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We examine Gamow's method for calculating the decay rate of a wave function initially located
within a potential well. Using elementary techniques, we examine a very simple, exactly solvable
model, in order to show why it is so reliable for calculating decay rates, in spite of its conceptual
problems. We also discuss the regime of validity of the exponential decay law.

I Introduction

Complex-energy \eigenfunctions" made their d�ebut in
Quantum Mechanics through the hands of Gamow, in
the theory of alpha-decay [1]. Gamow imposed an \out-
going wave boundary condition" on the solutions of the
Schr�odinger equation for an alpha-particle trapped in
the nucleus. Since there is only an outgoing ux of
alpha-particles, the wavefunction  (r; t) must behave
far from the nucleus as (for simplicity, we consider an
s-wave, and use units such that ~ = 2m = 1)

 (r; t) � e�iEt+ikr

r
(r !1): (1)

This boundary condition, together with the require-
ment of �niteness of the wave function at the origin,
gives rise to a quantization condition on the values of k
(and, therefore, on the values of E = k2). It turns out
that such values are complex:

kn = �n � iKn=2; En = �n � i�n=2; (2)

and so it follows that

j n(r; t)j2 � e��nt+Knr

r2
(r !1): (3)

Thus, if �n > 0, the probability of �nding the alpha-
particle in the nucleus decays exponentially in time.
The lifetime of the nucleus is then given by �n = 1=�n,
and the energy of the emitted alpha-particle by �n.

Although very natural, this interpretation su�ers
from some di�culties. How can the energy, which is
an observable quantity, be complex? (In other words,
how can the Hamiltonian, which is a Hermitean oper-
ator, have complex eigenvalues?) Also, these \eigen-
functions" are not normalizable, since �n positive im-
plies Kn positive and so, according to (3), j n(r; t)j2
diverges exponentially with r.

In spite of such problems (which, in fact, are closely
related), it is a fact of life that alpha-decay, as well as
other types of decay, does obey an exponential decay
law and, in many cases, Gamow's method provides a
very good estimate for the decay rate. Why this method
works is a question that has been addressed in the liter-
ature using a variety of techniques [2, 3, 4, 5, 6, 7, 8, 9].
Here we examine this question in a very elementary
way, using techniques that can be found in any stan-
dard quantum mechanics textbook and some rudiments
of complex analysis.

This paper is structured as follows. In Section II,
we show Gamow's method in action for a very simple
potential. Some of the results obtained there are used
in Section III, where we study the time evolution of a
wave packet initially con�ned in the potential well de-
�ned in Section II. This is done with the help of the
propagator, built with the true eigenfunctions (i.e., as-
sociated to real eigenenergies) of the Hamiltonian. As
a bonus, we show that the exponential decay law is not
valid either for very small or for very large times. This
is the content of Section IV, where the region of validity
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of the exponential decay law is roughly delimited.

II Decaying States

In order to exhibit Gamow's method in action, we shall
study the escape of a particle from the potential well
given by:

V (x) =

�
(�=a) �(x� a) for x > 0,
+1 for x < 0.

(4)

(Escape from this potential well was studied in detail
in Refs.[3, 8, 10]. In this section we follow closely the
treatment of Ref.[3].) The positive dimensionless con-
stant � is a measure of the \opacity" of the barrier at
x = a; in the limit � ! 1, the barrier becomes im-
penetrable, and the energy levels inside the well are
quantized. If � is �nite, but large, a particle is not con-
�ned to the well anymore, but it usually stays there for
a long time before it escapes. If � is small, the particle
can easily tunnel through the barrier, and quickly es-
cape from the potential well. Metastability, therefore,
can only be achieved if the barrier is very opaque, i.e.,
� � 1. Since this is the most interesting situation, we
shall assume this to be the case in what follows.

To �nd out how fast the particle escapes from the
potential well, we must solve the Schr�odinger equation

i
@

@t
 (x; t) = � @2

@x2
 (x; t) +

�

a
�(x� a) (x; t): (5)

 (x; t) = exp(�iEt)'(x) is a particular solution of this
equation, provided '(x) satis�es the time-independent
Schr�odinger equation

� d2

dx2
'(x) +

�

a
�(x� a)'(x) = E '(x): (6)

Denoting the regions 0 < x < a and x > a by
the indices 1 and 2, respectively, the corresponding
wave functions 'j(x) (j = 1; 2) satisfy the free-particle
Schr�odinger equation:

� d2

dx2
'j(x) = E 'j(x): (7)

Since the wall at the origin is impenetrable, '1(0) must
be zero; the solution of Eq. (7) which obeys this bound-
ary condition is

'1(x) = A sin kx (k =
p
E ): (8)

To determine '2(x), we follow Gamow's reasoning
[1, 7, 11] and require '2(x) to be an outgoing wave.
Therefore, we select, from the admissible solutions of
Eq. (7),

'2(x) = B eikx: (9)

The wave function must be continuous at x = a, so that
'1(a) = '2(a), or

B

A
= e�ika sin ka: (10)

On the other hand, the derivative of the wave function
has a discontinuity at x = a, which can be determined
by integrating both sides of (6) from a�" to a+", with
"! 0+:

'02(a) � '01(a) =
�

a
'2(a); (11)

from which there follows another relation between A
and B:

B

A
= �ka e

�ika cos ka

� � ika : (12)

Combining (10) and (12), we obtain a quantization con-
dition for k:

ka cotan ka = ��+ ika: (13)

The roots of Eq. (13) are complex and situated in the
half-plane Imk < 0; when �� 1, those which are clos-
est to the origin are given by [3, 8]

kna � n��

1 + �
�i
�n�
�

�2
(n = 1; 2; : : : ;n�� �): (14)

(For each one of these roots, which are located in the
fourth quadrant of the complex k-plane, there is a corre-
sponding one in the third quadrant, given by �k�n. The
latter are associated to \growing states" [3] and play no
role in what follows.) The corresponding eigenenergies
are

En = k2n �
�n�
a

�2
� i 2(n�)

3

(�a)2
: (15)

The imaginary part of En gives rise to an exponential
decay of j n(x; t)j2, with lifetime equal to

�n = 1=�n � (�a)2

4(n�)3
: (16)

Since the corresponding value of B=A is very small
(� n=�), one may be tempted to say that the probabil-
ity of �nding the particle outside the well is negligible in
comparison with the probability of �nding the particle
inside the well. Normalizing  n in such a way that the
latter equals one when t = 0, the probability of �nding
the particle inside the well at time t, if it were in the
n-th decaying state at t = 0, would be

Pn(t) =

Z a

0

j n(x; t)j2 dx = exp(��nt): (17)

The trouble with this interpretation is that Imkn �
�Kn=2 < 0, and so  n(x; t) diverges exponentially as
x!1, since, according to (9),

j n(x; t)j2 = jBnj2 exp(��nt+Knx) (18)

outside the well. Because of this \exponential catas-
trophe", the decaying states are non-normalizible and,
therefore, cannot be accepted as legitimate solutions of
the Schr�odinger equation (although one can �nd in the
literature [12] the assertion that they are \rigorous" so-
lutions of the time-dependent Schr�odinger equation).
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III Time Evolution of a Wave

Packet

We now return to Eq. (7) and write, for the solution in
region 2, instead of (9), the sum of an outgoing plus an
incoming wave:

'2(x) = e�ikx + B eikx: (19)

Continuity of the wave function at x = a implies

A sin ka = e�ika + B eika: (20)

As before, the derivative of the wave function has a dis-
continuity at x = a, given by Eq. (11), from which it
follows, instead of (12),

kA cos ka = �
�
�

a
+ ik

�
e�ika �

�
�

a
� ik

�
B eika:

(21)
Solving (20) and (21) for A and B, we �nd

A(k) = � 2ika

ka+ � eika sin ka
; (22)

B(k) = �ka+ � e�ika sin ka

ka+ � eika sin ka
: (23)

These expressions show a couple of interesting features:

� jBj = 1 for real values of k, implying a zero net
ux of probability through x = a; therefore, un-
like the solution found in the previous section,
there is no loss or accumulation of probability in
the well region.

� jAj � 1 if ka� �, except if k is close to a pole of
A(k), in which case jAj may become very large.

To �nd the poles of A we must solve the equation
A(k)�1 = 0, which, after some algebraic manipulations,
reads

ka cotan ka = �� + ika: (24)

This is the same as Eq. (13)! Is this a coincidence?
In fact, no. According to (22)-(23), A and B have the
same poles; therefore, near a pole both jAj and jBj are

very large, and Eqs. (20) and (21) become equivalent
to Eqs. (10) and (12), respectively. In what follows, we
shall show that the poles of A (and B) play an impor-
tant role in the decay process.

Suppose that at t = 0 the particle is known to be in
the region x < a with probability 1; in other words, its
wave function  (x; 0) is zero outside the well. Then, at
a later time t, the wave function will be is given by

 (x; t) =

Z a

0

G(x; x0; t) (x0; 0) dx0; (25)

where the propagator, G(x; x0; t), can be written as

G(x; x0; t) =

Z
1

0

e�ik
2t'k(x)'

�

k(x
0) dk: (26)

The function 'k(x) is the solution of Eq. (6) corre-
sponding to the energy E = k2:

'k(x) =
1p
2�
�
�
A(k) sin kx for x < a,
e�ikx +B(k) eikx for x > a.

(27)

With this normalization, these functions satisfy the
completeness relation [13]

Z
1

0

'k(x)'
�

k(x
0) dk = �(x� x0): (28)

Eqs. (25){(27) give, for x < a,

 (x; t) =
1

2�

Z
1

0

e�ik
2t �(k) jA(k)j2 sin kx dk; (29)

where

�(k) �
Z a

0

 (x0; 0) sin kx0 dx0: (30)

It is clear that the integral over k is dominated by the
resonances, i.e., the neighborhood of the poles of A(k).

Since, for t > 0, e�ik
2t ! 0 when jkj ! 1 in the

fourth quadrant, one can rotate1 the integration con-
tour by 45o in the clockwise sense (see Fig. 1), thus
obtaining

c

 (x; t) = e�i�=4
Z
1

0

e�k
2t f(e�i�=4 k; x) dk+

1X
n=1

C(kn; x) e
�ik2

n
t; (31)

d

where

f(k; x) � 1

2�
�(k) jA(k)j2 sin kx (32)

and

C(kn; x) = �2�i lim
k!kn

(k � kn) f(k; x): (33)

1For this to be possible �(k) must be an analytic function of k, but this can be shown to be the case [14] if  (x0; 0) is continuous in
[0; a].
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The sum in (31) takes into account the poles of A(k)
which are situated in the region ��=4 < arg k < 0, and
it corresponds to an expansion in Gamow states (for
x < a).

Let us put aside, for a moment, the integral in (31)
(it will be discussed in the next section). Then, the
\nonescape" probability (i.e., the probability of �nding
the particle inside the well) is given by

c

P (t) =

Z a

0

j (x; t)j2 dx �
1X
n=1

cn e
��nt + interference terms; (34)

d

where cn �
R a
0
jC(kn; x)j2 dx. For � � 1, the interfer-

ence terms are usually negligible, for kn � n�=a and,
therefore, the functions C(kn; x) / sin knx are approxi-
mately orthogonal. On the other hand, since the decay
rate �n of the n-th decaying mode is a rapidly increas-
ing function of n (�n � n3 �1), the decay becomes al-
most a pure exponential one when �1t & 1. The system,
therefore, \loses memory" of the initial state.

Figura. 1. Complex k-plane. The poles of A(k) are repre-
sented by the small circles. Those in the fourth quadrant
give rise to the sum over decaying modes in Eq. (31) when
one rotates the integration contour of Eq. (29) | the posi-
tive real semi-axis | by 45o in the clockwise sense (dashed
line).

Finally, let us note that no exponential catastrophe
occurs with  (x; t). In fact, one can easily show, using

(25), (26), (28) and the orthogonality of the eigenfunc-
tions 'k(x), that

Z
1

0

j (x; t)j2 dx =
Z
1

0

j (x; 0)j2 dx; (35)

so that an exponential growth of j (x; t)j2 is completely
ruled out.

IV Breakdown of Exponential

Decay

In order to derive expression (34) for the nonescape
probability, we had to neglect the �rst term on the right
hand side of (31). In this section we show that such ap-
proximation is not valid either for very small or for very
large times. That it cannot be valid for very small t fol-
lows from the fact that initially the decay is slower than
exponential [4, 5]. This can be easily proved with the
help of the continuity equation [15]:

d

dt
P (t) = � ~

m
Im

�
 (x; t)

@

@x
 �(x; t)

�
x=a

: (36)

Since, by hypothesis,  (a; 0) = 0, it follows that
dP=dt = 0 when t = 0, whereas for the expression (34)
one has dP=dt � �P cn�n < 0 at t = 0.

On the other hand, the exponential decay does not
last forever. After a su�ciently long time, it obeys a
power law [2, 3, 4, 5, 8, 16]. To see this, note that the
integral in (31), which we shall denote here by I(x; t),
is dominated by small values of k when t!1, and so
can it be approximated by

c

I(x; t) � e�i�=4

2�
�0(0) jA(0)j2 x

Z
1

0

k2 e�k
2t dk � a3=2 x

�2 t3=2
(37)

d

Therefore, the nonescape probability behaves
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asymptotically as2

P (t) �
Z a

0

jI(x; t)j2 dx � a6

�4t3
: (38)

Comparing (38) with (34), and using (16), one �nds
that they become comparable in magnitude when

e�t=�1 � a6

�4t3
� ��10

��1
t

�3
; (39)

or, since �� 1, when

t

�1
� 10 ln�: (40)

In practice, when the decay begins to obey a power
law the nonescape probability is so small (� ��10) that
it should be very di�cult to observe deviations from
exponential decay. (On the other hand, experimental
evidence for non-exponential decay at small times has
been reported recently [18].)

In closing this section, we would like to remark that
the breakdown of the exponential decay law for either
small or large times is not a peculiar feature of the po-
tential (4). It is possible to show that an exponential
decay cannot last forever if the Hamiltonian is bounded
below [19, 4, 5], and cannot occur for very small times
if, besides that, the energy expectation value of the ini-
tial state is �nite [4, 5] | conditions which certainly
must be satis�ed by any realistic Hamiltonian or state.

V Conclusion

In this paper we showed that decaying states, although
plagued by the exponential catastrophe, give a fairly
good description of the decay of a metastable state,
provided some conditions are satis�ed. In fact, the
main objective of this paper was to show that one can

compute the decay rate solving the time independent
Schr�odinger equation subject to the \outgoing wave
boundary condition." This is far from being a triv-
ial result, since the corresponding eigenstates are un-
physical. The e�ectiveness of the decaying states in
describing the decay may be understood by noticing [6]
that they are good approximate solutions to the time-
dependent Schr�odinger equation, although nonuniform
ones (i.e., they are not valid in the entire range of values
of t and x).
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