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Entropy change of an ideal gas determination with no reversible process
(Determinação da variação de entropia num gás ideal sem usar um processo reverśıvel)
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As is stressed in literature [1], [2], the entropy change, ∆S, during a given irreversible process is determined
through the substitution of the actual process by a reversible one which carries the system between the same
equilibrium states. This can be done since entropy is a state function. However this may suggest to the students
the idea that this procedure is mandatory. We try to demystify this idea, showing that we can preserve the
original process. Another motivation for this paper is to emphasize the relevance of the reservoirs concept, in
particular the work reservoir, which is usually neglected in the literature2. Starting by exploring briefly the sym-
metries associated to the first law of Thermodynamics, we obtain an equation which relates both the system and
neighborhood variables and allows entropy changes determination without using any auxiliary reversible process.
Then, simulations of an irreversible ideal gas process are presented using Mathematica c©, which we believe to be
of pedagogical value in emphasizing the exposed ideas and clarifying some possible misunderstandings relating
to the difficult concept of entropy [4].
Keywords: First Law, symmetry, reversible process, entropy.

Como é referido na literatura [1], [2], a variação de entropia, ∆S, em um processo irreverśıvel é determi-
nada substituindo o processo em causa por um outro, reverśıvel, que leve o sistema entre os mesmos estados
de equiĺıbrio. Isto pode ser feito pois a entropia é uma função de estado. Contudo, pode também sugerir aos
estudantes a idéia de que este procedimento é obrigatório. Tentamos desmistificar esta idéia, mostrando que
podemos preservar o processo original. Outra motivação para este artigo é sublinhar a relevância do conceito de
reservatório, em particular o de reservatório de trabalho, que é usualmente ignorado na literatura2. Começando
por explorar brevemente as simetrias associadas à primeira lei da Termodinâmica, obtemos uma equação que
relaciona variáveis do sistema com variáveis da vizinhança e que nos permite determinar a variação de entropia
sem se recorrer a nenhum processo reverśıvel auxiliar. Seguidamente, considerando um gás ideal, apresentamos
simulações de um processo irreverśıvel, usando o Mathematica c©, que cremos serem de valor pedagógico, porque
comprovam as idéias expostas e clarificam posśıveis questões relacionadas com o dif́ıcil conceito de entropia [4].
Palavras-chave: Primeira Lei, simetria, processo reverśıvel, entropia.

1. First Law as an interaction

The first law relates the variation of the internal energy
of a system, ∆U , to the heat, Q, and work, W , flows
crossing its boundary. Adopting the point of view that
both heat and work are positive whenever these ener-
gies enter into the system3, for an infinitesimal process
the first law may be written as [1]

dU = δQ + δW, (1)

where dU is an exact differential and δQ and δW are
inexact ones.

By considering a hydrostatic system4 and a re-
versible process, we can replace [1] δQ by TdS and
δW by −PdV , where T , S, P and V are the tempera-
ture, the entropy, the pressure and the volume, respec-
tively. Therefore, Eq. (1) becomes

1E-mail: anacleto@utad.pt.
2The concept of heat reservoir is indeed required to set up the formalism of Thermodynamics, and this is sufficiently emphasized in

textbooks (see Refs. [1] and [2]). In contrast, the concept of work reservoir is not mentioned very often in the literature. However, an
important exception is [3].

3Some authors [2] consider W as a positive quantity when energy leaves the system, following the historical development of Ther-
modynamics. See, for example, [5]. This paper includes a list of references which use different sign conventions for work.

4Elementary work is generally expressed as the product of a generalized force (intensive variable) by differential of a generalized
displacement (extensive variable) (see Ref. [1]). However, by considering δW = −PdV we maintain the conceptual generality.
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dU = TdS − PdV. (2)

Analogously, the variation of the energy of the sys-
tem neighborhood, dUn, is given by

dUn = TndSn − PndVn, (3)

where the subscript n means neighborhood5. The en-
ergy conservation requires that dU = −dUn and Eqs.
(2) and (3) may be related as

TdS − PdV = −TndSn + PndVn. (4)

Even though preceding equation had been obtained
by imposing the restrictive condition of reversibility, it
will be valid also for an irreversible process, because all
quantities involved are state variables. This seems to
be a contradiction, and we believe, based on our teach-
ing experience, that this issue is an important source of
difficulties.

An inspection of Eq. (4) shows its symmetric char-
acter: both sides are mathematically similar and ex-
pressed by the same thermodynamic quantities, and
their values depend only on the initial and final states.
This symmetry is related to the conservation of energy6.

On the other hand, the symmetry expressed by

T = Tn, P = Pn, and dV = −dVn, (5)

which could be called process symmetry, leads to the
conservation of the entropy, dS = −dSn.

Equations (5) imply that δQ = TdS = −TndSn and
δW = −PdV = PndVn, and the process is reversible.
The use of reservoirs is redundant, since no extra infor-
mation is obtained from them, and the system variables
are quite sufficient to describe the process.

However, when conditions (5) are not simultane-
ously satisfied, not all terms in Eq. (4) express heat
or work exchanges. In this case the process is irre-
versible. Both the heat and work reservoir concept be-
come not only useful but also essential to describe the
process, and accordingly all phenomena in the neigh-
borhood can be considered reversible and therefore the
following equations remain valid,

δQ = −TndSn, (6)

δW = PndVn, (7)

in spite of δQ 6= TdS and δW 6= −PdV . This ex-
plains the contradiction mentioned formerly. Inter-
esting enough, is the fact that the elementary work
δW = PndVn does not depend on any variable of the
system, and assumes a unifying role since it includes all

kinds of work exchanged: both the configuration and
the dissipative work. This is important to be pointed
out, as the work is expressed by thermodynamic vari-
ables of special systems – work reservoirs – that never
exhibit irreversible phenomena. Finally, from Eq. (4)
we have

dS = −Tn

T
dSn +

Pn

T
dVn +

P

T
dV, (8)

which permits to obtain the entropy change for any
process, even irreversible, as we will see next.

2. Simulation of a non-quasi-static
process of an ideal gas

Consider the following problem. An monatomic ideal
gas, initially at equilibrium with its neighborhood,
is characterized by the variables Vi = 0.01 m3,
Pi = 105 Pa, and Ti = 300 K. The gas is in a
diathermic container with a piston, as illustrated in
Fig. 1. Suddenly, the pressure and the temperature
of the neighborhood are changed to Pn = 4 × 105 Pa
and Tn = 200 K. Find the entropy change when the
final equilibrium state (Vf , Tf , Pf ) is reached.

The final equilibrium is attained when Tf = Tn

and Pf = Pn. It is known [1] that the en-
tropy change for a monatomic ideal gas is given by
∆S = 5

2nR ln (Tf/Ti) − nR ln (Pf/Pi), where R is
the molar gas constant and n is the amount of sub-
stance. This formula, which was obtained by recurring
to a reversible process between the states (Ti, Pi) and
(Tf , Pf ), gives ∆S = − 8.000 J K−1.

The neighborhood entropy change is given [1]
by ∆Sn = − (1/Tn)

[
3
2nR (Tf − Ti) + Pn (Vf − Vi)

]
which gives ∆Sn = 19.168 J K−1.

However, our goal is to obtain the entropy change,
both for the system and the neighborhood, without
recurring to any auxiliary reversible process. From
Eq. (8) and using the state equation PV = nRT we
obtain the equations we have to integrate numerically,

dS =
1
T

(
PndV + 3

2nR dT
)

+
nR

V

(
1− Pn

P

)
dV, (9)

dSn =
1
Tn

[(P − Pn) dV − TdS] . (10)

The system attains the final state differently de-
pending on the walls thermal conductivity, on the
strength of the friction at the piston, and on the re-
laxation efficiency of turbulent pressure gradients in the
gas7. Nevertheless, the entropy changes are expected to
be exactly the same, irrespective to the way the system

5Eqs. (2) and (3) somehow already incorporate the second law due to the presence of the entropy.
6The conservation laws in Physics turn out to be closely connected to symmetries; see [6]. In field theory, for instance, Noether’s

theorem states that, for each invariance of the lagrangian, there is a conservation law, and vice-versa; see [7].
7This consideration goes beyond the ideal gas model. See [8].
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reaches the final state, because those changes depend
only on the initial and final states and on the external
constrains.

Figure 1 - An ideal gas in an diathermic container with a piston.
By suddenly changing the initial neighborhood pressure and tem-
perature, the system undertakes an irreversible process till a new
equilibrium state is attained.

To simulate the process, we consider a series of infin-
itesimal changes in the thermodynamic variables which
carry the system to the final state, as follows:

Let us consider the volume to be divided in NV

infinitesimal parts, each of which has the volume
dV = V /NV . Starting at V = Vi, a new value
Vnew = V ± dV is computed, taking the + sign if
Pn < P and the – sign if Pn > P . The temperature
variation has two contributions: dT1 = (Tn − T )/NT

(due to the heat exchange) and dT2 = −PndV /CV (due
to the work exchange), where CV = 3

2nR and NT is a

integer like NV . So, starting at T = Ti, a new value
Tnew = T +dT1+dT2 is computed. Finally, a new value
of the gas pressure is calculated using the state equa-
tion. Then, the new values are taken as the current
ones and the procedure is repeated till the conditions
|T − Tn| < 0.1 and |P − Pn| < 1.0 were satisfied as the
criterion for the final state reaching.

For each infinitesimal change on P , V and T we
compute the entropy changes, using Eqs. (9) and (10).
By adding up all them, from the initial to the final
state, we obtain ∆S and ∆Sn.

Integers NV and NT must be large enough to ensure
negligible computational errors. We can simulate an
isochoric process (δW = 0) by considering NV → ∞,
and an adiabatic one (δQ = 0) by considering NT →∞.
Appropriate choices of NV and NT simulate different
processes, all irreversible, between the former limiting
cases.

Figures 2 and 3 show two simulations8, labeled
as (a) and (b), performed using Mathematica c© for
NV = 6000 and two different values of NT , NT = 2500,
Figure 2, and NT = 200, Figure 3. The graphs show
the time evolution of P , V , T and S, where the unit of
time corresponds to a calculation step.

c

Figure 2 - Simulation (a): NV = 6000, NT = 2500.

d

8The Mathematica c© notebook simulation program can be downloaded at the address http://home.utad.pt/∼anacleto/entropy.nb.
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Figure 3 - Simulation (b): NV = 6000, NT = 200.

d

In simulation (b) the gas reaches the final equilib-
rium much faster than in simulation (a). This happens
because in case (a) the walls have a lower thermal con-
ductivity than in the case (b), which explains why the
temperature rises over 400 K, due to the strong gas
compression, before it decreases reaching the thermal
equilibrium at 200 K. As a consequence, the system en-
tropy also rises before it decreases till its final value. In
case (b), the situation is reverse, the walls are good heat
conductors and the pressure starts decreasing, due to
the fast drop in temperature, and then it rises to its fi-
nal equilibrium value. In both cases the overall entropy
changes are the same and agree with the values calcu-
lated before, within an error less than 0.05%. We can
reduce this error as much as we desire, by considering
extremely high values for NV and NT , but at an enor-
mous computation time cost. Lots of simulations for
different values of NV and NT were performed and all
of them gave the same entropy changes, showing that
all processes considered are equivalent.

The simulations showed that entropy change can in-
deed be calculated without considering any auxiliary
reversible process, and they are also of didactical and
pedagogical value, since they can be used to follow the
evolution of the gas under a variety of different condi-
tions by adequately choosing the variables values in the
program.
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