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We consider a two-wire resistive transmission line carrying a constant current. We calculate the
potential and electric �eld outside the wires showing that they are di�erent from zero even for
stationary wires carrying dc currents. We also calculate the surface charges giving rise to these
�elds and compare the magnetic force between the wires with the electric force between them.
Finally we compare our calculations with Je�menko's experiment.

I Introduction

One of the most important electrical systems is that of
a two-wire transmission line, usually called twin-leads.
We consider here homogeneous resistive wires �xed in
the laboratory and carrying dc currents. Our goal is
to calculate the electric �eld outside the wires. To this
end we follow essentially the important works of Heald
and Jackson, [1] and [2]. They call attention to the
surface charges in a stationary resistive wire carrying a
constant current. These authors have shown that the
distribution of these net charges is constant in time if we
have an stationary resistive wire with a dc current pro-
duced by a battery. These charges create not only the
electric �eld inside the wire which opposes the resistive
friction, but also an external electric �eld in the sur-
rounding medium (air, for instance). This fact is not
realized by most authors who consider only the mag-
netic �eld created by these currents. Heald, in particu-
lar, considered the case of a (two-dimensional) current
loop and Jackson that of a coaxial cable of �nite length
with a return conductor of zero resistivity.

The case of twin-leads was �rst considered by Strat-
ton, [3, p. 262]. Although he called attention to the
electric �eld outside the transmission line, this has been
forgotten by most authors as can be seen from the
following quotation taken from Gri�ths's book ([4, p.
196], our emphasys in boldface): \Two wires hang from
the ceiling, a few inches apart. When I turn on a cur-
rent, so that it passes up one wire and back down the
other, the wires jump apart - they plainly repel one
another. How do you explain this? Well, you might
suppose that the battery (or whatever drives the cur-

rent) is actually charging up the wire, so naturally the
di�erent sections repel. But this \explanation" is in-
correct. I could hold up a test charge near these
wires and there would be no force on it, indicat-
ing that the wires are in fact electrically neu-
tral. (It's true that electrons are owing down
the line - that's what a current is - but there
are still just as many plus as minus charges on
any given segment.) Moreover, I could hook up my
demonstration so as to make the current ow up both

wires; in this case the wires are found to attract!"
In this work we will see that the wire is not electri-

cally neutral on any given segment as there are surface
charges distributed along its length. What creates the
electric �eld anywhere along the transmission line are
these surface charges and not the battery, although the
battery is essential to maintain these surface charges in
the case of constant current. As these surface charges
create also an external electric �eld, a test charge placed
near it will experience a force, contrary to Gri�th's
statement. The existence of this force has been con-
�rmed by Je�menko's experiments, [5] and [6]. Despite
this fact we show here that the electrostatic force be-
tween two segments of the twin leads is many orders
of magnitude smaller than the magnetic force between
them. Our main goal is to call attention to the existence
of the external electric �eld and to present analytical
calculations which were not performed by Je�menko.

II Two-Wire Transmission Line

The geometry of the system is given in Fig. 1. We
have two equal straight wires of circular cross-sections
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of radii a and length `, surrounded by air. Their
axes are separated by a distance R and are parallel
to the z axis, symmetrically located relative to the z
and x axes. That is, the centers of the left and right
wires are located at (x; y; z) = (�R=2; 0; 0) and
(+R=2; 0; 0), respectively. The conductivity of the
wires is g and their extremities are located at z = �`=2
and z = +`=2. Here we calculate the electric poten-

tial � and the electric �eld ~E at a point (x; y; z) such

that ` � r =
p
x2 + y2 + z2. Moreover, we also as-

sume that `� R=2 > a, so that we can neglect border
e�ects.

We want to �nd the potential and electric �eld when
a current I ows uniformly over the left wire in the di-
rection +ẑ and returns uniformly over the right wire in
the direction �ẑ. The current densities in both wires

are then given by ~J = (I=�a2)ẑ and ~J = �(I=�a2)ẑ,
respectively. As we are considering homogeneous wires
with a constant resistivity g, Ohm's law yields the inter-
nal electric �eld in the wires as ~E = �(I=g�a2)ẑ. We

don't need to consider in ~E the inuence of the time
variation of the vector potential as we are dealing with
a dc current in stationary wires, so that @ ~A=@t = 0 ev-

erywhere. We can then write ~E = �r�. As we have a
constant electric �eld in each wire, this implies that the
potential is constant over each cross section and a linear
function of z. In this work we consider a symmetrical
situation for the potentials so that in the left wire the
current ows from the potential �B at z = �`=2 to �A
at z = `=2 and returns in the right wire from ��A at
z = `=2 to ��B at z = �`=2, Figure 1 We can then
write

c

�L(z) =
�A � �B

`
z +

�A + �B
2

=
I

g�a2
z +

�A + �B
2

; (1)

d

�R(z) = ��L(z) : (2)

In these equations �L(z) and �R(z) are the potentials
as a function of z over the cross-section of the left and
right conductors, respectively.

Figure 1. Two parallel wires of radii a separated by a dis-
tance R. The left wire carries a constant current I along
the positive z direction while the right one carries the re-
turn current I along the negative z direction.

In this work we are neglecting the small Hall e�ect
due to the poloidal magnetic �eld generated by these
currents. This e�ect creates a redistribution of the cur-
rent density within the wires, and modi�es the surface
charges also. As these are usually small e�ects, they
will not be considered here.

We now �nd the potential in space supposing air
outside the conductors. As the conductors are straight
and the boundary conditions (the potentials over the
surface of the conductors) are linear functions of z,
the same must be valid everywhere, [7]. That is,
� = (Az + B)f(x; y), where A and B are constants
and f(x; y) is a function of x and y. This function can
be found by the method of images imposing a constant
potential �o over the left wire and ��o over the right
one, [8, Section 2.1]. The �nal solution for � and ~E
satisfying the given boundary conditions, valid for the
region outside the wires, is given by

c

�(x; y; z) = �
�
�A � �B

`
z +

�A + �B
2

�
1

2 ln R�
p
R2�4a2
2a

� ln
(x�pR2 � 4a2=2)2 + y2

(x+
p
R2 � 4a2=2)2 + y2

; (3)

~E = �
�
�A � �B

`
z +

�A + �B
2

� p
R2 � 4a2

ln R+
p
R2�4a2
2a
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� (x2 � y2 + a2 � R2=4)x̂+ 2xyŷ

x4 + y4 +R4=16 + a4 + 2x2y2 �R2x2=2 + 2a2x2 + R2y2=2� 2a2y2 �R2a2=2

+
�A � �B

`

1

2 ln R�
p
R2�4a2
2a

ln
(x�pR2 � 4a2=2)2 + y2

(x+
p
R2 � 4a2=2)2 + y2

ẑ : (4)

The equipotentials at z = 0 are plotted in Fig. 2.
It is also relevant to express these results in cylindrical coordinates (�; '; z) centered on the left and right

wires, see Fig. 3. For the left wire this can be accomplished replacing x by �L cos'L � R=2, y by �L sin'L, x̂ by
�̂L cos'L � '̂L sin'L and ŷ = �̂L sin'L + '̂L cos'L, yielding

�(�L; 'L; z) = �
�
�A � �B

`
z +

�A + �B
2

�
1

2 ln R�
p
R2�4a2
2a

� ln

s
�2L � �L cos'L(R+

p
R2 � 4a2) + R2=2� a2 + R

p
R2 � 4a2=2

�2L � �L cos'L(R �pR2 � 4a2) +R2=2� a2 �R
p
R2 � 4a2=2

; (5)

~E = �
�
�A � �B

`
z +

�A + �B
2

� p
R2 � 4a2

ln R+
p
R2�4a2
2a

� (�2L cos'L � �LR+ a2 cos'L)�̂L + sin'L(�2L � a2)'̂L

�4L � 2�3LR cos'L + �2LR
2 + a4 + 2�2La

2(cos2 'L � sin2'L) � 2�LRa2 cos'L

+
�A � �B

`

1

2 ln R�
p
R2�4a2
2a

ẑ

� ln
�2L � �L cos'L(R+

p
R2 � 4a2) +R2=2� a2 +R

p
R2 � 4a2=2

�2L � �L cos'L(R�
p
R2 � 4a2) + R2=2� a2 � R

p
R2 � 4a2=2

: (6)

The density of surface charges over the left and right wires, �L and �R, can then be found by "o = 8:85 �
10�12 C2N�1m�2 times the radial component of the electric �eld over the surface of each cylinder, yielding ("o is
the vacuum permittivity):

�L =

�
�A � �B

`
z +

�A + �B
2

�
"o
p
R2 � 4a2

2a ln R+
p
R2�4a2
2a

1

R=2� a cos'L
; (7)

�R = �
�
�A � �B

`
z +

�A + �B
2

�
"o
p
R2 � 4a2

2a ln R+
p
R2�4a2
2a

1

R=2 + a cos'R
; (8)

In order to check our results we calculated the potential � inside each wire and in space beginning with these
surface charges densities and utilizing

�(x; y; z) =
1

4�"o

 Z `=2

z0=�`=2

Z 2�

'0

L
=0

�L('
0
L)ad'

0
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0
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+

Z `=2

z0=�`=2

Z 2�

'0

R
=0

�R('0R)ad'
0
Rdz

0

j~r � ~r 0j

!
: (9)
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Here we integrate over the surfaces of the left and right
cylinders, SL and SR, respectively. We could then check
our results assuming the correctness of the method of
images for the electrostatic problem and utilizing the
approximations `� j~rj and `� R=2 > a.

The magnetic �eld of each wire surrounded by air
can be easily obtained by the circuital law

H
C
~B � d~̀=

�oIC , where IC is the current owing through the closed
circuit C and �o = 4� � 10�7kgmC�2 is the vacuum
permeability. For a long straight wire of radius a carry-
ing a total current I we obtain: B(� < a) = �oI�=2�a

2

and B(� > a) = �oI=2��, both in the poloidal direc-
tion. Adding the magnetic �eld of both wires taking
into account that they carry currents in opposite direc-
tions yields the magnetic �eld anywhere in space (in
this approximation that `� r).

Figure 2. Equipotentials in the plane z = 0 given by Eq.
(3).

Figure 3. Left (L) and right (R) cylindrical coordinates for
the left and right wires, respectively.

III Discussion and Conclusions

The �rst aspect to be discussed here is the qualitative
interpretation of these results. In all this Section we

will assume �A = 0 in order to simplify the analysis.
The distribution of surface charges for a given z is sim-
ilar to the distribution of charges in the electrostatic
problem given the potentials �o and ��o at the left
and right wires, without current. That is, �L('L) > 0
for any 'L and its maximum value is at 'L = 0. The
density of surface charges at the right wire, �R, has the
same behaviour of �L with an overall change of sign,
with its maximummagnitude happening at 'R = �. A
qualitative plot of the surface charges at z = 0 is given
in Fig. 4. A quantitative plot of �L is given in Fig.
5 supposing R=2a = 10=3 and normalizing the surface
charge density by the value of �L at 'L = �. It should
also be remarked that for a �xed 'L the surface den-
sity decreases linearly from z = �`=2 to z = `=2, the
opposite happening with �R for a �xed 'R.

Figure 4. Qualitative distribution of surface charges for the
two parallel wires at z = 0.

Figure 5. Surface charge density at the left wire in z = 0 for
R=2a = 10=3 as a function of 'L, normalized by its value
at 'L = �: �L('L)=�L(�)� 'L.

We can integrate the surface charges over the pe-
riphery of each wire obtaining the integrated charge
per unit length �(z) as:

c

�L(z) =

Z 2�

'L=0

a�L('L)d'L

= � 2�"o

ln ((R�pR2 � 4a2)=2a)

�
�A � �B

`
z +

�A + �B
2

�
: (10)

�R(z) = �
Z 2�

'R=0

a�R('R)d'R = ��L(z) : (11)
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One important aspect to discuss is the experimen-
tal relevance of these surface charges in terms of forces.
That is, as the wires have a net charge in each section,
there will be an electrostatic force acting on them. We
can then compare this force with the magnetic one.
This last one is given essentially by (force per unit
length)

dFM
dz

=
�oI

2

2�R
; (12)

where we are supposing R=2 � a. We now calculate
the electric force per unit length on the left wire in-
tegrating the force over its periphery. We consider a
typical region in the middle of the wire, around z = 0,
and once more suppose R=2� a:

c

d~FE
dz

=

Z 2�

'L=0

a�L('L)~E(�L = a; 'L; z = 0)d'L � �"o�
2
B

ln2R=a

�
x̂

R
+
ẑ

`

�
: (13)

d

From Eqs. (12) and (13) the ratio of the magnetic
to the radial electric force is given by (with Ohm's law
�2B=I

2 = R2
o = (`=g�a2)2, Ro being the resistance of

each wire):

FM
FE

� �o="o
2R2

o

ln2
R

a
: (14)

As �o="o = 1:4� 105
2 this ratio will be usually many
orders of magnitude greater than 1. This would be of
the order of 1 when Ro � 370
 (supposing lnR=a � 1).
This is a very large resistance for homogeneous wires.

In order to compare this force with the magnetic
one we suppose typical copper wires of conductivities
g = 5:7 � 107m�1
�1, lengths ` = 1m, separated by
a distance R = 6mm and diameters 2a = 1mm. This
means that by Ohm's law �2B=I

2 = R2
o � 5� 10�4
2.

With these values the ratio of the longitudinal electric
force to the magnetic one is of the order of 7 � 10�11,
while the ratio of the radial electric force to the mag-
netic one is of the order of 1� 10�8. That is, the elec-
tric force between the wires due to these surface charges
is typically 10�8 times smaller than the magnetic one.
This shows that we can usually neglect these electric
forces.

Despite this fact it should be remarked that while
the magnetic force is repulsive in this situation (paral-
lel wires carrying currents in opposite directions), the
radial electric force is attractive, as we can see from the
charges of Fig. 4.

It must be stressed that the surface charges are es-
sential for understanding the origins of the electric �eld
driving the current. The role of the battery is to sep-
arate the charges and keep this distribution of charges
�xed in time for dc currents. But what creates the elec-
tric �eld inside and outside the wires is not the battery
but these surface charges. Moreover, this external elec-
tric �eld can also be seen and measured if we have a di-
electric material which can be polarized by the electric
�eld, but which is not inuenced by the magnetic �eld.

This was the technique employed by Je�menko, [5] and
[6, Section 9-6 and Plate 6]. In his experiment he ob-
tained the lines of electric �eld utilizing grass seeds, in
a similar way that we obtain the lines of magnetic �eld
utilizing iron �llings. The situation described in this
paper is very similar to the experiment performed by
Je�menko whose results are presented in Fig. 5 of [5] or
in Plate 6 and Fig. 9.13 of [6]. We can compare his ex-
periment with our theoretical calculations by plotting
the equipotentials obtained here. Je�menko did not
give the dimensions of his experiment but from Fig. 5
of [5] or from Plate 6 of [6] we can estimate the ratio
of the important distances as R=2a � 10=3, `=R � 5=2
and `=2a � 50=6. With these values and 'A = 0 and
'B = 1V we obtain the equipotentials given by Eq. (3)
at y = 0, Fig. 6.

Figure 6. Equipotentials in the plane y = 0 given by Eqs.
(1), (2) and (3) with the dimensions corresponding to Je�-
menko's experiment, from z = �`=2 to `=2.

These lines can also be interpreted as lines of Poynt-
ing �eld ~S = ~E � ~B=�o, where ~B is the magnetic �eld.
That is, they may also represent the energy ow from
the battery (at z = �`=2) to the wires given by Poynt-
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ing vector throughout the space. This has been pointed
out in general by Heald in his important work, [1].

The lines of electric �eld orthogonal to the equipo-
tentials can be obtained by the procedure described in
Sommerfeld's book, [9, p. 128]. We are looking for a
function �(x; y = 0; z) such that

r�(x; 0; z) � r�(x; 0; z) = 0 : (15)

The equipotential lines can be written as z1(x) =
K1, where K1 is a constant (for each constant we have
a di�erent equipotential line). Analogously, the lines
of electric force will be given by z2(x) = K2, where
K2 is another constant (for each K2 we have a dif-
ferent line of electric force). From Eq. (15) we get
dz2=dx = �1=(dz1=dx) = (@�=@z)=(@�=@x). Integrat-
ing this equation we obtain �(x; 0; z). This yields the
following solutions in the plane y = 0 outside the wires:

�out(x; 0; z) = �2Bz +A

�
x(x2 � 3x2o)

6xo
ln

(x� xo)2

(x+ xo)2

+
x2o
3
ln[(x� xo)

2(x+ xo)
2]� x3=3� z2

�
; (16)

where A = (�A � �B)=`, B = (�A + �B)=2 and
xo =

p
R2 � 4a2=2.

The lines of electric �eld inside the left and right
wires can be written as, respectively:

�L(x; 0; z) = �Ax ; (17)

�R(x; 0; z) = Ax ; (18)

The lines of electric �eld are then plotted impos-
ing �(x; 0; z) = constant. With Je�menko's dimensions
for R, a and ` we obtain the lines of force by these
equations as given in Fig. 7. This numerical plot is ex-
tremely similar to Je�menko's experiment as presented
in Fig. 5 of [5] or in Plate 6 of [6]. Although our cal-
culation is strictly valid only for r � `, our numerical
plot goes from z = �`=2 to `=2. As the result is in very
good agreement with Je�menko's experiment, we con-
clude that the exact boundary conditions at z = �`=2
are not very important in this particular con�guration.
Our work might be considered as a complementation
of Je�menko's one, as he realized the experiment but
made no theoretical calculations for the transmission
line considering straight cylindrical wires. The only cal-
cuations he presented in [6, Section 9-6] were restricted
to the current owing over one surface of a resistive
capacitor plate and returning through the other. He
didn't consider twin-leads nor cylindrical conductors.

Figure 7. Lines of electric �eld in the plane y = 0 given by
Eqs. (16), (17) and (18) with the dimensions corresponding
to Je�menko's experiment, from z = �`=2 to `=2.

We can also estimate the ratio of the radial compo-
nent of the electric �eld to the axial one just outside
the wire. We consider the left wire at three di�erent
heights: z = �`=2, z = 0 and z = `=2. The axial com-
ponent Ez is constant over the cross section and does
not depend on z. On the other hand the radial com-
ponent Ex is a linear function of z and also depends
on 'L. In this comparison we consider 'L = 0. With
these values and Je�menko's data in Eq. (4) we ob-
tain Ex=Ez � 12 at z = �`=2, 6 at z = 0 and 0 at
z = `=2. That is, the radial component of the electric
�eld just outside the wire is typically one order of mag-
nitude larger than the axial electric �eld responsible
for the current. Je�menko's experiment gives a clear
con�rmation of this fact.
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