 (1)

Onde g = detg^{$\mu\nu$}. R é a curvatura escalar e Δ_{LB} é o operador de Laplace-Beltrami,

$$\Delta_{1,B} = (-g)^{-1/2} \partial_{\mu} [g^{\mu\nu} (-g)^{1/2} \partial_{\nu}]$$
(2)

226

Na representação de Schwinger temos [1]:

$$\begin{array}{c} G(x,x') = L \lim_{\varepsilon \to 0} \int_{0}^{1} ds \, \exp\{-i(\Delta_{LB}^{1+1} + \frac{1}{6}R' + m^{2} - ic)s\}(-g)^{1/2} \, \delta^{4}(x-x') \\ & 0 \end{array}$$

O que vamos fazer é obter a atuação da exponencial acima sobre a função delta de Dirac para tal vamos considerar casos em que o argumento da exponencial pode ser escrito como uma combinação linear de geradores da álgebra de Lie SO(2,1):

(3)

$$\{T_1, T_2\} = -i T_1 \qquad \{T_2, T_3\} = -i T_3 \qquad \{T_1, T_3\} = -i T_2 \qquad (4)$$

Utilizando as relações de comutação acima e fórmulas BCH (Baker-Campbell-Hausdorff) poderemos encontrar G(x, x'), como foi feito para o problema de Kepler relativistico por Mil'shtein e Strakhovenko 1982 [2] e para diversos potenciais da mecánica quántica por Boschi e Valdya 1990 [3].

MODELOS ANISOTRÓPICOS DE BIANCHI DO TIPO I

Estes modelos são descritos pela métrica [1]:

 $g^{\mu\nu} = dlag(1, -t^2, -t^{2p}_{1, -t^{2p}_{2}})$, $0 \le t < \infty$ (5)...

Onde $p_1 e_p_2$ são parâmetros constantes que assumem os valores 0 e 1. Para $p_1 = p_2 = 1$ temos um universo isotrópico, espacialmente chato, de Robertson-Walker com expansão linear, enquanto que para outros valores dos p_'s temos universos anisotrópicos.

$$G(x, x') = \frac{1}{(2\pi)^3} \int d^3k \ e^{ik \cdot (\vec{x} - \vec{x}')} \ G_k(t, t')$$
(6)

A equ. (1) assume a forma

$$\begin{bmatrix} \partial_{t}^{2} *(1+p_{1}+p_{2}) \frac{1}{t} \partial_{t} + \frac{1}{t^{2}} k^{2} + \frac{1}{t^{2}} k^{2} + \frac{1}{t^{2}} k^{2} + \frac{1}{t^{2}} k^{2} + m^{2} + \frac{\gamma}{t^{2}} \end{bmatrix} G_{k}(t,t')$$

$$= t^{-(1+p_{1}+p_{2})} \delta(t-t') \quad (7)$$

onde γ é uma constante determinada por p₁ e p₂ :

$$\gamma = \begin{cases} 1 & p_1 = p_2 = 1; \\ 1/3 & p_1 = 1, p_2 = 0; \\ 0 & p_1 = p_2 = 0 \end{cases}$$
(8)

podemos identificar na equação (7) o gerador T_i

$$\partial_{t}^{2} + (1+p_{1}+p_{2}) \frac{1}{t} \partial_{t} + \frac{1}{t^{2}}(k_{x}^{2}+p_{1}k_{y}^{2}+p_{2}k_{z}^{2}+\gamma)$$

quando então

.

$$T_2 = -\frac{1}{2} t \partial_1 - i \frac{1}{4} (2 + p_1 + p_2) , \quad T_3 = -\frac{1}{8} t^2$$

Utilizando o método algébrico ([2],[3]) pode-se mostrar que:

(9)

$$G_{\mu}(t,t') = -\frac{1}{2}(tt')^{-(p_{1}+p_{2})/2} \int_{0}^{\infty} ds \frac{e}{s} \frac{-1}{4s} (t^{2}+t'^{2}) I_{\nu}(\frac{itt'}{2s}) \times$$

 $exp-is[m^2+(1-p_1)k_v^2+(1-p_2)k_z^2-ic]$

onde
$$\nu = \frac{1}{2} [(p_1 + p_2)^2 - 4(k_x^2 + p_1 k_y^2 + p_2 k_x^2 + \gamma)]^{1/2}$$
 (10)

Na expressão acima I_u(z) é a função de Bessel modificada (Gradshtein e Ryzhik 1965 [4]). •

Integrando em s na equ. (10) temos [4]:

$$G_{k}(t,t') = -\frac{\pi}{2} (tt')^{(p_{1}+p_{2})/2} H_{\nu}^{(2)} (\mu t) J_{\nu}(\mu t'), \quad t > t' \quad (11)$$

onde $H_{\nu}^{(2)}(z)$ é a função de Hankel de segunda espécie e $J_{\nu}(z)$ é a função de Bessel cilindrica [4].

Os resultados acima conferem com os encontrados por Charach 1982 [5] e Duru e Ünal 1986 (6) ,que utilizaram integrais de caminho.

Referências

[1] - Birrel, N.D. & Davies , P.C.W., "Quantum Fields in Curved Space", Cambridge University Press, 1982. [2] - Mil'shtein, A.I. & Strakhovenko, V.M., Phys. Lett. 90A (1982) 447. [3]- Boschi-Filho ,H & Valdya,A.N., Preprint IF/UFRJ/90/45;A aparecer em Annals of Physics 211 1991. [4] - Gradshtein, I.S. & Ryzhik, I.M., "Table of Integrals, Series and Products", Academic Press, N.Y., 1965. [5] - Charach, C. , Phys. Rev. D 26 (1982) 3367. [6] - Dury, [. J. & Unal, N., Phys. Rev. D 34 (1986) 959.

GEOMETRIA DOS AUTOESTADOS DE SPIN

J.R. ZENI¹ - Inst. de Física, UNICAMP, Campinas, SP Depto de Mat. Aplicada, UNICAMP, Campinas, SP.

ABSTRACT: usando o fato bem conhecido da geometria spinorial de que à um spinor podemos associar um vetor (por sua vez interpretado como o eixo da rotação associada ao spinor) através do produto direto do spinor pelo seu conjugado hermitiano, mostramos que os operadores de projeção de spin da teoria quântica tem por autoestados os spinores associados, através do produto direto, à direção espacial definida pelo operador.

INTRODUCÃO - Na mecânica quântica os sistemas físicos são descritos por vetores de estado, enquanto que os observaveis físicos são relacionadas a operadores lineares que atuam sobre os estados transformando um estado em outro. (Landau e Lifchitz, pg 19) O principal problema em Mecânica Quântica é obter os autoestados e autovalores dos operadores representando os observaveis físicos relevantes ao problema em questão.

Na teoria Quântica (não relativista) de partículas com spin 1/2, os estados das partículas no que se refere a varíavel de spin são descritos por espinores [Rodrigues e Zeni; Landau e Lifchitz, pg 232; Santaló, pg 29-33], que são elementos de um ospaço vetorial complexo bidimensional, sendo representados por matrizes colunas 2X1. Por outro lado, os operadores de projeção de spin 1/2 (ou simplesmente operadores de spin) são representados por matrizes hermitianas 2X2 complexas, que podem ser escritas em termos das matrizes de Pauli [Landau e Lifchitz, pg 232; Sakurai, pg 163-65].

Assim, um operador de spin 🕏 é definido por

$$\vec{S} = \frac{\pi}{2} \vec{N}$$
 (1)

onde fi é a constante de Planck e N é o operador de spin 1/2 adimensional definido como sendo um vetor (real) expandido nas matrizes de Pauli:

$$\vec{N} = \vec{n} \cdot \vec{\sigma} = n_1 \sigma_1 + n_2 \sigma_2 + n_3 \sigma_3 = \begin{pmatrix} n_3 & n_1 - in_2 \\ n_1 + in_2 & n_3 \end{pmatrix}$$
 (2)

A expressão acima é conveniente pois associamos a cada direção do espaço, ¹endereco permanente: Dept. Cionc. Nat., FUNREI, São João Del Rei, MG.

1.12

. definida pelo vetor \vec{n} , un operador de projeção de spin no longo desta direção. **AUTOESTADOS E PRODUTO DIRETO - os autoestados do operador de spin i**N, serão indicados pelo spinor ψ_n . Considerando apenas vetores unitários $(|\vec{n}|^2 = n_1^2 + n_2^2 + n_3^2 = 1)$, os autovalores do operador de spin \vec{N} estão restritos nos valores 11.

Passamos a expor nosso método para obter o autoestado de spin up. Recordamos inicialmente que o produto direto de uma matriz coluna 2X1, digo o spinor ψ , por uma matriz linha 1X2, como o spinor conjugado hermitiano ϕ^{\dagger} , resulta numa matriz quadrada 2X2 cujas linhas (colunas) são caracterizadas por ψ (ϕ^{\dagger}), de acordo com a seguinte definição: [Wigner, pg 17; Santalo, pg.99]

$$\psi \times \phi^{\dagger} = \begin{pmatrix} \psi_{1} \phi_{1} & \psi_{1} \phi_{2} \\ \psi_{2} \phi_{1} & \psi_{2} \phi_{2} \end{pmatrix}$$
(3)

ondo φ[†]é o conjugado complexo de φ. Como qualquer matriz 2X2 complexa, a matriz resultante do produto direto φχφ[†] pode ser escrita como combinação linear das matrizes (Ι, σ), onde Ι é a matriz identidade 2X2.

Agora, considerando o produto direto de um spinor pelo seu conjugado hermitiano, i.e., $\psi_{X}\psi^{\dagger}$, notamos dois fatos importantes que podem ser verificados diretamente da eq.(3) [Rodrigues e Zenl]:

(i) as componentes do produto direto $\psi \chi \psi^{\dagger}$ na base (1, $\vec{\sigma}$) são reais (a matriz é hermitiana). A componente da identidade é igual a 1/2 $\psi^{\dagger} \psi$;

(11) o spinor ψ é un autoestado da matriz resultante do produto direto $\psi x \psi^{\dagger}$, com autovalor $\psi^{\dagger} \psi$. Simbolicamento este fato é expresso como:

$$(\psi \otimes \psi^{\dagger}) \psi = (\psi^{\dagger} \psi) \psi = (|\psi_1|^2 + |\psi_2|^2) \psi$$
 (4)

O falo (1) nos diz que sempre podemos expressar un operador de spin \vec{N} através do produto direto de un particular spinor e seu conjugado hermitiano como mostrado abaixo:

 $\hat{\mathbf{N}} = \hat{\mathbf{n}} \cdot \vec{\sigma} = 2 \psi_{\mathbf{n}} \times \psi_{\mathbf{n}}^{\dagger} - \psi_{\mathbf{n}}^{\dagger} \psi_{\mathbf{n}}^{\dagger} \mathbf{a}$ (5)

O falor 2 foi introduzido na eq.(5) pois deste modo o vetor \vec{n} é unitário se e somente se o spinor ψ_{\perp} também o foir. As fórmulas relacionando as componentes do operador de spin Ñ ao spinor y_n podem ser deduzidas daeq.(2) para Ñ e da formula explicita para o último membro da eq.(5).

Ressaltamos que quando expressamos um operador de spin através do produto direto de um spinor pelo seu conjugado hermitiano, o apinor assim oblido é dofinido a menos de uma fase global, isto é, se trocarmos ψ_n por $e^{i\Theta}\psi_n$, onde e é um número real, então o mesmo operador il é oblido através da eq.(5) (Rodrigues e Zeni). Esta liberdade na escolha da fase global é também incrente na descrição da mecânica quântica (Landau e Lifshitz, pg.8; Barut, pg.14), de modo que a eq.(5) atribue um único estado físico para o sistema.

Por outro lado, o fato (ii), eq.(4), nos garante que o spinor ψ'_n é un autoestado do operador \hat{N} , eq.(5), correspondente ao autovator +i.

Discutimos agora uma interpretação geométrica para a eq.(5), que se mostrará significativa na análise física da variável de spin. Inicialmente, observamos que podemos relacionar um spinor a uma rotação através do seguinte raciocínio [Rodrigues e Zeni; Santalo, pg 35; Penrose e Rindler, pg.10-14]: o eixo de rotação está na direção do vetor definido pelo spinor através da eq.(5); o angulo de rotação é dado pela fase do spinor em relação a um particular spinor, que representa a rotação por 2m radianos ao redor do eixo em questão.

A relação acima entre um spinor e uma rotação ieva a seguinte interpretação para a Mecânica Quântica de partículas com spin 1/2: o autocstado de spin up de um dado operador (de projeção) de spin é dado pelo spinor associado a uma rotação ao redor do eixo definido pelo operador de spin em questão.

Para completar a discussão dos autoestados de spin, ressaltamos que o autoestado de spin correspondente ao autovalor -1, denominado spin 'down', pode ser obtido do autoestado de spin up através da inversão temporal [Sakural, pg 277-8].

CUNCLUSÃO: Os métodos usuais de se obter os autoestados de spin (seja resolvendo o problema algébrico de autovalores (Kessier, pg.9-10), seja usando o recurso de que o operador de spin N ao longo de uma direção qualquer pode ser obtido do operador σ_{3} por uma rotação e portanto os:autoestados de N estão relacionados aos autoestados do σ_{3} pela mesma rotação (Sakurai, pg 167-8)) não formecem uma interpretação geométrica nem acrescentam outra relação além da definição entre o operador de spin e os spinores que são seus autoestados.

Por outro lado, neste artigo nos servimos de uma relação bem conhecida da teoria de grupos e geometria spinorial [Rodrigues e Zeni; Santaló, pg.35; Penrose e Rindler; pg.32-7] entre spinores o rotações, que resulta no seguinte: o outoestado de spin up para um dado operador de spin é o spinor associado auma rotação ao redor do eixo espacial definido pelo operador de spin.

Além disso, nossa metodologia nos permite concluir que se um sistema físico é descrito por um dado spinor, então o spin do sistema (ou a projeção do spin) está ao longo da direção do vetor definido pela eq.(5).

Por fim, ressaltamos quo os resultados aqui discutidos foram originalmente elaborados usando a algebra de Clifford gerada pelos vetores euclidianos [Zeni e Rodrigues, 1990 e 1991] e a teoria de spinores algebricos [Figueiredo, Oliveira e Rodrigues; Hodrigues e Zeni].

ACRADECIMENTOS: o autor e grato ao prof. Dr Guilhermo Cabrera por algumas observações relevantes, e em especial ao prof. Dr. Waldyr Rodrigues por uma leitura do manuscrito e também pelas diversas discussões sobre o assunto. Este trabalho foi parcialmente financiado pela FAFESP.

REFERÊNCIAS

BARUT, A. O. - (1971) - "Dynamical Groups and Generalized Symmetries in Quantum Theory", Lectures Notes, Univ. of Canterbury, New Zealand.

FIGUEIREDO, V.L.; OLIVEIRA, E.C. e NODRIGUES, W.A. - (1990) - Alg. Groups and Geom., 7, 150.

KESSLER, J. - (1985) - "Polarized Electrons", Springer-Verlag.

LANDAU, L.D. and LIFCHITZ, E.M. - (1966) - "Reconique Quantique", MIR.

PENROSE, R. and RINDLER, W. (1984) - "Spinors and Space-Time". Cambridge Univ. Press.

RUDRIGUES, W.A. and ZENI, J.R. (1991) - "The Relation Between 2-Spinors and Rotations", preprint, subm. to publ.

SAKUNAI, J.J. - (1985) - "Modern Quantum Mechanics", Benjamim Cummings.

SANTALÓ, L.A. - (1976) -"Geometria Espinorial", ed. Consejo Nacional Inv. Cient. y Tec., Inst. Argentino Mat., Argentina.

WIGNER, E. - (1959) - "Group Theory", Academic Press.

ZENI, J.R. e RODRIGUES, W.A. (1990) - Rov. Bras. Fisica, 20, 377.

ZENI, J.H. a RODHIGUES, W.A. (1991) -*A Thoughtful Study of Lorentz Transformations by Clifford Algebras*, to appear in Int. J. Mod. Phys. (A)

QUANTUM CORRECTIONS TO CLASSICAL SOLUTIONS

Vera Lúcia Vieira Baltar

Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro C.P. 38071, 22452 Rio de Janeiro RJ, Brasil

> Jorge Llambias and Luis Masperi Centro Atômico Bariloche and Instituto Balsceiro 8400 San Carlo de Bariloche, Argentina

Abstract - In a real scalar field model in 1 + 1 dimensions with quartic and sixtic selfcoupling there appears a classically unstable nontopological soliton which, in a certain parameter range of the model, is stabilized by quantum corrections.

1. INTRODUCTION

The real scalar field theory in 1 + 1 dimensions with quartic and sixtic self interactions corresponding to a deepest central well and two lateral ones has a static classical solution which takes values in one of these for all the space except for a finite region where it approaches the absolute minimum¹. In a lattice quantum version of the model it has been shown² that the condensation of these bubble type states, together with the kinks, determines the phase diagram, which exhibits a tricritical point that may be related to the $H\epsilon^3 - H\epsilon^4$ mixture³.

The bubble type solution is unstable. Equivalent static classical unstable bubbles appear in the non linear Schroedinger equation⁴, but, due to the non relativistic nature of the theory, they may achieve stability when they move exceeding a critical velocity with respect to the medium.

The purpose of this work is to indicate that in the relativistic theory bubbles may be stabilized by quantum corrections. The problem has two aspects. One is that the bubble is classically unstable against small perturbations. The other is that the classical bubble lives mostly in a false vacuum which may tunnel into the true one. Regarding the former problem, it will be seen in section 2 that if higher order terms around the classical contributions are considered, by means of a quadratic approximation, all the energies of the excitations turn out to be real, and therefore no decay is possible. Regarding the later problem, in will be seen in section 3 that quantum corrections at one and two loops give rise to dynamical symmetry breaking, turning the false vacuum into a stable one.

It must be stressed that these indications for the quantum stability of the bubble are different from those corresponding to other non topological solitons which are always related to a Noether charge.

2. BUBBLE STABILIZATION

Given a Lagrangian in 1 + 1 dimensions for a real field ϕ

$$\tilde{\mathcal{L}}(\tilde{x},\tilde{t}) = \frac{1}{2} (\tilde{\partial}_{\rm m} \tilde{\phi})^2 - \tilde{V}(\tilde{\phi}) \tag{1}$$

where

$$\tilde{V}(\tilde{\phi}) = \frac{K^2}{2} (\tilde{\phi}^2 - \rho)^2 (\tilde{\phi}^2 - A\rho)$$
⁽²⁾

the change of variables $\phi = \frac{1}{\sqrt{\rho}} \tilde{\phi}$, $x_{\mu} = \rho \tilde{x}_{\mu}$ allows us to write

$$\mathcal{L}(x,t) = \frac{1}{\lambda} \left[\frac{1}{2} (\partial_{\mu} \phi)^2 - V(\phi) \right]$$
(3)

where

$$V(\phi) = \frac{K^2}{2}(\phi^2 - 1)^2(\phi^2 - A) \quad \text{and} \quad \lambda = \frac{1}{\rho^3}$$
(4)

If A < 0 there is spontaneous symmetry breaking and topological solitons of kink type appear. If 0 < A < 1 the central minimum is the absolute one, the true vacuum corresponds to $\phi = 0$ and there is a static solution of the bubble type

$$\phi_c^2 = A \left\{ 1 - (1 - A) \operatorname{tgh}^2 [K \sqrt{1 - A} (x - x_0)] \right\}^{-1}$$
(5)

which satisfies $\frac{1}{2}(\phi')^2 = V(\phi)$.

The bubble Eq.(5) is classically unstable since a small perturbation $\psi(x) e^{i\omega t}$ satisfies

$$\left[-\frac{d^2}{dx^2}+V''[\phi_c(x)]\right]\psi(x)=\omega^2\psi(x)$$
(6)

and being the zero mode $\phi'_c(x)$ a one node function, the ground state of Eq.(6) corresponds to imaginary ω .

Let us see how Eq.(6) is modified when corrections higher than the quadratic ones are included

$$\phi(x,t) = \phi_c(x) + \tilde{\phi}(x,t) \tag{7}$$

whith

$$\hat{\phi}(x,t) = \sum_{n} \frac{1}{\sqrt{2\omega_n}} \left[a_n \psi_n(x) \, \epsilon^{-i\omega_n t} + a_n^{\dagger} \psi_n^{\dagger}(x) \, \epsilon^{i\omega t} \right] \tag{8}$$

where $[a_{n_1}a_n^{\dagger}] = \delta_{n_N}$ and $\{\psi_n(x)\}$ is a complete set of functions.

Keeping only the second order terms in $\phi(x, t)$, the Hamiltonian turns out to be

$$H^{(2)} = E_c + \sum_n \omega_n \left(a_n^{\dagger} a_n + \frac{1}{2} \right) \tag{9}$$

if $\psi_n(x)$ satisfies Eq.(6). The existence of an imaginary frequency formally produces the instability, though the strict treatment of Eq.(8) requires ω_n to be real. Inspired by ref. 5 we keep the cubic and quartic contribution and approximate it as a quadratic expansion around its minimum, which will be valid if $\hat{\phi}$ is small. Now we have

$$H^{(4)} = E_c + \int dx \left[\frac{45}{8} \frac{(V''')^4}{(V^{IV})^3} + \frac{1}{2} \hat{\phi}^2 + \frac{1}{2} \hat{\phi}'^2 + f(x) \hat{\phi} + \frac{1}{2} g(x) \hat{\phi}^2 \right] \quad (10)$$

with $f(x) = \frac{9}{2} \frac{(V''')^3}{(V'')^2}$, $g(x) = V''(\phi_c) + \frac{3}{2} \frac{(V''')^2}{V''}$ Separating from $\hat{\phi}$ a time independent part

$$\widehat{\phi}(x,t) = \chi(x,t) + \eta(x) \tag{11}$$

such that $-\eta'' + g\eta + f = 0$, we have for the operator term of Eq.(10)

$$E(\hat{\phi}) = \int dx \left[\frac{1}{2} \dot{\chi}^2 + \frac{1}{2} \chi'^2 + \frac{1}{2} g \chi^2 + \frac{1}{2} \eta'^2 + \frac{1}{2} g \eta^2 + f \eta \right]$$
(12)

The η dependent contribution to Eq. (12) adds a real constant to the energy whereas the expansion of the operator χ into a complete set produces a Schroedinger equation analogous to Eq.(6) but with $V^{\#}(\phi_c)$ replaced by g(x). To see whether this equation has a negative eigenvalue we use the semiquantum method⁶, which provides a lower bound to the ground state.

As shown in Fig. 1, for A > 0.654 the eigenvalue lower bound is positive indicating a stabilization of the bubble.

3. DYNAMICAL SYMMETRY BREAKING

The effective potential correspondings to Eq.(4) has been calculated, up to one loop, in ref. 7

$$V_{eff} = \frac{1}{\lambda} V(\phi) + \frac{V''(\phi)}{8\pi} \left\{ 1 - \ln \left[\frac{V''(\phi)}{\mu^2} \right] \right\} + \frac{V''(\phi)}{8\pi} \ln \left(\frac{\Lambda^2}{\mu^2} \right) + a_1 + b_1 \phi^2 + c_1 \phi^4$$
(13)

where the contribution divergent for $\Lambda \to \infty$ has been separated and the infinite part of a_1 , b_1 and c_1 must be chosen so as to cancel it. The finite part of a_1 merely adds a constant. Two of the other three parameters are independent and, replaced by $\ln \mu^2$, and $\ln \mu_2^2$ allow us to write

$$V_{eff} = \frac{1}{\lambda} V(\phi) + \frac{V''(\phi)}{8\pi} \left\{ 1 - \ln\left[\frac{V''(\phi)}{\mu_1^2}\right] \right\} + \frac{15}{8\pi} \phi^4 \ln\left[\frac{\mu_2^2}{\mu_1^2}\right]$$
(14)

This approximation is not defined when $V''(\phi)$ is negative but it is valid close to its minima. Therefore, we may obtain the shift ϵ for the position of the lateral minima from $V''_{eff}(\phi = 1 + \epsilon) = 0$. Moreover we may define a critical parameter λ_c equating the values of the two minima at $\phi = 0$ and $\phi = 1 + \epsilon$

$$\frac{A}{2\lambda_c} = \frac{1+2A}{8\pi} \left\{ 1 - \ln\left[\frac{1+2A}{U_1^2}\right] \right\} - \frac{4(1-A)}{8\pi} \left\{ 1 - \ln\left[\frac{4(1-A)}{U_1^2}\right] \right\} + \frac{15}{8\pi} \ln\left(\frac{U_1^2}{U_2^2}\right)$$
(15)

in terms of dimensionless parameters $U_i^2 = \mu_i^2/K^2$. These may be chosen for fixed A so that $\epsilon = 0$ and λ_{ϵ} is sufficiently small to ensure the validity of the loop approximation⁸. Once this is done, λ and K, the last two parameters of V_{eff} , are determined e.g. by the renormalized mass and quartic coupling at the symmetry breaking vacuum

$$m_R^2 = V''_{eff}|_{\phi=1}$$
, $\alpha_R = V_{eff}^{IV}|_{\phi=1}$ (16)

For the two loop correction we have⁷

$$V_{2}(\phi) = \frac{1}{8\pi} \left(b_{1} + \frac{c_{1}}{2} \phi^{2} \right) (\ln \Lambda^{2} - \ln V''(\phi)) - \frac{K(V'''(\phi))^{2}}{192\pi^{2} V''(\phi)} + \frac{V'^{V}}{128\pi^{2}} (\ln \Lambda^{2} - \ln V''(\phi))^{2} + a_{2} + \frac{b_{2}}{2} \phi^{2} + \frac{c_{2}}{4!} \phi^{4}$$
(17)

We will not establish the same renormalization conditions at all orders, except the one that $\varepsilon = 0$ (the lateral minimum occurs always at $\phi = 1$). We may establish e.g. that the difference between the two minima reduces at each order to a half of that of the previous one as a tendency towards symmetry breaking. Once the counterterms are determined in agreement with these conditions, the renormalized mass and quartic coupling will be obtained from Eq.(16). For an indication of the convergence of the loop expansion it will be important that each correction is smaller than the one for the previous order.

Figure 2.

In fig.(2) the corresponding values for mass and quartic coupling are shown indicating that for small enough values of λ , and A not too close to 1, the expansion seems to converge.

To compare, in the framework of the loop expansion, the previous renormalization with the renormalization done at the origin, we refer the reader to Ref. 8.

RERENCES

- 1. D. Boyanovsky and L. Masperi, Phys. Rev. D21, 1550 (1980)
- 2. L. Masperi, Phys. Rev. D41, 3263 (1990)
- 3. M. Blume, V. Emery and R. Griffith, Phys. Rev. A4, 1071 (1971)
- 4. I. Barashenkov and V. Makhankov, Phys. Letters A128, 52 (1988)
- C. Bonato, M. Thomaz and A. Malbuisson, *Phys. Rev.* D41, 1939 (1990)
 C. Bonato, M. Laucas, M. Thomaz, Proceedings of the XI Encontro Nacional de Física de Partículas e Campos (1990)
- 6. C.T. Sachrajda, H.A. Weldon and R. Blankenbecler, Phys. Rev. D17, 507 (1978)
- 7. R. Rajaraman and M. Raj Lakshmi, Phys. Rev. D23, 2399 (1981)
- 8. Vera L.V. Baltar, J. Llambias, Luis Masperi, Phys. Rev. D, to be published

Participantes

Adilson José da Silva - IFUSP Adolfo Maia Junior - UNICAMP Adriana Gomes Moreira - UFMG Adriano Antonio Natale - IFT Alexandre Frohlich - UFRJ Alfredo Takashi Suzuki - IFT Álvaro de Souza Dutra - UNESP/GUARA Anna Maria Freire Endler - CBPF Antonio Carlos da Silva Filho - FUEM Antonio Cesar Germano Martins - IFUSP Antonio Lima Santos - IFUSP Antonio R. Perissinoto Biral - UNICAMP Armando Turtelli Junior - UNICAMP Augusto Brandão D'Oliveira - UNESP/GUARA . Auta Stella de Medeiros Germano - UFRN Bruto Max Pimentel Escobar - IFT Carla Burlamagui de Mello C.A. Aragão de Carvalho Filho - PUC/RJ Carlos Alberto Santos de Almeida - UFCE Carlos Augusto Romero Filho - UFPb Carlos Enrique Navia Ojeda - UFF **Carlos Frajuca - IFUSP Carlos Henrique Costa Moreira - UFMG** Carlos Ourivio Escobar - IFUSP Cesar Gustavo Silveira da Costa - UNICAMP Cezar Augusto Bonato - UFPb Clóvis José Wotzakek - UFRJ Cláudio Maia Porto - UFRJ Clifford Neves Pinto - PUC/RJ Clistenis Ponce Constantinidis · IFT Edgar Correa de Oliveira - CBPF Edmilson J. Tonelli Manganote - UNICAMP Edmundo Marinho do Monte - UNB Eduardo Cantera Marino - PUC/RJ Eduardo Oliveira Resek - EFEI Eduardo Souza Fraga - PUC/RJ Elso Drigo Filho - IBILCE Erasmo Madureira Ferreira - PUC/RJ Érica Regina Takano - IFUSP Ernesto Kemp - UNICAMP Eugenio R. Bezerra de Mello - UFPb F. Toppan - UNIV. P.M. CURIE Farnezio M. de Carvalho Filho - IFUSP

Felipe Pisano - IFT Fernando Miguel Pacheco Chaves - UFSE Fernando Monti Steffens - UFRGS Fernando Rabelo de Carvalho - UCP Flávio lassuo Takakura - PUC/RJ Francisco Aires Pinto - UFF F.E. Mendonca da Silveira - IFT Franciscus Jozef Vanhecke - UFRJ Franklin Noe Fonseca Romero - IFUSP Gastão Inácio Krein - IFT Gentil Oliveira Pires - CBPF Gerson Bazo Costamilan - CBPF Gesil Sampaio Amarante Segundo - UFRJ Gustavo Adolfo Moyses Alvarez - IFT Hatsumi Mukai - IFT Hélio Manoel Portella - UFF Rélio Teixeira Coelho - UFPe Henrique Boschi Filho - UNESP/GUARA **Hersy Vasconcellos Pinto - UFP** Hildelene de Castro - UFF Horácio Oscar Girotti - UFRGS Hugo Carneiro Reis - IFUSP Humberto de Menezes Francea - IFUSP Ioav Waga - UFRJ Ivone F.M.E. Albuquerque - IFUSP Ivonete Batista dos Santos - UFPb Jackson Max Fortunato Maja - UFRN Jambunatha Jayaraman - UFPb Janilo Santos - CBPF Jefferson de Lima Tomazelli - IFT João Francisco Justo Filho - IFUSP Joana D'Arc Ramos Lopes - UFF Jorge Ananias Neto - PUC/RJ Jorge Eduardo Cieza Montalvo - IFUSP Jorge Ricardo Valardan Domingos - UCP José Luiz Matheus Valle - CBPF J.R. Soares do Nascimento - UFPh José Ademir Sales de Lima - UFRN José Alberto C. Nogales - UFF José Augusto Chinellato - UNICAMP José Emílio Maiorino - UNICAMP José Ricardo de Rezende Zenj - UNICAMP José Roberto Pinheiro Mahon - IFUSP

José Rodrigo Parreira - IFUSP José de Sá Borges Filho - UFRJ Juan Alberto Mignaco - CBPF Juan Carlos Montero Garcia - IFT Julio Miranda Pureza - PUC/RJ Kwok Sau Fa - IFT Luca Roberto Augusto Moriconi - PUC/RJ Luiz Carlos Lobato Botelho - UFPa Luiz Carlos Santos de Oliveira - CBPF Luis Claudio Marques Albuquerque - UFRJ Luis Martins Mundim Filho - UNICAMP Luiz Otávio Buffon - IFUSP Luiz Paulo Colatto - CBPF Manoelito Martina de Souza - UFES Marcelo Batista Hott - UNESP/GUARA Marcelo Maneschy Horta Barreira - UFRJ Marcelo Otávio Caminha Gomes - IFUSP Marcelo de Oliveira Sousa - UFRJ Marcio Lima de Souza - UFRJ Marcos Duarte Maia - UNB Marcus Venicius Cougo Pinto - UFRJ Maria Augusta Constante Puget - IFUSP Maria Beatriz Dias da Silva - UFRJ Maria Emília Correa Rehder - UNICAMP Mario Eduardo Vieira da Costa - UFRGS Mario Everaldo de Souza - UFSE Mauro Donizeti Tonasse - IFT Miguel Luksys - IFUSP Nadja Simões Magalhães - IFUSP Narciso Ferreira Santos - UFES Nazira Abache Tomimura - UFF Nelmara Arbex - IFUSP Nelson Pinto Neto - CBPF Neusa Amato - CBPF Nilton Mengotti-Silva - UNICAMP O.M. Moreschi - UNIV. CÓRDOBA **Orlando Luis Goulart Peres - UFRGS** Osvaldo Monteiro del Cima - CBPF Osvaldo Negrini Neto - IFT Oswaldo Henrique Gutierrez Branco - IFUSP Patricio Anibal Letelier Sotomayor - UNICAMP Pedro Zambianchi Junior - IFT Philippe Gouffon - IFUSP Rafael de Lima Rodrigues - UFRJ Regina Célia Arcuri - CBPF Regina Helena Cezar Maldonado - UFF Renato Melchiades Doria - UCP Renio dos Santos Mendes - FUEM Roberta Simonetti - IFUSP Roberto J. M. Covolan - UNICAMP Roberto Percacci - SISSA Roland Köberle - IFQSC

Ronald Cintra Shellard - PUC/RJ Rubens Luiz Pinto Gurgel do Amaral - PUC/RJ Rudnei de Oliveira Ramos - IFUSP Samuel Maier Kurchart - IFT Sérgio Luiz Schubert Duque - CBPF Sérgio Martins de Souza - UFF Silvestre Ragusa - IFQSC Silvia Aparecida Brunini - FUEM Slivia Petcan - UNICAMP Sílvio José Rabello - UFRJ Silvio Paolo Sorella - UCP Simone Barbosa de Moraes - UFF Thais Scattolini Lorena Lungov - IFUSP Valdir Barbosa Bezerra - UFPb Vera Lúcia Vieira Baltar - PUC/RJ Vicente Pleites - IFT Vilson Tonin Zanchin - UNICAMP Waldemar Monteiro da Silva Junior - UFF Washington Figueiredo Chagas Filho - UFRJ Weuber da Silva Carvalho - UFRJ

XII ENCONTRO NACIONAL DE FÍSICA DE PARTÍCULAS E CAMPOS

Y.

PROGRAMA

QUARTA FEIRA, 18/09/91

14:00 - Saída dos ônibus para Caxambu São Paulo - Instituto de Física - USP Rio de Janeiro - Centro Brasileiro de Pesquisas Físicas

QUINTA FEIRA, 19/09/91

09:00 - "TESTES DO MODELO PADRÃO NO LEP" Prof. R. Shellard (PUC/RJ)

- 10:15 Café
- 10:30 Sessões de comunicações

۰.

- Física de Hadrons
 - Física das Interações Eletrofracas
- Física Experimental de Altas Energias e Raios Cósmicos Teoria de Campos
- Gravitação e Cosmologia
- 12:30 Almoço
- 15:15 "EQUAÇÕES DE YANG-BAXTER, GRUPOS QUÂNTICOS, INVARIÂNCIA CONFORME ETC " Prof. R. Köberle (IFQSC-USP)
- 16:15 Café
- 16:30 Abertura da Sessão de Painéis
- 17:30 Grupos de Trabalho

Física de Hadrons Física das Interações Eletrofracas Física Experimental de Altas Energias e Raios Cósmicos Teoria de Campos Gravitação e Cosmologia Computação Algébrica

19:00 - Jantar

SEXTA FEIRA, 20/09/91

09:00 - "QUANTIZAÇÃO CANÔNICA DA GRAVITAÇÃO" Prof. N. Pinto Neto (CBPF)

- 10:15 Café
- 10:30 Sessões de comunicações Física de Hadrons

Física das Interações Eletrofracas

Física Experimental de Altas Energias e Raios Cósmicos Teoria de Campos

Gravitação e Cosmologia

12:30 - Almoço

15:30 - "FIXING THE GAUGE AT FUTURE NULL INFINITY" Prof. O.M. Moreschi (Univ. de Córdoba)

16:15 - Café

۴.,

16:30 - "POTENCIAL EFETIVO NÃO RELATIVÍSTICO NA TEORIA DE MAXWELL-CHERN-SIMMONS"

Prof. H. Girotti (UFRGS)

17:30 - "MEAN FIELD APPROACH TO QUANTUM GRAVITY" Prof. Roberto Percacci (SISSA)

19:00 - Jantar

21:00 - Assembléia

SÁBADO, 21/09/91

09:00 - "TEORIA DE CAMPOS, EFEITO HALL QUÂNTICO, SUPERCONDUTIVIDADE E ANYONS " Prof. E. Marino (PUC/RJ)

10:15 - Café

10:30 - Sessões de comunicações

Física de Hadrons

Física das Interações Eletrofracas

Física Experimental de Altas Energias e Raios Cósmiços Teoria de Campos

Gravitação e Cosmologia

12:30 - Almoço

15:00 - "DETECTABILIDADE DA MATÉRIA ESCURA "

Prof. C.O. Escobar (IFUSP)

16:15 - "RECENT DEVELOPMENTS IN CONFORMAL FIELD THEORIES AND INTEGRABLE MODELS "

Prof. F. Toppan (Univ. Pierre et Marie Curie, Paris) 17:30 - "ALGEBRAIC PROPERTIES OF LANDAU GAUGE"

Prof. S.P. Sorella (LAPP- Annecy e UCP-Petrobrás) 19:00 - Jantar J. S.P.

DOMINGO, 22/09/91

09:00 - Saída dos ônibus para São Paulo e Rio de Janeiro