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Hadron spectra and other properties of quark systems are studied in the framework of a non-relativistic spin-
independent phenomenological model. The chosen confining potential is harmonic, which allowed us to obtain
analytical solutions for both meson and baryon (of equal constituent quarks) spectra. The introduced parameters
are fixed from the low-lying levels of heavy quark mesons. The requirement of flavor independence is imposed,
and it restricts the possible choices of inter-quark potentials. The hyper-spherical coordinates are considered
for the solution of the three-body problem.

Espectros de Hadrons e outras propriedades de sistemas de quarks são estudados do ponto de vista de um
modelo fenomenológico ñao-relativ́ıstico independente de spin. O potencial confinante escolhidoé harm̂onico,
o qual nos permite obter soluções analı́ticas tanto para os espectros dos mésons quanto para os dos bárions (de
iguais quarks constituintes). Os parâmetros introduzidos são fixos a partir dos primeiros estados excitados dos
mésons pesados. A condição de independ̂encia de saboŕe imposta, o que restringe as possı́veis escolhas de
potenciais inter-quarks. As coordenadas hiper-esféricas s̃ao consideradas para a solução do problema de três
corpos.

I Introduction

The study of the fundamental or constituent blocks of matter
has been for long time a fascinating field in physics. With
the pass of the years new fundamental blocks or particles
have appeared, modifying old concepts. For example the
atom, that was initially supposed to be fundamental, was
found to be formed by the nucleus and electrons, the nucleus
was found to be formed by neutrons and protons (nucleons)
and finally the nucleons to be formed by quarks.

Nowadays it is believed that the theory describing the
interactions between fundamental particles is the Standard
Model. This model has aSU (3) × SU (2) × U (1) sym-

metry. TheSU (3) component is what is called Quantum
Chromodynamics (QCD) and it is the gauge field theory de-
scribing the strong interactions of quarks and gluons. The
SU (2) × U (1) component is called Standard Electroweak
Model describing interactions between quarks and leptons
through theW bosons and the photons. There is an addi-
tional particle in the electroweak model, the neutral Higgs
scalar that appears after the spontaneously symmetry break-
ing mechanism, whose existence has not been probed exper-
imentally and that is a subject of a lot of present experimen-
tal research because it could prove the validity of the theory.

We will be interested in the present paper in the low
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energy region of the QCD theory, in which quarks inter-
act strongly to form bound states known as hadrons. When
these bound states are formed by a quark and an antiquark
(qq) they are called mesons; and when they are formed by
3-quark states (qqq) they are called baryons. The study of
the hadron spectra is a fundamental and open field in theo-
retical physics. Up to the moment the more important ap-
proaches to this subject have been: Lattice QCD, QCD sum
rules and potential models. Lattice QCD is the most funda-
mental approach and together with QCD sum rules have had
good success. Potential models, although less fundamen-
tals, have proved to be very useful even in non-relativistic
approximations. Since the latest seventies a lot of attempts
have been made in this field with very good results [1].

An important question for the use of potential models is
whether it is possible to consider hadrons as non-relativistic
bound states of quarks. This question could be answered
solving the Schrodinger equation assuming aqq potential
and then checking if the obtained quark velocities are non-
relativistic. For the charmonium system this was done in
Ref.[2] and it was obtained a result of

〈
v2/c2

〉
= 0.2 in

the ground state. For lighter hadrons the results are no
so good and the validity of the non-relativistic approxima-
tion depends strongly from the interaction potential cho-
sen. For example, the interaction potential proposed by De
Rujula, Georgi and Glashow [3] was shown [4] to be un-
suitable for dynamical non-relativistic calculations of light
hadrons. However, Martin showed latter [5, 6, 7] that a
non-relativistic model with a power law potential is able to
describe heavy quark mesons and the clearly relativisticss
states. The potential proposed by Martin had the form

V (r) = A + Brα, (1)

whereA = −8.093 GeV , B = 6.898 GeV andα = 0.1.
The study of baryon systems with this power law poten-

tial was done by Richard [8] obtaining good results. At that
time the baryon spectra in potential models, although rather
elaborated [9], was completely disconnected from the me-
son sector. Exceptions were some attempts to derive meson
and baryon potential energies from a common framework
as the instanton, string or bag model. The rule adopted by
Richard for theqq potential was

Vqq =
1
2
Vqq. (2)

Other very well known phenomenological non-
relativistic potential models have been based in the Cornel
potential [10, 2]

V (r) = ACr − BC

r
+ CC , (3)

where AC = 0.1756 GeV 2, BC = 0.52 and CC =
−0.8578 GeV ; and the logarithmic potential [11]

V (r) = AL + BL ln (r) , (4)

whereAL = −0.6631 GeV andBL = 0.733 GeV .

Finally, other two propositions of inter-quark potentials
are due to Song and Ling [12]

V (r) = ASr
1
2 + BSr−

1
2 , (5)

whereAS = 0.511 GeV
3
2 andBS = 0.923 GeV

1
2 ; and

Turin [13]

V (r) = −AT r−
3
4 + BT r

3
4 + CT . (6)

where AT = 0.620 GeV
1
4 , BT = 0.304 GeV

7
4 and

CT = −0.823 GeV .
Studies with phenomenological potentials, like the Cor-

nell one, but considering a relativistic kinetic energy term,
are able to describe the observed spectra of heavy and
light hadron systems [14, 15]. Non-trivial connections be-
tween these relativistic potential models and rigorous nu-
merical results from lattice QCD have been demonstrated
[16]. Some recent works have tried to understand why the
non-relativistic treatment works and allows useful predic-
tions even for relativistic systems [17, 18].

In the previously mentioned potential models, central
conditions have been the flavor independence of the poten-
tial chosen and the existence of a confining term. Quark
masses appearing in these phenomenological models are the
so called constituent quark masses that should not be con-
fused with the current quark masses, that are the mass pa-
rameters appearing in the QCD Lagrangian. Constituent
quark masses are bigger than current quark masses and it
is suppose that this is due to gluonic condensate effects. In
general constituent quark masses are considered as free pa-
rameters to fit in potential models, that is why different val-
ues are found all over the literature. Up to our knowledge
there are two works in which constituent quark masses are
calculated from QCD: one is due to Elias et al. [19, 20] that
used an operator-product expansion (OPE) of approximate
non-perturbative vacuum expectation values in the fixed-
point gauge; the other work is due to Cabo and Rigol [21] in
which a Modified Perturbative QCD expansion incorporat-
ing gluon condensation was employed [22]. Because there
are no free quarks, a lot of care should be taken with the
meaning of these quark masses.

In the present work we study the hadron spectra within a
non-relativistic spin-independent phenomenological model,
with a harmonic confining potential. The idea is to show
with an educational perspective what can be done with the
Schrodinger equation, the very useful for physicists har-
monic potential, and the same number of parameters used in
almost all the calculations, in order to understand the hadron
spectroscopy. The harmonic potential has the great advan-
tage that allowed us to obtain analytical solutions for both
the meson and baryon (with equal constituent quarks) spec-
tra. Although the obtained results are not as good as the
ones obtained for the former potentials, we think that they
give very good estimates of the hadron properties without
the need of numerical calculations implemented for all the
previously mentioned potentials. As we will work with a
spin independent model, the magnitudes we will deal with
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will be spin averaged. For fitting our parameters spin aver-
ages of experimental values were calculated, but for certain
resonances the experimental values were not at hand [23]
and theoretical results obtained by Fulcher [24] were used.
It should be mentioned that in a work by Hirata et al. [25]
the harmonic oscillator was employed as an unperturbed
confinement potential, in the asymptotically free colored-
quark-gluon model in which the one-gluon-exchange force
was treated perturbatively. Later Ram and Hasala [26] used
the pure harmonic oscillator potential in the Klein-Gordon
equation to determine the meson masses.

The exposition will be organized as follows. In Section
II meson spectra is calculated for two different potentials
with harmonic confining terms, that allowed to obtain ana-
lytical solutions. The first potential is the harmonic oscil-
lator and the second one is the harmonic oscillator plus a
term proportional to 1

r2 . The results are analyzed for the
flavor dependent and independent cases. In Section III we
study the properties of the radial wave function, and some
related physical quantities, at the origin. Section IV is de-
voted to the study of the baryon spectra and the summary
can be found in Section 5. Finally, an Appendix was intro-

duced for mathematical details of the three-body problem
solution.

II Meson Spectra

In the present section, the non-relativistic meson spectra are
calculated for two different potentials. The first one is the
pure harmonic potential and in the second one a term pro-
portional to 1

r2 is added to the harmonic oscillator, allowing
to improve the short-range interaction. That is the potentials
considered are:

V1 (r) =
k1r

2

2
+ W1, (7)

and

V2 (r) =
k2r

2

2
− α

r2
+ W2. (8)

The Schrodinger equation, in the Center-of-Mass (CM)
system and in spherical coordinates, has the form (notation
~ = c = 1 is considered)

c
{
− 1

2µ

{
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]}
− (Ei − Vi)

}
Ψi (r, θ, φ) = 0, (9)

wherei = 1, 2 andµ = m1m2
m1+m2

is the reduced mass. Introducing the spherical harmonics

Ψi,nlimi (r, θ, φ) =
1
r
Ri,nli (r) Yi,limi (θ, φ) , (10)

the radial Schrodinger equation can be written as
{
− 1

2µ

d2

dr2
+

kir
2

2
+

li (li + 1)
2µr2

− (Ei,nli −Wi)
}

Ri,nli (r) = 0, (11)

where

li (li + 1) =
{

l (l + 1) for i = 1,
l (l + 1)− 2µα for i = 2.

d

The solution of Eq. (11) can be found in any classical
textbook of Quantum Mechanics [27, 28] and has the form

Ri,nli (ξ) = Ni,nlie
−ξ2

2 ξli+1F

(
−n, li +

3
2
, ξ2

)
, (12)

where

ξ =
r√

1√
µk

,

Ni,nli is a normalization factor andF
(−n, li + 3

2 , ξ2
)

is the
confluent hyper-geometric function. The eigenvalues of the
energy are

Ei =

√
k

µ

(
2n + li +

3
2

)
+ Wi. (13)

First, in order to compare with experimental values we
fitted the parameters without imposing the flavor indepen-
dence condition on the potentials. For that case [5] it is only
possible to determine from the experimental spectra the val-

ues ofε =
√

k
µ , 2µα andV0 = W0 + m1 + m2 that are

shown in Table 1 for charmonium (cc) and upsilon (bb) sys-
tems. As it can be seen, the parameter2µα has the limiting
value for the existence of the solution for the flavor depen-
dent (FD) potentialV2 for both quark systems, because

l2 = −1
2

+

√(
l +

1
2

)2

− 2µα,

and for l = 0 and2µα > 0.25 the squared root will have
imaginary values.
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Table 1: Parameters obtained for thecc andbb systems with the flavor dependent potential.

System ε (MeV ) 2µα V0 = W0 + m1 + m2 (MeV )
V FD

1
1 (cc) 296 2679

V FD
2

2 (cc) 302 0.25 2773
V FD

1 (bb) 217 9235
V FD

2 (bb) 219 0.25 9301

3000

3200

3400

3600

3800

4000

4200

4400

1S

1P

2S
1D

2P

3S

3123

3419

3715

4011

4307

3075

3502

3679

3814

4106

4283

3112

3397

3681

3966

4252

3102

3467

3661
3763

3915

4081

3068

3525

3663

3770

4040

������ ������ ������ �
	�� �������������� ���� 9300

9500

9700

9900

10100

10300

10500

1S

1P

2S

1D

2P

3S

9561

9778

9995

10212

10429

9520

9830

9958

10056

10268

10396

9560

9769

9978

10186

10396

9509

9880

10000

10121

10239

10345

9447

9900

10018

10260

10351

������ ������ ������ 	�
� ��������������� �����

Figure 1: Charmonium (left) and Upsilom (right) energies (MeV ) (V FI
1 is the flavor independent potentialV1 (r)).

The mass values obtained forcc and bb systems, with
the parameters in Table 1, are presented in Figure 1 to-
gether with the theoretical values obtained by Fulcher [29]
and compared with the experimental values [23] (the results
for each potential are presented in the figure as columns).
The experimental masses of the states1S, 1P , 2S for the
charmonium systems and all the ones presented for the Up-
silom systems are spin averaged and were used in our fit of
the parameters. The experimental masses reported for the
1D and3S charmonium resonances belong to the13D1 and
33S1 states. The results obtained for the potentialV2 are
in better agreement with the experimental results because
the non-harmonic term (∼ 1

r2 ) improves the behavior of the
potential in the regionr → 0, and breaks some degener-
acy present in the solution of the pure harmonic oscillator.
Unfortunately the potentialV2 was found incompatible with
the flavor independence condition, been impossible to ob-
tain a unique potential like this for charmonium and upsilon
systems. Then, after requiring the flavor independence con-
dition only the pure harmonic oscillator parameters can be

fitted, and the following values were obtained

k = 0.155 GeV 3, ms = 2.725 GeV,
W0 = −4.94 GeV, mc = 3.812 GeV,

mb = 7.093 GeV,

where thes quark was included as in Martin’s works. The
spectra calculated with these parameters, forcc and bb

mesons are presented in Figure 1 (V FI
1 ). Other meson reso-

nances likess, cs− sc, bs andbc are shown in Table 2. The
mass of the1S resonance for thess meson was employed to
fit thes quark mass.

As it can be seen the theoretical results obtained are only
estimates for the experimental values. The main differences
between these theoretical results and the experimental ones,
or other theoretical calculations, are clearly due to the non-
singularity of the potential at the origin, and its concavity.
That is, the harmonic potential has positive second deriva-
tive at variance with other proposed potentials that vary
more slowly with the distance. This causes that when the
energy of a state increases, the classical allowed region will
be smaller for the harmonic potential than for the other ones
and states result more localized. Other undesirable effects
are the constant spacing between the consecutive levels and
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Table 2: Other meson resonances (MeV ).

State V FI
1 (ss) Expt1(ss) V FI

1 (cs) Expt1(cs) V FI
1 (sb) Expt1(sb) V FI

1 (bc) Expt1(bc) FU2(bc)

1S 1016 1019 2065 2076 5299 5370 6340 6400 6361
1P 1353 2377 5580 6590 6703
2S 1690 2689 5861 6840 6876

the degeneracy present. The differences between the pro-
posed potential and the former ones also cause the so called
constituent quarks masses to be here like twice of the usual
values for the heavy quarksc, b and fifth times for thes
quarks. The addition of the non harmonic term improved the

results for the lower levels and broke the degeneracy present,
but for the higher excited states the deficiencies remain; and
this potential was also unable to fit with the flavor indepen-
dence condition.

III Properties of the radial wave-
function at the origin and related
magnitudes

As it was mentioned in the previous section, the major rea-
son for differences between our calculation for the pure har-
monic oscillator and previous ones are the non-singularity
of the potential at the origin, and its concavity. The value of
the radial wave function or its first non-vanishing derivative
at the origin

R
(l)
nl (0) ≡ dlRnl (r)

drl

∣∣∣∣
r=0

, (14)

is needed for the evaluation of pseudo-scalar decay con-
stants and production rates through heavy-quark fragmen-
tation [31, 32]. In Figure 2 we compare our results for∣∣∣R(l)

nl (0)
∣∣∣
2

with the ones presented for other potentials in

Ref. [33] forcb mesons.
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Figure 2: Radial wave functions at the origin and related

quantities (
∣∣∣R(l)

nl (0)

∣∣∣
2

(GeV )2l+3) for cb mesons.

Two interesting magnitudes to evaluate, related with the
wave functions at the origin, are the leptonic widths and the
hyperfine splitting.

Leptonic widths for charmonium and upsilon systems
are presented in Figure 3 and compared with results in Ref.
[33, 24]. They were obtained by the formula [35]

Γ
(
V 0 → e+e−

)
=

16πNcα
2e2

q

3
|Ψ(0)|2

M2
V

, (15)

whereNc = 3 (number of colors),α denotes the fine struc-
ture constant,eq denotes the quark charge andMV is the
mass of the vector meson.
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Figure 3: Leptonic widths (KeV ).

Finally, the hyperfine splitting can be obtained through
the expression [5]

M
(
3S1

)−M
(
1S0

)
= Cte

|Ψ (0)|2
mamb

, (16)
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in which the constant is fixed through the hyperfine splitting
observed in the charmonium family

M (J/ψ)−M (ηc) = 117MeV.

Results for thecc
(
J/ψ =3 S1 ηc =1 S0

)
, bc

(
B∗

c = 3S1

Bc = 1S0

)
and bb

(
Υ =3 S1 η =1 S0

)
resonances are

shown in Figure 4.
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Figure 4: Hyperfine splitting for quarkonium ground states
(MeV ).

IV Baryon Spectra

In the present section we study the baryon spectra using the
harmonic potential obtained in Section II. For the three-
body system the Hamiltonian has the form

H = − 1
2m1

∇2
r1
− 1

2m2
∇2

r2
− 1

2m3
∇2

r3

+V12 (r12) + V23 (r23) + V31 (r31) . (17)

In order to separate the C-M motion, we define the Ja-
cobi (−→r ,

−→
R ) and C-M (

−→
RCM ) coordinates through

−→r =
[

µbc

µa,bc

] 1
4

(−→rb −−→rc ) ,

−→
R =

[
µa,bc

µbc

] 1
4

(
−→ra − mb

−→rb + mc
−→rc

mb + mc

)
,

−→
RCM =

ma
−→ra + mb

−→rb + mc
−→rc

M
, (18)

where

µbc =
mbmc

mb + mc
,

µa,bc =
ma (mb + mc)

M
,

M = ma + mb + mc. (19)

Considering equal massesma = mb = mc ≡ m, and Eqs.
(18), (19) the C-M motion is separated and the Hamiltonian
for the relative motion takes the form

H = − 1
2µ

(∇2
r +∇2

R

)
+
√

3
4

k
(−→r 2 +−→

R
2
)
+

3
2
W0, (20)

with

µ ≡
(mambmc

M

) 1
2

=
m√
3
,

where the rule adopted by Richard [8] (2), was considered.
At this point we could obtain the baryon spectra directly

from Eq. (20) noticing that it is the sum of two independent
harmonic oscillators. But then the energy eigenvalues will
not be in terms of the natural quantum numbers of the sys-
tem, and it will not be possible a check with experimental or
other theoretical results. The same problem is faced with
the usual 3-dimensional harmonic oscillator, which could
be solved in Cartesian coordinates as the sum of three in-
dependent 1-dimensional harmonic oscillators, but then no
relation between the conserved angular momentum and the
energy spectrum is obtained and the use of spherical coordi-
nates is convenient.

Then introducing the hyper-spherical coordinates [36]
(see Appendix A)

rx = ρ cos (χ) sin (θr) cos (ϕr) ,

ry = ρ cos (χ) sin (θr) sin (ϕr) ,

rz = ρ cos (χ) cos (θr) ,

Rx = ρ sin (χ) sin (θR) cos (ϕR) ,

Ry = ρ sin (χ) sin (θR) sin (ϕR) ,

Rz = ρ sin (χ) cos (θR) , (21)

the kinetic term stay in a diagonal form and the potential
become only dependent of the hyper-radio, then the Hamil-
tonian (20) takes the form

c

H = − 1

2µ

[
1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+

1

ρ2

(
1

sin2 (2χ)

∂

∂χ

(
sin2 (2χ)

∂

∂χ

)
+

Ĵ2 (θr, ϕr)

cos2 (χ)
+

L̂2 (θR, ϕR)

sin2 (χ)

)]

+

√
3

4
k
(
ρ2

)
+

3

2
W0, (22)

In which Ĵ is the angular momentum of the subsystembc andL̂ is the angular momentum of particlea respect to the C-M of
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the two body subsystembc.

Ĵ2 = − 1
sin (θr)

∂

∂θr

(
sin θr

∂

∂θr

)
− 1

sin2 (θr)
∂2

∂ϕr
,

L̂2 = − 1
sin (θR)

∂

∂θR

(
sin θR

∂

∂θR

)
− 1

sin2 (θR)
∂2

∂ϕR
. (23)

The Schrodinger equation in this case has also analytical solution (see Appendix A), with eigenvectors

ΨN,λ,j,mj ,l,lj (ξ, χ, θr, ϕr, θR, ϕR) = NN,λ,j,le
− ξ2

2 ξλLλ+2
N

(
ξ2

)
cosj+ 1

2 (χ) sinl+ 1
2 (χ)×

×P
l+ 1

2 ,j+ 1
2

λ−j−l
2

(cos (2χ)) Y ml

l (θR, ϕR)Y
mj

j (θr, ϕr) , (24)

where
λ = 2n + j + l. (25)

d
The eigenvalues are given by the expression

E =

√√
3

2

√
k

µ
(2N + λ + 3) +

3
2
W0, (26)

where N is the number of nodes of the hyper-radial
function, λ is the grand-angular quantum number, and

P
l+ 1

2 ,j+ 1
2

λ−j−l
2

(cos (2χ)) are the Jacobi polynomials. In Figures

5 and 6 we compare our results with other calculations pre-
sented by Richard in Ref [8].
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Figure 5: Baryonccc energies (MeV ).
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To compare with experiments there were only two equal
constituent quark baryons at hand [30], for thesss system,

for which

c
m (Ω−)Expt = 1672 MeV, m (Ω−)Expt = 2250MeV,

m (Ω−)V F I
1

= 1641 MeV, m (Ω−)V F I
1

= 2225 MeV,
m(Ω−)

Expt
−m(Ω−)

V F I
1

m(Ω−)Expt
= 0.02,

m(Ω−)
Expt

−m(Ω−)
V F I
1

m(Ω−)Expt
= 0.01.

d

V Conclusions

In the present paper we have studied, within a non-
relativistic spin-independent model with harmonic confining
potential, the spectra and other properties of hadron systems.

It was found that for mesons, without imposing the fla-
vor independence condition, two possible potentials with
harmonic confining terms had analytical solutions that give
good estimates of the experimental values reported for the
meson spectra. The better fit was obtained for the potential
with a term proportional to1

r2 because it has a singularity
for r → 0 that improves its behavior in this region. However
this potential was found to be incompatible with the flavor
independence condition and was not considered in the anal-
ysis that followed.

For the pure harmonic oscillator the parameters intro-
duced were fixed from the low lying levels of heavy quarks
systems and imposing the flavor independence condition.
The calculation of the meson and baryon spectra, and the
hyperfine splitting with this potential give good estimates of
the experimental and other theoretical results; in the case of
leptonic widths we could say that the results are not good.
Although this potential is far from being a good approxima-
tion for the real inter-quark potential, and the results are not
as good as the theoretically obtained by other phenomeno-
logical models, it has the great advantage that allows to ob-
tain analytical solutions for both meson and baryon spectra.
That is, reasonable theoretical results are obtained without
the need of numerical methods and computational calcula-
tions. The major differences of this potential and the others
mentioned in the introduction are due to its non-singularity

at the origin and its concavity, that cause the bad results for
the obtained leptonic widths and also (for a better fit with
experiments) the so called constituent masses to be bigger
than the usual ones. The baryon spectra was studied with
the use of the rule (2) for theqq potential and for obtaining
the analytical solution it was necessary to restrict the study
to equal constituent quark systems.

We finalize with the conclusions of A. Martin in Ref.
[7] “... if you want to know the mass of a particle and if you
have a little time (in years!) and little money you should
forget all your prejudices and use potential models”.

A The hyper-spherical coordinates
and the solution of the three-body
problem with a harmonic potential

The hyper-spherical coordinates are very useful for dealing
with the three-body problem; in what follows we make a
small review of them.

The kinetic energy of the Hamiltonian (20),

K̂ = − 1
2µ

(∇2
r +∇2

R

)
, (27)

can be written as a Laplacian in a 6-dimensional space, due
to the symmetry in the two Jacobi vectors. When a change
of coordinates is made, theN -dimensional Laplacian trans-
forms as

c

∆ =
1∏

i

li

N∑

k=1

∂

∂x′k




∏
j

lj

l2k

∂

∂x′k


 where lj =

√√√√ N∑

i=1

(
∂xi

∂x′j

)2

, (28)

are the metric coefficients. The change to hyper-spherical coordinates is based on the definition of the hyper-radius by

ρ =

√√√√
N∑

i=1

x2
i , (29)

andN − 1 angles in a way that (29) is satisfied and the old variables are expressed in terms of the new ones byN functions
with the form

xi = ρFi (ΩN−1) , (30)
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and the Laplacian operator becomes

∆ =
1

ρN−1

∂

∂ρ

(
ρN−1 ∂

∂ρ

)
+

1
ρ2

∆ΩN−1 . (31)

In the expression (31)ΩN−1 denotes all angles. The explicit form of the angular term of the Laplacian operator and its
eigenfunctions will depend of the set of angles selected as new coordinates and the eigenvalues will be equal to−λ (λ + N − 2).
In this 6-dimensional case where the selected coordinates are (21) the angular term obtained is

∆ΩN−1 =
1

sin2 (2χ)
∂

∂χ

(
sin2 (2χ)

∂

∂χ

)
+

1
cos2 (χ)

∆θr,ϕr
+

1
sin2 (χ)

∆θR,ϕR
. (32)

Its eigenfunctions are expressed as a product of orthogonal polynomials in separated variables [36]. The eigenfunctions
corresponding to Jacobi’s anglesθr, ϕr, θR andϕR are the well known spherical harmonics. Then the equation obtained for
the function of the angleχ is

[
1

sin2 (2χ)
∂

∂χ

(
sin2 2χ

∂

∂χ

)
− l (l + 1)

sin2 (χ)
− j (j + 1)

cos2 (χ)

]
F l,j

λ (χ) = −λ (λ + 4) F l,j
λ (χ) , (33)

for which the solution are the Jacobi polynomials

F l,j
λ (χ) = Nλ,l,j sinl+ 1

2 (χ) cosj+ 1
2 (χ)P

l+ 1
2 ,j+ 1

2
λ−j−l

2
(cos (2χ)) , (34)

with λ = 2n + l + j andNλ,l,j a normalization factor.
For the harmonic interaction between equal mass particles, the potential is only dependent of the hyper-radius, then we

can separate variables and the radial equation has the form
[
− 1

2µρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+

λ (λ + 4)
2µρ2

+
√

3k

4
ρ2 −

(
EN,λ − 3

2
W0

)]
RN,λ (ρ) = 0. (35)

Introducing new variables

ξ =
(

ρ

ρ0

) √
β, ρ0 =

(
1

2µ
(
E − 3

2W0

)
) 1

2

, β2 =

(
k
√

3
)

8µ
(
E − 3

2W0

)2 , (36)

and the new function

TN,λ =
RN,λ

ξ
5
2

, (37)

we obtain for (35) the equation

[
d2

dξ2
+

1
βN,λ

− λ (λ + 4) + 15
4

ξ2
− ξ2

]
TN,λ (ξ) = 0, (38)

with solutions
TN,λ (ξ) = e−

ξ2

2 ξλ+ 5
2 Lλ+2

N

(
ξ2

)
, (39)

where
1

βN,λ
= 4s + 2 (λ + 2) + 2, (40)

andLλ+2
N

(
ξ2

)
are the generalized Laguerre polynomials.

Then the complete eigenvectors and the eigenvalues of the problem are given by Eqs. (24) and (26).
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