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We present a simple recipe to construct the Green's function associated with a Hamiltonian of the
formH = H0+��(x), where H0 is a Hamiltonian for which the associated Green's function is known.
We apply this result to the case in which H0 is the Hamiltonian of a free particle in D dimensions.
Field theoretic concepts such as regularization, renormalization, dimensional transmutation and
triviality are introduced naturally in order to deal with an in�nity which shows up in the formal
expression of the Green's function for D � 2:

I Introduction

Quantum electrodynamics (QED), like most quantum

�eld theories, is plagued with in�nities. It was a major

accomplishment when Schwinger, Feynman, Tomonaga

and Dyson [1] showed how to extract meaningful in-

formation from QED, in spite of such in�nities. In a

renormalizable theory, like QED, such in�nities can be

dealt with in a two-step process: (i) its short distance

(or high energy) behavior is modi�ed with the intro-

duction of a cut-o�, which gives rise to �nite answers,

and (ii) the parameters of the theory are rede�ned in

order to absorb the divergences which appear when the

cut-o� is removed. These steps are the regularization

and renormalization of the theory, respectively.

In�nities of this sort also occur in non-relativistic

quantum mechanics if the potential is singular enough,

for instance the Dirac delta-function potential in two or

more dimensions [2-9] and the Aharonov-Bohm poten-

tial [7,9]. This provides a unique framework in which

the important concepts of regularization and renormal-

ization can be explained free from the technical com-

plications usually found in quantum �eld theory.

In this paper we study the Dirac delta-function po-

tential. This problem has been previously studied in

the literature using a variety of techniques: exact solu-

tions of the Schr�odinger equation [4,5] (or its integral

version, the Lippman-Schwinger equation [6-8]), the

self-adjoint extension method [2,3], and Green's func-

tion techniques [9,10]. Here we use the latter, which

have a closer resemblance with the techniques usually

employed in quantum �eld theory. Besides that, it is

very easy to �nd the Green's function associated with

a Hamiltonian of the form H = H0 + ��(x) when the

Green's function associated with H0 is known; this is

the content of Sec. II. In Sec. III, we apply this result

to the case in which H0 is the Hamiltonian of a free

particle in D dimensions. For D � 2 an in�nity shows

up in the formal expression of the Green's function. In

the two- and three-dimensional cases, this in�nity can

be removed in a consistent way, in what amounts to be

a simple exercise in regularization and renormalization.

Finally, in the Appendix we show how the technique,

presented in Sec. II, can be adapted to the calculation

of the scattering amplitude.

II Green's functions for delta-

function potentials

The Green's function G(E;x;y) associated with the

Hamiltonian H is the solution of the di�erential equa-

tion

(E �H)G(E;x;y) = �(x � y) (1)

satisfying the boundary condition

lim
jx�yj!1

G(E;x;y) = 0: (2)

Here x and y are points in D-dimensional Eu-

clidean space and, correspondingly, �(x� y) is a D-

dimensional Dirac delta-function.
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One can use the completeness of the eigenfunctions

of H to write the solution of (1) as

G(E;x;y) =
X
n

 n(x) �n(y)
E � En

; (3)

where En and  n are the eigenvalues and eigenfunctions

of H, respectively. Now, let suppose that the Hamilto-

nian can be written as the sum of two terms,

H = H0 + ��(x); (4)

and that the Green's function G0(E;x;y) associated

with H0 is known. Then, as we shall show below, there

is a very simple recipe to write G in terms of G0.

Let us rewite Eq.(1) in integral form [11] (for sim-

plicity we omit the dependence on E):

G(x;y) = G0(x;y) +

Z
dDz G0(x; z)��(z)G(z;y)

= G0(x;y) + �G0(x;0)G(0;y): (5)

Now we put x = 0 in the expression above and solve it

for G(0;y); then, inserting the result in (5), we obtain

an explicit expression for the Green's function associ-

ated with H:

G(x;y) = G0(x;y) +
G0(x;0)G0(0;y)

1
�
�G0(0;0)

: (6)

It is worth to note that successive applications of this

procedure allows one to �nd the Green's function for a

potential with an arbitrary number of delta-functions.

III Bound states and renormal-

ization

In this section, we shall investigate the bound states

of the Hamiltonian (4), with H0 the Hamiltonian of a

free particle in D dimensions (we use units such that

~ = 2m = 1) :

H0 = �r2 � �
DX
j=1

@2

@x2j
: (7)

It follows from (3) that the energy levels of bound states

are given by the real poles of the Green's function.

Since there are no bound states in the free particle

problem, such poles can only appear as zeros of the

denominator of the second term on the r.h.s. of Eq.(6).

In order to obtain G0(E;x;y), we Fourier transform

Eq. (1) (with H replaced with H0), thus �nding

G0(E;x;y) =

Z
dDk

(2�)D
eik�(x�y)

E � k2 : (8)

Therefore, in order to �nd the energy of the bound

states we must solve the equation (K2 � �E)
1

�
+

Z
dDk

(2�)D
1

k2 +K2
= 0: (9)

In what follows we shall examine Eq. (9) for di�erent

values of D.

A �D = 1

Performing the integral in Eq. (9), we �ndZ 1

�1

dk

2�

1

k2 +K2
=

1

2K
: (10)

Then, solving Eq.(9) for K, we obtain

K = ��
2

and EB = ��
2

4
: (11)

Note that � must be negative, for K was implicitly

taken positive in Eq. (10). Physically, this means that

the potential must be attractive in order to create a

bound state.

For the sake of comparison, we present an alter-

native more elementary derivation of this result. The

time-independent Schr�odinger equation for a particle in

the potential V (x) = ��(x) is

� d2

dx2
 (x) + ��(x) (x) = E (x): (12)

For x 6= 0 this equation is that of a free particle; solv-

ing it for E = �K2 < 0 and imposing continuity at the

origin, we �nd

 (x) = Ae�Kjxj : (13)

A restriction on the possible values of K is obtained by

integrating Eq. (12) from �� to +� and letting �! 0+:

� 0(0+) +  0(0�) + � (0) = 0; (14)

from which follows that K = ��=2: Therefore, both
methods give the same results.

B �D = 2

In this case, a problem occurs that is absent in

D = 1 : G0(E;0;0) is (logarithmically) divergent. To

deal with this problem, we must introduce a cut-o� in

the integral which appears in Eq. (9) and absorb the

dependence on the cuto� in a rede�nition of the param-

eters of the theory (in this case, the \coupling constant"

�). In quantum �eld theory this procedure is known as
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regularization and renormalization. Let us demonstrate

it explicitly. The �rst step is to regularize the integral:

Z
d2k

(2�)2
1

k2 +K2
=

1

2�

Z �

0

kdk

k2 +K2

=
1

4�
ln

�
�2 +K2

K2

�
: (15)

The next step is to absorb the divergent part of the

above result in a rede�nition of the coupling constant:

1

�R
� 1

�
+

1

4�
ln

�
�2

�2

�
(16)

(The parameter � is arbitrary, and is introduced in or-

der to keep the argument of the logarithm dimensi-

onless.) We now take the limit � ! 1, varying the

bare coupling constant � in such a way that the renor-

malized coupling constant �R remains �nite; Eq. (9)

then becomes

1

�R
� 1

4�
ln

�
K2

�2

�
: (17)

Solving this equation for K2 we �nd the energy of the

bound state:

EB = �K2 = ��2 exp
�
4�

�R

�
: (18)

A curious thing happens here: although the Hamil-

tonian contains only one parameter (�), we have ob-

tained an energy (EB) depending on two parameters

(�R and �). However, this doubling of parameters is

illusory. In fact, it is possible to show that the Green's

function depends on a sole parameter (besides E, x and

y, of course). To see this, let us write the denominator

of the second term on the r.h.s. of Eq. (6) in regularized

form:

1

�
�G0(E;0;0) =

1

�
+

1

2�

Z �

0

kdk

k2 + E

=
1

�
+

1

4�
ln

�
�2 + E

�E
�
: (19)

On the other hand, according to Eqs. (16)-(18), ��1 =
�(1=4�) ln(��2=EB); substituting this in the expres-

sion above and taking the limit �!1, we obtain

1

�
� G0(E;0;0) = � 1

4�
ln

�
E

EB

�
: (20)

This is an instance of the so-called dimensional

transmutation [12]. Having started with a Hamiltonian

containing only dimensionless parameters (in this case,

the coupling constant �), we ended up with a theory

containing a dimensional parameter (EB). This hap-

pens because during the renormalization process we had

to introduce the dimensionful parameter �, thus break-

ing the scale invariance of the theory.

C �D = 3

As in the case D = 2, G0(E;0;0) is divergent, and

so the bare Green's function, given by Eq. (6), is ill-

de�ned. To deal with this problem, we proceed as in the

previous subsection: we regularize the integral which

appears in Eq. (9),

Z
d3k

(2�)3
1

k2 +K2
=

1

2�2

Z �

0

k2dk

k2 +K2

=
1

2�2

�
��K arctan

�
�

K

��
;

(21)

and absorb the divergent part of this result in a rede�-

nition of the coupling constant,

1

�R
� 1

�
+

�

2�2
: (22)

Taking the limit � ! 1 in Eq. (9) while keeping �R
�xed, we obtain

1

�R
� K

4�
= 0; (23)

from which it follows that

K =
4�

�R
and EB = �

�
4�

�R

�2
: (24)

Here too we can eliminate all reference to �R in favor of

EB, the energy of the bound state. In fact, as a simple

calculation shows, the denominator of the second term

on the r.h.s. of Eq. (6) can be rewritten as

1

�
� G0(E;0;0) =

p�EB �
p�E

4�
: (25)

D �D � 4

Let us now consider D = 4. In this case, the regu-

larized form of the integral in Eq.(9) is

1

8�2

Z �

0

k3dk

k2 +K2
=

1

16�2

�
�2 �K2 ln

�
�2 +K2

K2

��
:

(26)

The quadratically divergent term �2=16�2 may be ab-

sorbed in a rede�nition of the coupling constant, sim-

ilar to (16) and (22). However, the second term on
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the r.h.s., which is also divergent, cannot be eliminated

this way, as it is intrinsically dependent on K. The

same problem occurs for D > 4. This is part of Fried-

man's theorem [13]: it is not possible to de�ne a contact

(i.e., zero-range) potential in more than three dimen-

sions possessing bound states with �nite energy. To

present the other piece of that theorem, let us note

that in order that �R be �nite (in D = 2 and 3), �

must tend to 0� when the cut-o� is removed [see Eqs.

(16) and (22)]. On the other hand, if one insists to keep

� �nite, then one of these two alternatives will follow:

(i) if � < 0, the Hamiltonian is unbounded from below

(the energy of the bound state depends on the cut-o�

�, and tends to �1 when � ! 1), or (ii) if � > 0,

there is no way to avoid the denominator of the sec-

ond term on the r.h.s. of Eq. (6) of diverging, and so

the Green's function is the same as that in the absence

of the potential.1 This is precisely the other piece of

Friedman's theorem: a repulsive delta-function poten-

tial in more than one dimension does not scatter, and

so it is said to be trivial.
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Appendix A

Here we show how to obtain scattering amplitudes

for a Dirac delta-function potential. First let us recall

that for positive energies E = k2 the Schr�odinger equa-

tion is equivalent to the Lippman-Schwinger equation

 (x) =  0(x) +

Z
dDx0GR

0 (x;x
0)V (x0) (x0); (A1)

where  0 is a solution of the free Schr�odinger equation

and GR
0 (x;x

0) � G0(E + i�;x;x0) is the free retarded

Green's function. For V (x0) = ��(x0); Eq. (A1) gives

 (x) =  0(x) + �GR
0 (x;0) (0): (A2)

Now we put x = 0 in this expression and solve it for

 (0); inserting the result in (A2), we obtain

 (x) =  0(x) +
GR
0 (x;0) 0(0)
1
�
� GR

0 (0;0)
: (A3)

Note that for two and three dimensions the denomina-

tor of this term is divergent, but it becomes �nite after

renormalization.

From the asymptotic behavior of this expression as

r � jxj ! 1 one can extract the scattering amplitude.

As an example, let us consider the three-dimensional

scattering problem. In this case, the free Green's func-

tion is given by

G0(E + i�;x;x0) = �e
i
p
Ejx�x0j

4�jx� x0j : (A4)

Substituting this expression and Eq. (25) in Eq. (A3),

taking  0(x) = exp(ikz) (which represents a particle

moving along the positive z direction), and comparing

the result with the asymptotic expression of the wave

function,

 (x) � eikz + f(k; �; �)
eikr

r
(r!1); (A5)

we �nd the following expression for the scattering am-

plitude:

f(k; �; �) = � 1p�EB � ik
: (A6)

As expected, the scattering is isotropic, since only the

s-waves \see" the zero-range potential located at the

origin.
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