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Hadron spectra and other properties of quark systems are studied in the framework of a non-relativistic spin-
independent phenomenological model. The chosen confining potential is harmonic, which allowed us to obtain
analytical solutions for both meson and baryon (of equal constituent quarks) spectra. The introduced parameters
are fixed from the low-lying levels of heavy quark mesons. The requirement of flavor independence is imposed,
and it restricts the possible choices of inter-quark potentials. The hyper-spherical coordinates are considered
for the solution of the three-body problem.

Espectros de Hadrons e outras propriedades de sistemas de (amdstiedados do ponto de vista de um
modelo fenomendlgico rio-relatiistico independente de spin. O potencial confinante escoéhidondnico,

o qual nos permite obter soldgs anaticas tanto para os espectros dassons quanto para os dasrions (de
iguais quarks constituintes). Os paretros introduzidosa® fixos a partir dos primeiros estados excitados dos
mésons pesados. A condig de indeperihcia de sabog imposta, o que restringe as pesss escolhas de
potenciais inter-quarks. As coordenadas hipeersds 80 consideradas para a s@ogdo problema deés
corpos.

| Introduction metry. TheSU (3) component is what is called Quantum
Chromodynamics (QCD) and it is the gauge field theory de-
The study of the fundamental or constituent blocks of matter scribing the strong interactions of quarks and gluons. The
has been for long time a fascinating field in physics. With St/ (2) x U (1) component is called Standard Electroweak
the pass of the years new fundamental blocks or particlesModel describing interactions between quarks and leptons
have appeared, modifying old concepts. For example thethrough thel’’ bosons and the photons. There is an addi-
atom, that was initially supposed to be fundamental, wastional particle in the electroweak model, the neutral Higgs
found to be formed by the nucleus and electrons, the nucleusscalar that appears after the spontaneously symmetry break
was found to be formed by neutrons and protons (nucleons)ing mechanism, whose existence has not been probed expel
and finally the nucleons to be formed by quarks. imentally and that is a subject of a lot of present experimen-

Nowadays it is believed that the theory describing the tal research because it could prove the validity of the theory.
interactions between fundamental particles is the Standard

Model. This model has &U (3) x SU (2) x U (1) sym- We will be interested in the present paper in the low
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energy region of the QCD theory, in which quarks inter- Finally, other two propositions of inter-quark potentials
act strongly to form bound states known as hadrons. Whenare due to Song and Ling [12]

these bound states are formed by a quark and an antiquark

(¢q) they are called mesons; and when they are formed by V(r)= Asr% + Bs?“_%, (5)
3-quark statesg@q) they are called baryons. The study of

the hadron spectra is a fundamental and open field in theowhere 4¢ = 0.511 GeV3 and Bs = 0.923 GeV3: and
retical physics. Up to the moment the more important ap- Turin [13]

proaches to this subject have been: Lattice QCD, QCD sum

rules and potential models. Lattice QCD is the most funda- V(r) = fAT?“’% + BTr% + Cyp. (6)
mental approach and together with QCD sum rules have had
good success. Potential models, although less fundamenwhere A; = 0.620 GeVi, By = 0.304 GeVi and

tals, have proved to be very useful even in non-relativistic ¢, = —0.823 GeV'.

approximations. Since the latest seventies a lot of attempts  stydies with phenomenological potentials, like the Cor-
have been made in this field with very good results [1]. nell one, but considering a relativistic kinetic energy term,
An important question for the use of potential models is are able to describe the observed spectra of heavy and
whether it is possible to consider hadrons as non-relativistic|ight hadron systems [14, 15]. Non-trivial connections be-
bound states of quarks. This question could be answeredyyeen these relativistic potential models and rigorous nu-
solving the Schrodinger equation assuminggapotential  merical results from lattice QCD have been demonstrated
and then checking if the obtained quark velocities are non-[16]. Some recent works have tried to understand why the
relativistic. For the charmonium system this was done in non-relativistic treatment works and allows useful predic-
Ref.[2] and it was obtained a result ¢6/c?) = 0.2in  tions even for relativistic systems [17, 18].
the ground state. For lighter hadrons the results are N0 |y the previously mentioned potential models, central
so good and the validity of the non-relativistic approxima- ¢onditions have been the flavor independence of the poten-
tion depends strongly from the interaction potential cho- tja| chosen and the existence of a confining term. Quark
sen. For example, the interaction potential proposed by Deémasses appearing in these phenomenological models are the
Rujula, Georgi and Glashow [3] was shown [4] to be un- gq called constituent quark masses that should not be con-
suitable for dynamical non-relativistic calculations of light fysed with the current quark masses, that are the mass pa-
hadrons. However, Martin showed latter [5, 6, 7] that a (gmeters appearing in the QCD Lagrangian. Constituent
non—r(_alativistic model with a power law potential is _at_)le_ to quark masses are bigger than current quark masses and it
describe heavy quark mesons and the clearly relatiistic s suppose that this is due to gluonic condensate effects. In
states. The potential proposed by Martin had the form general constituent quark masses are considered as free pa-
rameters to fit in potential models, that is why different val-
V(r)=A+Bre, @) ues are found allpover the literature. Up to Zur knowledge
there are two works in which constituent quark masses are
calculated from QCD: one is due to Elias et al. [19, 20] that
used an operator-product expansion (OPE) of approximate
non-perturbative vacuum expectation values in the fixed-

whereA = —8.093 GeV, B = 6.898 GeV anda = 0.1.

The study of baryon systems with this power law poten-
tial was done by Richard [8] obtaining good results. At that
time the baryon spectra in potential models, although rather . ; . .
elaborated [{)], wgs complgtely disconnected fromgthe me—po'.nt gauge, f[he other work_ls due to Cabo a_nd R.'g°| [21]in
son sector. Exceptions were some attempts to derive mesot}’ hich a Modified Pe_rturbat|ve QCD expansion incorporat-
and baryon potential energies from a common framework "9 gluon condensation was employed [22]. Because there

as the instanton, string or bag model. The rule adopted byﬂgaz?nfr%? tﬂlejz(raksh:rlior;gfssc:;e should be taken with the
Richard for theyq potential was 9 q '

In the present work we study the hadron spectra within a
1 non-relativistic spin-independent phenomenological model,

quﬁ' @) with a harmonic confining potential. The idea is to show
with an educational perspective what can be done with the

Other very well known phenomenological non- schrodinger equation, the very useful for physicists har-
relativistic pOtentia| models have been based in the Cornelmonic potentiaL and the same number of parameters used in

Vag =

potential [10, 2] almost all the calculations, in order to understand the hadron
B spectroscopy. The harmonic potential has the great advan-
V(r)=Acr — =< + Cg, (3) tage that allowed us to obtain analytical solutions for both
r the meson and baryon (with equal constituent quarks) spec-
where Ac = 0.1756 GeV2, Bo = 0.52 and Co = tra. Although the obtained results are not as good as the
—0.8578 GeV; and the logarithmic potential [11] ones obtained for the former potentials, we think that they
give very good estimates of the hadron properties without
V(r)=Ap +Bpln(r), 4) the need of numerical calculations implemented for all the

previously mentioned potentials. As we will work with a
whereA;, = —0.6631 GeV andBy, = 0.733 GeV'. spin independent model, the magnitudes we will deal with
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will be spin averaged. For fitting our parameters spin aver- duced for mathematical details of the three-body problem

ages of experimental values were calculated, but for certainsolution.

resonances the experimental values were not at hand [23]

and theoretical results obtained by Fulcher [24] were used.

It should be mentioned that in a work by Hirata et al. [25] || Meson Spectra

the harmonic oscillator was employed as an unperturbed

confinement potential, in the asymptotically free colored- In the present section, the non-relativistic meson spectra are

guark-gluon model in which the one-gluon-exchange force calculated for two different potentials. The first one is the

was treated perturbatively. Later Ram and Hasala [26] usedpure harmonic potential and in the second one a term pro-

the pure harmonic oscillator potential in the Klein-Gordon portional toTL2 is added to the harmonic oscillator, allowing

equation to determine the meson masses. to improve the short-range interaction. That is the potentials
The exposition will be organized as follows. In Section considered are:

Il meson spectra is calculated for two different potentials

with harmonic confining terms, that allowed to obtain ana- Vi (r) kyr? LW @)

Iytical solutions. The first potential is the harmonic oscil- ’

lator and the second one is the harmonic oscillator plus a

term proportional torl—z. The results are analyzed for the and

flavor dependent and independent cases. In Section Il we Vo(r) = - — + Wa. (8)

study the properties of the radial wave function, and some 2 r

related physical quantities, at the origin. Section IV is de- The Schrodinger equation, in the Center-of-Mass (CM)

voted to the study of the baryon spectra and the summarysystem and in spherical coordinates, has the form (notation

can be found in Section 5. Finally, an Appendix was intro- i = ¢ = 1 is considered)

|
1L 1o /.0, 1 [ 1 a0\, 1 & _
{2u {a (") + [sinaae (st z5) + sin208¢¥} } ~ (B W} Lar6,9)=0, ®©)
wherei = 1,2 andu = ey is the reduced mass. Introducing the spherical harmonics
1
\Iji,nlﬂm (T7 07 Qb) = ;Rim,h (T) )/i,limq, (05 d)) ) (10)
the radial Schrodinger equation can be written as
5 332 — 5 — (Ein, — Wi i,nl; =Y 11
{ 24 dr? 2 212 (Bin; W)}R 1 (r) =0 (11)
where ( )
_ I(l+1) for i =1,
li(li+1)_{ I(1+1)—2p«a for i =2.
|
The solution of Eq. (11) can be found in any classical First, in order to compare with experimental values we

textbook of Quantum Mechanics [27, 28] and has the form fitted the parameters without imposing the flavor indepen-
dence condition on the potentials. For that case [5] it is only
possible to determine from the experimental spectra the val-

e 3
Ry, (6) = Nyppse €41 F (—n, - ,52) a2
2 ues ofe = \/% 2uc andVy = Wy + my + mo that are

where shown in Table 1 for charmoniunad) and upsilon §b) sys-
o tems. As it can be seen, the param&jet: has the limiting
§= T’ value for the existence of the solution for the flavor depen-
Vik dent (FD) potential’; for both quark systems, because
Ni i, is anormalization factor anBl (—n, I; + 2, £2) isthe 5
confluent hyper-geometric function. The eigenvalues of the Iy = 1 + (l + 1> ~ 2ua,
energy are 2 2

and forl = 0 and2u« > 0.25 the squared root will have

= \/E <2n +1; + 2) + W (13) imaginary values.
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Table 1: Parameters obtained for #ieandbb systems with the flavor dependent potential.

[ System [ c(MeV) | 2ua | Vo = Wo+mi+ my (MeV) |

VIPT (ce) | 296 2679
VL P2 (ce) 302 0.25 2773
V{ED (bb) 217 9235
VFD (bb) 219 | 0.25 9301
4400 10500
4307 10429
354307 4283 3522 10396 10396
1200 — . 4252 === === 10345 10351
i 4106 10300 - 10268 10260
a1l —A08L 4040 opL0212 o 22
4000 " ——= 3966 o 10121
3915 10100 _1D 10056 10018
3800 15 a7gs - ﬂ»_ 3763 3770 28%.(_ 9958 9978 ~ 10000 '"_9900
<. _3679 - _3681 .- L 9880 230
o 2 _3679 _3081 - 3661 3663 9900 s o0
3502 w352 1p=2LL - 9169 -
3419 — 9700 |-
00 (1P = = 9561 9560
1S—==._9520 - = 9509
182222 375 3122 8102 4069 o . o
V \% Vi FU|[29] Expt|23
3000 - VIFD VZFD V'IFI FU[29] Expt[23] 9300 L 1 2 1 29] pt[23]

Figure 1: Charmonium (left) and Upsilom (right) energidsdV) (Vi is the flavor independent potentied (r)).

The mass values obtained faf and bb systems, with  fitted, and the following values were obtained
thehpara_mhetﬁrs ;1n Taple I1, ?I'e prtta)sgnte(;jbm Fui:juhre 12to— k= 0155 GeV3, m, = 2.725 GeV.
gether with the t. eoretica values o tained by Fulcher [29] Wo = —4.94 GeV, m, = 3.812 GeV,
and compared with the experimental values [23] (the results my = 7.093 GeV,
for each potential are presented in the figure as columns). _ _ o
The experimental masses of the stalss 1P, 25 for the where thes quark was included as in Martin's works. The
charmonium systems and all the ones presented for the UpSPectra calculated with these pﬁa}rameters, dorand bb
silom systems are spin averaged and were used in our fit of "€S0NS _arefpreisentied n F|ngdq 0. Other meson reso-
the parameters. The experimental masses reported for th@ances likess, s — s¢, bs andbe are shown in Table 2. The
1D and3S charmonium resonances belong to tAB; and mass of the S resonance for thes meson was employed to
335, states. The results obtained for the potentialare  fit the s quark mass.

in better agreement with the experimental results because AS it can be seen the theoretical results obtained are only
the non-harmonic term«{ %) improves the behavior of the estimates for the experimental values. The main differences

r

potential in the region — 0, and breaks some degener- between these theoretical results and the experimental ones,
acy present in the solution of the pure harmonic oscillator, ©" other theoretical calculations, are clearly due to the non-
Unfortunately the potentid, was found incompatible with singularity of the potential at the origin, and its concavity.
the flavor independence condition, been impossible to ob-That is, the harmonic potential has positive second deriva-
tain a unique potential like this for charmonium and upsilon Ve at variance with other proposed potentials that vary

systems. Then, after requiring the flavor independence con.More slowly with the distance. This causes that when the
dition only the pure harmonic oscillator parameters can be €N€rgy of a state increases, the classical allowed region will
be smaller for the harmonic potential than for the other ones

and states result more localized. Other undesirable effects
are the constant spacing between the consecutive levels and
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Table 2: Other meson resonancésdl’).
| state]| Vif(s5) | Expti(s5) | ViI'’(c5) | Expti(cs) | Vi (sb) | Expt'(sb) | ViIFX(be) | Expt(b2) | FU*(be) ||

1S 1016 1019 2065 2076 5299 5370 6340 6400 6361
1P 1353 2377 5580 6590 6703
2S 1690 2689 5861 6840 6876

the degeneracy present. The differences between the proresults for the lower levels and broke the degeneracy present
posed potential and the former ones also cause the so calletut for the higher excited states the deficiencies remain; and
constituent quarks masses to be here like twice of the usuathis potential was also unable to fit with the flavor indepen-
values for the heavy quarks b and fifth times for thes dence condition.

guarks. The addition of the non harmonic term improved the

Il Properties of the radial wave-
function at the origin and related
magnitudes

Two interesting magnitudes to evaluate, related with the
wave functions at the origin, are the leptonic widths and the
hyperfine splitting.

Leptonic widths for charmonium and upsilon systems
are presented in Figure 3 and compared with results in Ref.

As it was mentioned in the previous section, the major rea-[33, 24]. They were obtained by the formula [35]
son for differences between our calculation for the pure har-

monic oscillator and previous ones are the non-singularity
of the potential at the origin, and its concavity. The value of
the radial wave function or its first non-vanishing derivative

16w Noo2e2 |W (0))
3 MZ

r (VO — 6+67) = (15)

at the origin whereN, = 3 (number of colors)q denotes the fine struc-
o d' Ry (r) ture constante, denotes the quark charge and is the
R, (0) = | (14) mass of the vector meson.
r=0
is needed for the evaluation of pseudo-scalar decay con- (2S) _9.57
stants and production rates through heavy-quark fragmen- [(18) 9.0 . 8.00
tation [31, 32]. In Figure 2 we compare our results for I ” 581
2 —=.._5.26
’Rffl)(o)‘ with the ones presented for other potentials in : === 4019
Ref. [33] for cb mesons. ﬂ
_2.61
3.102 214 0
-33 2.065 ‘ o - i e
L zsmé 1642 1710 1508 - 1.737 %g :v 134 0 1.32 T(18)
2pLI38 (a3 1.427 1L 3
1?1810%‘_70m7ﬂfﬂ%ﬁ%.;awo: - _076
[ 1p 0455 0263 0531 »p T(39) 289 055 057 (s
1P 222, 0.392 0T —— : T(29)
1D70.452 & 0.352 1P T(29) : 040 048 T(39)
L ::;:; 0.264 0.327 0.239 . T(lS) QSE ; J.ay - .
T 0239 VP EQ33] FU[24]  Expt[23]
: 0.101
01p : Fa 0080 ;o
£ 0.055 0.055 Figure 3: Leptonic widthsKeV).
VT QCD[34] Power L. Log.  Cornel

Finally, the hyperfine splitting can be obtained through
the expression [5]

Figure 2: Radial wave functions at the origin and related v (0)‘2
2 p—
quantities erfl)(O)‘ (GeV)?*3) for cb mesons. M (3S1) = M (*So) = Cte——"—,

memyp

(16)
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in which the constant is fixed through the hyperfine splitting where
observed in the charmonium family

o mpme
M (J/4) — M (5.) = 11TMeV. Hee = o +me
Results for thee (J/}p =3 S1m. ="' Sp), be (B =35 Habe = W,
B, = 'S,) andbb (T =57 ="5y) resonances are M = my+my+m.. (19)
shown in Figure 4.
160 - Considering equal masses, = m;, = m. = m, and Egs.
(18), (19) the C-M motion is separated and the Hamiltonian
o b 141 for the relative motion takes the form
120 1y /gy — p,LLT 117 117 17117 1 3 3
Y= ; 1{:—~—(V%+V§)+Xik(?2+?f>+fwa,Qm
2 4 2
100 :
87 i 89 with
olp_p_1 | . / _ (mamb”%f _m
e~ e 13 = )
L gi 68 M V3
60 , 54 65 where the rule adopted by Richard [8] (2), was considered.
At this point we could obtain the baryon spectra directly
4t V{* QCD[34] Power L. Log.  Cornel from Eqg. (20) noticing that it is the sum of two independent

harmonic oscillators. But then the energy eigenvalues will
Figure 4: Hyperfine splitting for quarkonium ground states Nt be in terms of the natural quantum numbers of the sys-
(MeV). tem, and it WI!| not be possible a check with exp_erlmental or
other theoretical results. The same problem is faced with
the usual 3-dimensional harmonic oscillator, which could
AV} Baryon Spectra be solved in Cartesian coordinates as the sum of three in-
dependent 1-dimensional harmonic oscillators, but then no
In the present section we study the baryon spectra using theelation between the conserved angular momentum and the
harmonic potential obtained in Section Il. For the three- energy spectrum is obtained and the use of spherical coordi-

body system the Hamiltonian has the form nates is convenient.
Then introducing the hyper-spherical coordinates [36]
o= _Lv2 _ Lv2 _ LV2 (see Appendix A)
2my "t 2mo " 2mg TP
+Vi2 (r12) + Vaz (r23) + Va1 (r31) - (7) ry = pcos(x)sin(6;)cos (¢;),
) ) ry, = pcos(x)sin(6,)sin (v,),
In order to separate the C-M motion, we define the Ja- ! - COSE ;COS((G )) (r)
cobi (7, B) and C-M (& 1) coordinates through T2 =P X ro
. R, = psin(x)sin(0r)cos(¢r),
7 = [ Hbe ]4 (7 — ), R, = psin(x)sin(0g)sin(er),
Habe R, = psin(x)cos(0g), (22)
1
B fape |* [ muTE 4 meTe o , . :
= Ta—=—————— |5 the kinetic term stay in a diagonal form and the potential
fbe My e become only dependent of the hyper-radio, then the Hamil
= = o - y -
By = Malat n}‘;’ t+ MeTe (18) tonian (20) takes the form
|
H = ,i ig Sg +i L i Sil’l2 (2 )i + ?(97"7907") + E2 (eR,QOR)
o 2u | p5 Op P Op p? \ sin? (2x) Ox X ax cos? (x) sin? (x)
V3 3
+Tk (r*) + 5 Wo, (22)

In which J is the angular momentum of the subsysﬂemndf is the angular momentum of partiaterespect to the C-M of



24 Reuvista Brasileira de Ensino déskea, vol. 25, no. 1, Marco, 2003

the two body subsystehe.

1 0 0] 1 0?

/‘2 .

- an 07‘ an T 9 AN Y

7 sin (0,) 90, <Sm aer> sin? (6,) O,

- 1 0 0 1 0?
sin (Og) 90 (sm R ) sin? (0g) O0or (23)

The Schrodinger equation in this case has also analytical solution (see Appendix A), with eigenvectors

&2 Y . 1
U xgimyily (6 X0, 0r,0r,08) = Nyajie 7L (€7) cos* 7 (y)sin'* 3 (y) x
1 l,' l m mj
x P22 (cos (20)) Y™ (Or, ¢r) Y™ (0r, 1), (24)
2
where
A=2n+j+1. (25)

The eigenvalues are given by the expression

5500
5420
5400 - sasg e T
1+3+5+ 5302
5300 2 3 2 20 5261 . spmy D28
5200 3t 01 521
V3 |k 3 I 5134 5137
E=4/—1/— 2N+ X+3)+ =W, 26 5112 =St
2 u( FA+3)+35Wo (26) 5100 - —
1= 3— 5014
5000 -3 3 10O
4900
4797 4791
. _ 4800 F g+ AT 4791
where N is the number of nodes of the hyper-radial 5000 _AI67 . 4766 .
function, X is the grand-angular quantum number, and 4700 - JP AN V{7 RichardBadhuri[37] Bag[3§]
1,41
Ptf_’jﬁ"‘ (cos (2x)) are the Jacobi polynomials. In Figures

2 . .
5 and 6 we compare our results with other calculations pre-

sented by Richard in Ref [8].
y (8] Figure 5: Baryorecc energies {/eV).

_ _1t3+ts5+
2400 2358 W80 55 2 0 1474
3t 0 1 14774
2300 F 14345+ 2274 - 14750
3232 20 22958 .~ 2244
2200 3+ 0 1 14700 +
5 2225 2139 -
2100 | 14650
2019
2000 A 14600 F 1~ 3= 1 ¢ 14593
1- 3- 1 o 1933 1937~ 2 02 -
1900 | 2 72 14550
1800 14500
1700 | 14450 +
3t g o 1641 1621 1624 3+ 0 0 14412
1600 | 2 14400 |- 2 -

1500 = g7 A N V! Richard Badhuri[37] 14350 - JF AN YT

Figure 6: Baryorsss (left) andbbb (right) energies{/eV).
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To compare with experiments there were only two equal for which
constituent quark baryons at hand [30], for th& system,

]

m (Q7) gppe = 1672 MeV, m (
m (Q_)VIFI = 1641 MeV, m (
m(Q_

Q) e = 2250MeV,
Q_)lel = 2225 MeV,

m(Q_)E.r,ptjm(Q_)VlFI —0.02 )Emptjm(ﬂ_)vlFI — 0.01.
m(Q7) pope ’ m(Q7) pope
|
V Conclusions at the origin and its concavity, that cause the bad results for

the obtained leptonic widths and also (for a better fit with
In the present paper we have studied, within a non- experiments) the so called constituent masses to be bigger
relativistic spin-independent model with harmonic confining than the usual ones. The baryon spectra was studied with
potential, the spectra and other properties of hadron systemsthe use of the rule (2) for theg; potential and for obtaining

It was found that for mesons, without imposing the fla- the analytical solution it was necessary to restrict the study
vor independence condition, two possible potentials with to equal constituent quark systems.
harmonic confining terms had analytical solutions that give We finalize with the conclusions of A. Martin in Ref.
good estimates of the experimental values reported for the[7] “... if you want to know the mass of a particle and if you
meson spectra. The better fit was obtained for the potentialhave a little time (in years!) and little money you should
with a term proportional to; because it has a singularity  forget all your prejudices and use potential models”.
for r — 0 that improves its behavior in this region. However
this potential was found to be incompatible with the flavor
independence condition and was not considered inthe analA  The hyper-spherical coordinates
ysis that followed. :

For the pure harmonic oscillator the parameters intro- and the SC?|U'[IOI’] of the_ three_b(_)dy
duced were fixed from the low lying levels of heavy quarks problem with a harmonic potentlal
systems and imposing the flavor independence condition.

The calculation of the meson and baryon spectra, and the

hyperfine splitting with this potential give good estimates of : : . :
the experimental and other theoretical results; in the case ofThe hyper-spherical coordinates are very useful for dealing

leptonic widths we could say that the results are not good.WIth the Fhree-body problem; in what follows we make a
. e . : small review of them.

Although this potential is far from being a good approxima- o I
. : . The kinetic energy of the Hamiltonian (20),
tion for the real inter-quark potential, and the results are not
as good as the theoretically obtained by other phenomeno- . 1

; i K=—-—(V2+V%) (27)
logical models, it has the great advantage that allows to ob- 2 T R) s
tain analytical solutions for both meson and baryon spectra.
That is, reasonable theoretical results are obtained withoutcan be written as a Laplacian in a 6-dimensional space, due
the need of numerical methods and computational calcula-to the symmetry in the two Jacobi vectors. When a change
tions. The major differences of this potential and the others of coordinates is made, thg-dimensional Laplacian trans-
mentioned in the introduction are due to its non-singularity forms as

(28)

(29)

andN — 1 angles in a way that (29) is satisfied and the old variables are expressed in terms of the new/8rfasdijons
with the form
;= pF; (Qn-1), (30)
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and the Laplacian operator becomes

10y, 0\ 1
-1 9 IV s Lag, 1
pN=1dp (p 3/)) M (1)

In the expression (31 y_; denotes all angles. The explicit form of the angular term of the Laplacian operator and i

eigenfunctions will depend of the set of angles selected as new coordinates and the eigenvalues will be-aquaHdv — 2).
In this 6-dimensional case where the selected coordinates are (21) the angular term obtained is

1 0 0 1 1
A = ——— (sin® (2x) — —A ——A . 32
s = o (B0 ) + g e+ g Ao 2
Its eigenfunctions are expressed as a product of orthogonal polynomials in separated variables [36]. The eigenfunc
corresponding to Jacobi’s anglés ¢.., g andyg are the well known spherical harmonics. Then the equation obtained fol
the function of the anglg is

1 a9 (. 0N\ W+Y  JUHDT o 1j
LIIIQ(QX)GX <bln2 2X5x> G2 (x) oo’ (X)} () =—-2A+4)F\7 (x), (33)

for which the solution are the Jacobi polynomials

. . 1L .1
F{7 () = Nagsin'™ 2 (x) cos’ % (x) P22 (cos (21)) (34)
2
with A = 2n + 1 + j and N, ; ; @ normalization factor.
For the harmonic interaction between equal mass patrticles, the potential is only dependent of the hyper-radius, the
can separate variables and the radial equation has the form

1 0 (50), XA+ Bk, 3 B
[ 0% Op (P 8p) + S tr Ena—5Wo || By (p) =0. (35)
Introducing new variables
14 1 ’ 2 (kv/3)
E()f,p 3oy | o B E (36)
Po "\ (E- W) 811 (E — 2Wo)’
and the new function R
Ty = Al (37)
&z
we obtain for (35) the equation
d? 1 A+ + L 2]
R e 9
with solutions ,
_& 5
Ty (§) = e 7ETIL(&7), (39)
where )
—— =4s+2(A+2)+2, (40)

BN

and L2 (£2) are the generalized Laguerre polynomials.
Then the complete eigenvectors and the eigenvalues of the problem are given by Egs. (24) and (26).
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