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New analytical approximations for the frequency-dependent impedance matrix components of symmetric VLSI
interconnect on lossy silicon substrate are derived. The results have been obtained by using an approximate
quasi-magnetostatic analysis of symmetric coupled microstrip on-chip interconnects on silicon. We assume
that the magnetostatic field meets the boundary conditions of a single isolated infinite line; therefore the bound-
ary conditions for the conductors in the structure are approximately satisfied. The derivation is based on the
approximate solution of quasi-magnetostatic equations in the structure (dielectric and silicon semi-space), and
takes into account the substrate skin effect. Comparisons with published data from circuit modeling or full-wave
numerical analyses are presented to validate the inductance and resistance expressions derived for symmetric
coupled VLSI interconnects. The analytical characterization presented in the paper is well situated for inclusion
into CAD codes in the design of RF and mixed-signal integrated circuits on silicon.
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1 Introduction

With high clock frequencies and faster transistor rise/fall
time in modern VLSI circuits, long signal wires exhibit
transmission line effects. As a consequence, the electri-
cal characteristics of the interconnections are becoming im-
portant factors in the behavior of VLSI circuits. Hence,
they must be known with greater accuracy in order to avoid
the necessity of using large safety margins leading to sub-
optimal designs. Therefore, the traditional methods of par-
asitic extraction are no longer adequate. Much improved
procedures will be necessary to generate electrical models
for the interconnections that accurately account for such ef-
fects as delay, crosstalk, substrate skin-effect, resistive volt-
age drops, etc. These new methods must be simple, quick,
accurate, efficient, flexible and CAD-oriented.

Currently, the most commonly used substrate material
for VLSI circuits is silicon, and depending on its doping
rate, the conductivity can vary over more than four decades,
e. g. from 1 S/m to 105 S/m. The broad-band transmis-
sion line behavior of interconnects on lossy silicon substrate
has been characterized by experiments [1 - 4], by rigorous
semi-analytical methods, and by various full-wave numeri-
cal procedures [5 - 10].

In recent works [11 - 14], the authors succeeded to
describe the frequency-dependent series impedance matrix

components of generally asymmetric coupled on-chip inter-
connects on lossy silicon substrate in a unified way. There-
fore, the influence of the conducting substrate is expressed
by closed-form frequency-dependent inductance and resis-
tance per unit length parameters. The extent to which the
conducting substrate affects the performance of an inte-
grated circuit depends not only on the conductivity of the
silicon and the frequency but also on the geometry (width,
thickness, distance to adjacent lines and to the substrate, etc)
as well as on the material of the interconnects (usually Al or
Cu).

The purpose of the present paper is to develope
CAD-oriented, analytical approximations for the frequency-
dependent series impedance matrix components of general,
symmetric coupled on-chip interconnects on silicon sub-
strate. The proposed model includes the important phys-
ical effects (substrate skin-effect) associated with on-chip
interconnects on silicon. In this work, a general quasi-
magnetostatic analysis based on quasi-TEM assumption is
applied to compute the frequency-dependent distributed re-
sistance and inductance parameters. The following deriva-
tion assumes that the electric and magnetic fields meet the
boundary conditions of a single isolated infinite wire. It will
be demonstrated by the full-wave solver that for a class of
typical on-chip interconnects on silicon substrate with small
conductor cross sections, the frequency-dependent behavior

∗Corresponding author. Tel.: + 32-16-321-876; Fax: + 32-16-321-986.E-mail address: Hasan.Ymeri@esat.kuleuven.ac.be (H. Ymeri).



H. Ymeri et al. 31

of the series impedance matrix component parameters may
be dominated by the substrate skin-effect. Because of the
very small cross sections of on-chip interconnects, the skin
effect inside the lines can mostly be neglected up to very
high frequencies (e. g. 20 GHz and more). Finally, the
results were obtained by applying these simple and accurate
expressions will be compared to results gained from very ac-
curate full-wave solvers and CAD-oriented circuit modeling
approach.

2 Quasi-magnetostatic analysis of
symmetric interconnects on silicon

Interconnect models must incorporate distributed transmis-
sion line matrices [R], [L], [G], and [C] to accurately esti-
mate interconnect delay and cross-talk in a multilevel net-
work for multi-GHz gigascale integration (GSI).

To determine the frequency-dependent resistance and in-
ductance matrices components of interconnects on lossy sil-
icon, a quasi-TEM mode formulation is applied. When as-
suming a quasi-TEM mode of wave propagation, an electro-
and magneto-static analysis can be used to determine the
transverse electric and magnetic fields of an interconnect
structure; therefore the reduced set of the Maxwell’s equa-
tions is

∇×H = J (1)

∇ ◦B = 0 (2)

and

B = µH (3)

whereH is the vector of the magnetic field intensity,B is
the vector of the magnetic flux density,J is the vector of the
current density, andµ is the magnetic permeability.

For quasi-magnetostatics, let the vector potential beA
such that

B = ∇×A. (4)

Combining Eqs. (1), (3) and (4), we can show that the
inductive electric equals field is given by

E = −∂A
∂t

. (5)

To develope an expression for the series per-unit length
impedance matrix [Z] of a symmetric coupled on-chip in-
terconnects on lossy silicon substrate, as illustrated in Fig.
1a, the given structure can be regarded as a system of in-
ductively coupled transmission lines with the silicon sub-
strate acting as the return line. Results obtained from the
full-wave analysis [6, 11 - 14] have shown that the influence
of the finite substrate thickness tsi can be neglected for prac-
tical dimensions (i.e., tsi >> w, tsi >> tm, tsi >> s, and
tsi >> tox). The silicon substrate is therefore assumed to be

infinitely thick in the following modeling approach (see Fig.
1b).

Figure 1(a). Cross section of symmetric coupled interconnects on
an oxide-semiconductor substrate.

Figure 1(b). Symmetric coupled interconnect lines over infinite
thick silicon substrate.

For the case of a symmetric coupled interconnect lines
with lossy conductors and lossy silicon substrate, the series
per unit length impedance matrix [Z] can be written as

[Z] = jω[L] + [Zw(ω)] + [Zsi(ω)] (6)

where [Zw] and [Zsi] are the wire (interconnect) and the sil-
icon substrate impedance per unit length matrices, respec-
tively, and [L] is the external per unit length inductance ma-
trix calculated for a lossless interconnects above a perfectly
conducting silicon substrate.

2.1 External inductance matrix calculation

The external inductance matrix components are calculated
from the magnetic flux density in the regions surrounding
the interconnect conductors. As a first step, round-sectioned
lines embedded in an electrically homogeneous medium are
assumed, which is realistic for most microelectronic mi-
crometre designs. This was found permissible (see numer-
ical results) and simplifies the analysis considerably. The
real and equivalent structures are shown in Fig. 2, where the
rectangular to circular conversion is used.
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Figure 2. Equivalent circular-sectioned interconnect lines over per-
fectly conducting ground plane (top surface of silicon).

To model actual rectangular conductors, we define an
equivalent diameter 2req as the mean of the diameters of the
two circles inscribed in the conductors, e.g.

2req =
w + tm

2
. (7)

The other geometrical dimensions tox and s are conse-
quently redefined as

Heq = tox +
tm − w

4
, (8)

seq = s +
w − tm

4
+

w − tm
4

. (9)

The total flux linkage of each conductor (labeled one
and two in Fig. 2) is calculated using the inductance ma-
trix given by

[
Φ1

Φ2

]
=

[
L11 L12

L21 L22

] [
I1

I2

]
, (10)

whereΦ1 andΦ2 are the flux linkages per unit length of each
conductor, I1 and I2 are the currents through each conductor,
L11 and L22 are the self-inductances per unit length of each
conductor, and L12 and L21 are the mutual inductance per
unit length between conductors. Because each wire in Fig.
2 has an identical geometrical configuration (symmetric in-
terconnect lines), then

Ls = L11 = L22 (11)

Lm = L12 = L21. (12)

To calculate the self- and mutual inductances for this
configuration, wire one is excited by a constant current
source I and wire two has zero current. Using (10) the re-
sulting expressions for the self- and mutual inductances are
given by

Ls =
Φ1

I
(13)

and

Lm =
Φ2

I
. (14)

As seen in Fig. 3 the flux linkage per unit length for each
conductor is determined by calculating the total flux through
surface one (Φ1) for the self-inductance and the total flux
through surface two (Φ2) for the mutual inductance.

Figure 3. Method of images and mutual and self flux for line one.

Figure 4. Coordinate system for calculating magnetic fields.

To calculate the magnetic fields above an infinite ground
plane (top silicon surface) the method of images is used. As
seen in Fig. 3 the image line one replaces the ground plane
such that the current in the image line is in the opposite di-
rection of the current in line one. It is assumed that each of
these lines produces magnetic fields as they would if they
were each isolated from each other (therefore the bound-
ary conditions for the conductors in the configuration are
approximately satisfied with this isolated line assumption).
Therefore the magnetic fields are given by the following re-
lationships using the two coordinate systems in Fig. 4

B1 =
µI

2πr
1θ (15)

B1im = − µI

2πrim
1θim (16)
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where the sub-indexim denote the coordinates of the im-
age current source. The total flux linkage for line 1 is given
by the surface integral of a surface connecting line 1 to the
ground as seen in Fig. 3. Assuming that the magnetic fields

of each line superimpose, the flux linkage for line 1 is de-
termined from the line integral starting at the edge of the
ground plane (y = h = Heq + req) and ending at the edge of
the real conductor (y = 2h - req) and is given by

c

Φ1 =

y=2h−req∫

y=h

{
µI

2πr
1θ ◦ 1xdy∆z − µI

2πrim
1θim ◦ 1xdy∆z

}
. (17)

d

The introduction of∆z has enabled the surface integral
in Fig. 3 to be transformed into a line integral. Because three
coordinate systems are involved in Fig. 4, the dot product
between the unit vectors in each coordinate system must be
resolved. From inspection of Fig. 4, the results are

1θ ◦ 1x = 1 (18)

and

1θim ◦ 1x = −1. (19)

Making these substitutions into (17), we get

Φ1 =

y=2h−req∫

y=h

{
µI

2πr
dy∆z +

µI

2πrim
dy∆z

}
. (20)

Finally, the relationship between the variables in three
various coordinate systems along the above integral must be
determined. From inspection of Fig. 4, the relationships are

r = 2h− y (21)

rim = y. (22)

making these substitution into (20) gives

c

Φ1 =
µI∆z

2π

y=2h−req∫

y=h

{
dy

2h− y
+

dy

y

}
=

µI∆z

2π
[− ln(2h− y) + ln y]

y = 2h− req

y = h
. (23)

Evaluating (23) gives

Φ1 =
µI∆z

2π

[
ln

(
y

2h− y

)] ∣∣∣∣
y = 2h− req

y = h
=

µI∆z

2π

{
ln

[
2h− req

2h− 2h + req
− ln

(
h

2h− h

)]}
. (24)

d

The final expression for the flux linkage per unit length
is

Φ1

∆z
=

µI

2π

[
ln

(
2Heq + req

req

)]
. (25)

The self-inductance per unit length is then define from
(13) to be

L11 =
Φ1

I∆z
=

µ

2π

[
ln

(
2Heq + req

req

)]
. (26)

The mutual flux is the amount of flux linkages of surface
no. 2 from a current in conductor 1. The flux linkages of sur-
face no. 2 are calculated by a surface connecting conductor
2 and the ground plane. Using the superimposed magnetic
fields and the coordinate system in Fig. 5 gives the follow-
ing expression for the flux linking line 2 to the ground plane
in surface 2 as

c

Φ2 =

y=2h−req∫

y=h

{
µI

2πr
1θ ◦ 1xdy∆z − µI

2πrim
1θim ◦ 1xdy∆z

}
. (27)
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Figure 5. Coordinate system for calculating magnetic fields.

Because three coordinate systems are involved in Fig. 5,
the dot product between the unit vectors in each coordinate
system must be calculated. From inspection of Fig. 5, the
results are

1θ ◦ 1x = cos(90− α) = sin α =
2h− y

r
(28)

1θim ◦ 1x = cos(90 + α) = − sin α = − y

rim
. (29)

Making these substitution in (27) gives

Φ2 =
µI

2π
∆z

y=2h−req∫

y=h

{
(2h− y)dy

r2
+

ydy

r2
im

}
. (30)

Finally, the relationship between the variables in the var-
ious coordinate systems along the above integral must be
determined. From inspection of Fig. 5, the following rela-
tionships must hold

r2 = d2 + (y − 2h)2, (31)

r2
im = d2 + y2, (32)

where d = seq + 2req. Making these substitutions into (30)
gives

c

Φ2 =
µI

2π
∆z

y=2h−req∫

y=h

{
− (y − 2h)dy

d2 + (y − 2h)2
+

ydy

d2 + y2

}

=
µI

2π
∆z

{
−1

2
ln

[
d2 + (y − 2h)2

]
+ ln(d2 + y2)

} ∣∣∣∣
y = 2h− req

y = h
. (33)

Evaluating (33), we get

Φ2

∆z
=

µI

2π

[
ln

√
d2 + y2

d2 + (y − 2h)2

] ∣∣∣∣
y = 2h− req

y = h

=
µI

2π

[
ln

√
d2 + (2h− req)2

d2 + r2
eq

− ln

√
d2 + h2

d2 + (h− 2h)2

]
. (34)

d

The final expression for the flux linkage per unit length
for line 2 is

Φ2

∆z
=

µI

2π

[
ln

√
d2 + (2h− req)2

d2 + (req)2

]
. (35)

The mutual inductance per unit length is defined from
(14) to be

L12 = Φ2
I∆z = µ

2π

[
ln

√
d2+(2h−req)2

d2+(req)2

]
.(30

The approximate closed-form expressions for the self
and mutual inductance per unit length are given by

Ls =
µ

2π
ln

[
2Heq + req

req

]
(36)

and
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Lm =
µ

2π
ln

√
(seq + 2req)2 + (2Heq + req)2

(seq + 2req)2 + (req)2
. (37)

2.2 Silicon substrate impedance per unit
length calculation

The problem of propagation along a transmission line com-
posed of a single interconnect on a lossy silicon substrate
was treated by H. Ymeri et al. [11 - 14]. Recently, several
other authors have dealt with the same problem (e.g. [2, 4,
5, 15]). The series impedance per unit length of lossy silicon
can be viewed as a correction factor to the interconnect line
series impedance per unit length when the silicon substrate
is not a perfect conductor and it can be defined as

Zsi =
jω

∫ tox

−∞ µHsc
x (y, z)dz

I
− jωLs (38)

where Ls is the inductance per unit length of the intercon-
nect conductor calculated for a lossless interconnect strip
above a perfectly conducting silicon substrate (see expres-
sion (36)), andHsc

x (y, z) is the x-component of the scat-
tered magnetic field. Little generality is lost by considering
this quasi-TEM case, and so only the z component of the

current, and thus the x component of the H-field is needed
[16].

Neglecting the vertical component of the scattered H-
field inside the lossy silicon substrate, the following expres-
sion for the internal silicon substrate impedance per unit
length Zsi can be derived (see for instance [17])

Zsi =
jωµ

π

∫ ∞

0

e−2toxz

√
z2 + γ2

si + z
dz (39)

whereγsi is the propagation constant in the lossy silicon
substrate given by

γsi =
√

jωµ(σsi + jωεrsiε0) (40)

andσsi, εrsi are the silicon conductivity and relative permit-
tivity, respectively.

It is possible to express (40) in an equivalent form in-
volving the modified Bessel function of the second kind,
written as

K1(m) = m
∫ ∞

1

√
z2 − 1e−mzdz (41)

where m is a complex argument. Using (41) and after
some straightforward mathematical manipulations, the in-
ternal impedance per unit length of silicon substrate can be
written in the following equivalent form

c

Zsi =
jωµ

2π

{
2
n2

+ 2j

∫ 1

0

(
√

1− z2)e−nzdz − 2K1(n)
n

}
(42)

d

in whichn = 2γsitox.

It can be seen that the silicon impedance per unit length
depends considerably on both silicon conductivity and the
interconnect strip height above silicon surface. On the other
hand, the influence of the silicon relative permittivity ap-
pears only for frequencies higher than some few GHz.

According to the method presented and discussed by
Ymeri et al [11 - 14], and the methodology used in [17],
at the same time leaving out the details, it can be shown that
the approximate closed-form expressions for internal silicon
impedance per unit length components can be written in the
form:

Zsiii =
jωµ

2π
log

(
1 + γsitox

γsitox

)
. (43)

Zsiij =
jωµ0

4π
log

{
(1 + γsitox)2 +

(
γsis
2

)2

(γsitox)2 +
(

γsis
2

)2

}
. (44)

3 Discussion of the results

The proposed analytic expressions for series resistance and
inductance per unit length have been applied to various
on-chip interconnects on lossy silicon substrate. To illus-
trate the accuracy of the proposed modeling approach, the
frequency-dependent self and mutual resistance and induc-
tance parameters for a coupled on-chip interconnect struc-
ture on a low resistivity (ρsi = 0.01Ωcm) silicon substrate
of 300µm thickness have been computed using our proce-
dure, and compared with the solution obtained by the quasi-
magnetostatic analysis and full-wave solutions. The cross
section of each conductor is 2µm × 1 µm and the sepa-
ration between the conductors is 2µm. The thickness of a
oxide layer is 2µm. For the case of highly conductive sil-
icon substrate, the skin effect play an important role in the
current distribution at high frequencies, and forces the re-
turn current to the surface of the silicon as the frequency
increases. As a result, at high frequencies, the return current
in the silicon closely matches the current carried by the sig-
nal conductor. Figs. 6 and 7 show the frequency-dependent
impedance matrix parameters for symmetric coupled inter-
connects on lossy silicon substrate. As expected, the highly
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Figure 6. Self impedance parameters for symmetric coupled inter-
connects on low-resistivity silicon substrate. (a) Self resistance as
a function of frequency, and (b) Self inductance as a function of
frequency.

conductive silicon has more significant impact on the
frequency-dependence of the line parameters as compared
to the medium-resistivity silicon. In the case of medium and
high resistivity silicon substrate, however, the substrate skin
effect is seen to be negligible. For medium or high substrate
resistivity, the distributed inductance can be computed di-
rectly from the distributed capacitance Cair obtained with
all dielectrics removed. In this case, the expression for the
inductance calculationL = µ0ε0C

−1
air can be used. For

low-resistivity silicon substrate, there is for current signal
frequencies a considerable skin-effect in the substrate, and,
consequently, the inductive coupling becomes frequency de-
pendent (the higher the frequencies the smaller the self and
mutual inductances). The coupling effects depend on the
interconnect lines geometry, especially on the distance of
the lines from the substrate. Another important effect is
frequency-dependent losses resulting from the skin effect in
the silicon. On account of the very small cross-sections of
on-chip interconnects, the skin effect inside the signal lines
can mostly be neglected up to very high frequencies (e.g. 20
GHz and more). Our calculations show that the skin effect
the substrate plays an important role in the transmission line

Figure 7. Mutual impedance parameters for symmetric coupled
interconnects on low-resistivity silicon substrate. (a) Mutual resis-
tance as a function of frequency, and (b) Mutual inductance as a
function of frequency.

behavior, increasing the resistance per unit length of the
lines (self resistance) from its dc value by approximately a
factor of 2 at 10 GHz. Figs. 6 and 7 show the frequency-
dependent impedance matrix parameters. The solid lines are
computed by using our analytic model and the dashed lines
and lines denoted by circles are the results from the quasi-
magnetostatic analysis [9] and full-wave solutions [18].
The frequency response of proposed analytic model agrees
well with these computed by the extracted equivalent-circuit
model and full-wave simulator. The extracted equivalent-
circuit model is based on the simultaneous discretization of
interconnect conductors and silicon substrate, and takes into
account the substrate skin effect, as well as the conductor
skin and proximity effects. As expected, the lossy silicon
substrate has more significant impact (substrate skin effect
dominates) on the frequency-dependence of the impedance
matrix parameters as compared to signal conductor effects
(conductor skin effect can be neglected).

4 Conclusion

CAD-oriented analytical expressions have been proposed
for the series impedance matrix parameters of symmetric
coupled interconnects on conductive silicon substrate. The
expressions holds for the lines whose metallizations have
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very small cross sections, but larger than the skin penetra-
tion depth at operating frequency. In addition, the developed
closed-form formulas describe the series impedance matrix
parameter behavior over the whole frequency range (i.e.
also in the transition region between dielectric quasi-TEM
mode, skin-effect mode and slow-wave mode). Compar-
isons with numerical results concerning on-chip intercon-
nects on highly conductive silicon substrate suggests that,
for the small cross section of lines and in frequency range
whereon the dc resistance model applies, the expressions for
the series impedance matrix parameters presented are accu-
rate enough and should be useful in the design of mixed-
signal integrated circuits.
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