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Di�erent aspects of the stability and instability concepts in Classical Mechanics are reviewed. It is
also commented upon some speci�c points not usually considered in textbooks on Mechanics. The
background motivation is the solar system stability question and it is also included a discussion of
the KAM theorem. It is stressed the concepts instead of applications.

Atrav�es de um pequeno passeio pela Mecânica Cl�assica s~ao discutidos v�arios aspectos dos conceitos
gerais de estabilidade e instabilidade. Aproveita-se a oportunidade para tecer coment�arios sobre
pontos espec���cos normalmente n~ao abordados em livros-texto de Mecânica. Toma-se como pano de
fundo a quest~ao da estabilidade do sistema solar e �naliza-se abordando o teorema KAM. Privilegia-
se a discuss~ao de conceitos (com uma roupagem matem�atica) em detrimento �as aplica�c~oes diretas.

I Introduction

From a very broad point of view stability is the conser-

vation of a given type of behavior when there is only

moderate changes in the underlying conditions. Here

we aim at reviewing some important stability concepts

in Classical Mechanics of particles under a force �eld

generated by a potential U (q), where q denotes the N

generalized position coordinates q = (q1; � � � ; qN); N is

the number of degrees of freedom (d.f.) of the system.

We think of stability for time going to in�nity and ge-

neral references for what follows are [1, 2, 3, 8, 9, 10,

12, 14, 17, 19].

Some concepts like orbits and vector �elds will

be freely used; we think their intuitive meanings are

enough on �rst reading this note, which should be con-

sidered just an introduction and (hopefully) motivation

to further studies. With con�dence, at present it has

become important a modern approach to this veteran

subject.

We shall account for some modern aspects of the

subject that are relevant for both Physics and Mat-

hematics. We begin with Newton's Second Law and

some pertinent comments. Then we discuss two no-

tions of stability, Lyapunov and Structural Stabilities,

that became key ingredients in the theory of Dynamical

Systems and Di�erential Equations. In order to moti-

vate the consideration of geometric aspects of Mecha-

nics we brie
y discuss the introduction of the concept

of manifold; however our subsequent discussion will be

restricted to the more common spaces IRn.

After reviewing the Hamiltonian formulation of

Classical Mechanics we discuss a theorem by Poincar�e

about return times and call it Poincar�e's Stability. Fi-

nally, we introduce the notion of integrable systems and

discuss their perturbations via the KAM theorem. We

�nish with a series of remarks and also mention some

open problems.

II Newton's Second Law

A basic quantitative step in Mechanics was the formu-

lation of Newton's Second Law

F =
dp

dt
;

where p denotes the momentum vector in cartesian co-

ordinates, i.e., it is just the product of mass and ve-

locity, p = mv. Also at this point Newton has reve-

aled his talent since this formulation (in contrast to

force=mass�acceleration) is adequate for applications

in relativity, for the case of mass variation and for the

inclusion of magnetic �elds.
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This fundamental relation brings out a rather deli-

cate conceptual question: What is force? From New-

ton's Second Law force is the ratio of momentum vari-

ation, but one could argue that we are just renaming

things and instead of calling it momentum variation

we say force. A satisfactory answer to this question is

that we know explicit expressions of forces in important

cases, such as Hooke's harmonic law and gravitational

attraction.

Newton's Second Law is a di�erential equation, so

every tool developed in the theory of Di�erential Equa-

tions could, in principle, be used to investigate the mo-

tion, particularly the stability questions; perhaps most

of these tools were developed due to Newton's Second

Law...

The ancient Greeks thought that it was needed the

presence of a force to keep a particle in motion (I admit

it is not at all clear for me what they called force); but

assuming Newton's Laws of motion, if F = 0 it follows

that the one-particle acceleration (in one-dimension) is

null and denoting the particle position at time t by x(t)

we have

d2x(t)

dt2
= 0 =) x(t) = vt + x(0);

where v is particle's constant velocity (since dv=dt =

F=m = 0). Therefore, since v can be di�erent from

zero, one concludes that it is possible to have motion

with no force at all.

However, we have just skipped one of the main ar-

guments that have led Newton to formulate his famous

Laws, the inertia that had already been veri�ed by Ga-

lileo. Working mainly with slopes, Galileo realized that

when there is little frictional resistance a moving body

travels farther and farther before stopping, and so he

concluded that if there was no friction at all there would

be no change in the body velocity (including speed

and direction). This became Newton's First Law also

known as Law of Inertia. It is worth mentioning that

in his �rst experiments Galileo used his own pulse to

measure time.

Besides presenting his Laws of motion Newton used

them to study important systems, with special empha-

sis on planetary motion. Notice that he has also develo-

ped the Di�erential and Integral Calculus as a tool for

his Second Law! Here we have one of the �rst instances

of uni�cation in Physics, the celestial bodies and the

motion of objects on Earth are governed by the same

rules.

Newton not only found that the planets are attrac-

ted by the sun according to the inverse square of the

distance r between them, but has also deduced that the

elliptic orbits follows from this law, and this was not at

all clear at that time. Since it is very simple, we repro-

duce an argument for the inverse square law for circular

orbits with radius r and period of motion T = 2�r=v,

where v denotes the constant speed of the particle of

mass m. In this case the gravitational force FG equals

the centripetal force Fc = mv2=r, and combining these

two relations with Kepler's Third Law r3=T 2 = K1 one

concludes that FG = K2=r
2 (K1 and K2 are numeric

constants). This inverse square law rules the planetary

motion, which has been the prototype of order for cen-

turies; however, as we shall discuss later on, it still holds

some surprises.

After Newton's celebrated work a period of develop-

ment of quantitative tools for Classical Mechanics has

followed; for instance, some speci�c methods and adap-

tation of Newton's Laws to problems in 
uids, waves

(linear and nonlinear), di�erent kinds of structures and

also new formulations of Newtonian Mechanics, parti-

cularly Lagrangian and Hamiltonian Mechanics, with

major contribution by Euler, Jacobi, Hamilton, La-

grange and Laplace.

The so-called Lagrangian and Hamiltonian equati-

ons can be deduced from variational principles which

have led some people to speculate on metaphysical and

philosophical interpretation of them. One of the main

problems that have arisen was the stability problem,

with particular emphasis on the stability of the solar

system: will our solar system behave as it does today

forever?

On purpose we have been vague in formulating this

question since we have not discussed details of what

we mean by stability and instability. In fact, there are

di�erent notions of stability and one should be aware

of this when formulating his/her questions and conclu-

sions. The main goal of this work is to discuss some

of these notions with perspective to apply them to the

solar system.

III Lyapunov and Structural

Stabilities

The Lyapunov stability refers to stability of a single

known orbit of a system; it is widely used in the theory

of Di�erential Equations and although it is a very na-

tural notion its importance has been overcome by more
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recent concepts. Loosely speaking, an orbit x(t) is Lya-

punov stable if given an arbitrary small error any other

orbit that starts close enough of x(t) keeps its distance

from x(t) less than that error forever. Let's present

its de�nition in a rather general setting of di�erential

equations in IRn.

De�nition 1 Let x(t) be a solution (for t 2 IR) of the

di�erential equation

dx(t)

dt
= f(x)

with f being continuous in IRn. This solution is Lya-

punov stable if for all " > 0 there exists � > 0 such

that any other solution y(t) of this equation such that

jy(0) � x(0)j < � =) jy(t) � x(t)j < " for any t > 0.

A simple example. The null solution x(t) = 0 of the

di�erential equation in IR, dx(t)=dt = �2x(t) is Lya-

punov stable, since all solutions y(t) of this equation

converges (uniformly for initial conditions in compact

neighborhoods of zero) to x(t) for t!1.

Some comments are in order. (i) the continuity as-

sumptions for f is just to guarantee the existence of

solutions of the di�erential equation.

(ii) " plays the role of the error in the informal dis-

cussion above.

(iii) we can get a useful picture of a Lyapunov sta-

ble solution x(t) by considering a tube of radius " with

x(t) at its center, so that any other solution that starts

from a distance less than � from x(0) continues inside

this tube, as depicted in Figure 1.

Figure 1. An illustration of a Lyapunov stable solution
x(t):

(iv) if the condition limt!1 jy(t)�x(t)j = 0 is added

to the above de�nition, then x(t) is said to be asympto-

tically Lyapunov stable; notice the null solution in the

above example is asymptotically stable. As we shall dis-

cuss later on, the Lyapunov asymptotically stable does

not take place in conservative Classical Mechanics.

(v) in general it is not a simple task to verify whet-

her a given solution is Lyapunov stable or not, particu-

larly in the case of our solar system: If one were able

to give a very small perturbation to the position of one

planet, say, would the orbits of all planets, comets, sa-

tellites and asteroids keep very close to their original

orbits?

(vi) we are in position to give a naive de�nition of

\chaotic motion." If the solutions of a system of di�e-

rential equations live in a �nite (compact) region of IRn

in which no orbit is Lyapunov stable, then we say this

is a chaotic region.

It is common to study the stability of orbits via

approximations and series expansions and some rese-

archers (erroneously) claimed to have proved the sta-

bility of the solar system. However, other important

contributions, mainly due to Poincar�e, suggested that

such series were divergent; in 1889 Poincar�e won a prize

from the King of Sweden for his discoveries. At the end

of this article we will comment upon the main roots of

such divergences while discussing the KAM theorem.

A broad discussion about periodic orbits had also

taken place at that time. Even today many works in

the physical and mathematical literature are concerned

with the problem of existence and stability of periodic

orbits of di�erential equations. Although we are not

going to discuss these problems here, we would like to

let a question to the reader: Why is it important to

study periodic orbits?

With the seemingly failure of series convergence in

Celestial Mechanics, Poincar�e introduced the qualita-

tive study of di�erential equations with new mathe-

matical ideas. These ideas became a turning point in

Mathematics and led to the development of Di�erential

Topology and Geometry, and can be compared to New-

ton's development of Calculus. Many methods applied

nowadays in Classical Mechanics, and di�erential equa-

tions in general, consist of re�nements of Poincar�e's

ideas.

The notion of manifold is a generalization of two-

dimensional surfaces, like a sphere and a torus, and

is an important concept in Mathematics. There are
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several reasons to consider manifolds in the study of

Mechanics:

(j) the di�erentiation depends only on local proper-

ties of the objects under consideration.

(jj) a constant of motion, say energy, in general

restricts the particle motion to a surface.

(jjj) constraints also reduce the motion to surfa-

ces; think of a pendulum in three-dimensional space

whose mass position is restricted to the surface of a

two-dimensional sphere. Another interesting example

is a planar pendulum whose rod is pivot to another

rod, as indicated in Figure 2; the positions of this mass

are restricted to the surface of a two-dimensional torus.

If you pivot n rods we get a systems with motion on

the surface of a n-torus.

Figure 2. A pendulum with two pivoted rods; the positions
of the mass are restricted to the surface of the Torus (�1; �2).

(jv) in many opportunities it is important to distin-

guish the local motion from the global one; for example,

for short period of times the motion of a pendulum ro-

tating with constant angular velocity is similar to the

motion of a particle on a line with constant velocity, but

the pendulum will return to its initial position, while

on the line the particle goes to in�nity.

Poincar�e's geometric approach to di�erential equa-

tions originated another notion of stability, which gives

the 
avor of \global stability." Nowadays it is called

structural stability and was proposed by Andronov e

Pontriaguin in 1937. Denote by X a Cr-vector �eld on

an open set M of IRn (think of a vector �eld as a �eld

of forces); it is possible to introduce a precise notion

of distance between two Cr-vector �elds, but here we

will restrict ourselves to the intuitive notion that two

vector �elds are Cr-close if they, and their respective

derivatives up to order r, are close.

De�nition 2 The 
ow of the vector �eld X is the ap-

plication 'Xt : M ! M such that 'Xt (x) is the unique

solution at time t of the problem (also called orbits)
�

d'(t)
dt

= X('(t))
'(0) = x

De�nition 3 Two vector �elds X and Y on M are to-

pologicaly equivalent if there exists a homeomorphism

h :M  - such that

h � 'Xt = 'Yt � h;

for all t.

Recall that a homeomorphism is a continuous bijec-

tive application with continuous inverse. Notice that

we can talk about vector �elds or solutions of the cor-

responding di�erential equations. In case X and Y are

topologicaly equivalent the above relation means that

h can be thought of a change of coordinates, since it

continuously maps orbits of X onto orbits of Y and

vice-versa: h('Xt (x)) = 'Yt (h(x)). Sometimes it is con-

venient to allow a change in the time scales, but we just

ignore this possibility here.

De�nition 4 A vector �eld X on M is structurally

stable if there exists a neighborhood V of X such that

all vector �eld Y 2 V is topologicaly equivalent to X.

We see that a vector �eld X is structurally stable

if one adds a small perturbation and the structure of

orbits is just slightly deformed. This gives a better idea

of \global stability" and it becomes important to give

conditions for a mechanical system to be structurally

stable; notice that in this case the perturbations must

be restricted to those admissible in Classical Mecha-

nics, for example, they must be volume preserving. Is

the solar system structurally stable?

IV Hamilton's Equations and

Poincar�e Stability

In the previous section we have stressed the importance

of the concept of manifold in theoretical Mechanics, but

here we consider only the particular case of IRn. As

already anticipated, there are alternative formulations
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to Newton's equations of Mechanics, and now we brie
y

present the Hamiltonian equations.

Given a di�erentiable function H : IRN � IRN ! IR,

H(q; p), the so-called Hamiltonian function (as usual in

Mechanics q = (q1; � � � ; qN ) represents the positions of

the particles and p = (p1; � � � ; pN) the corresponding

momenta; the set of all admissible (q; p) is called phase

space), the Hamiltonian equations are given by

_q =
@H

@p
; _p = �

@H

@q
: (4:1)

In case q and p are vectors in IRN one should think

of (4.1) as a system of equations, one for each pair

(qj; pj); j = 1; � � � ; N . The presence of the negative

sign in just one of the equations has important conse-

quences and has led to the development of Sympletic

Geometry; see below for some consequences. The Ha-

miltonian function generates a vector �eld and we shall

denote the corresponding 
ow by 'Ht . Thoroughly we

suppose the solutions of (4.1) are de�ned for all t 2 IR.

One can recover Newton's equation for particles in

IRN , with masses mj under a potential U (q), by taking

the particular form of the Hamilton's function

H(q; p) =
X
j

p2j
2mj

+ U (q): (4:2)

Just write out the Hamiltonian equations for this choice

of H, recall that in cartesian coordinates p = mv =

mdq=dt, the force �eld is given by F (q) = �rU (q),

and you will get Newton's Second Law. From some

points of view the Hamiltonian formulation generalizes

Newton's formulation of Mechanics, since the function

H does not need to be necessarily related to mechani-

cal systems. This permits that some general results in

Mechanics can been applied to other research �elds, as

they do indeed.

The mechanical systems are related to particular ca-

ses of di�erential equations and so they are expected to

present special properties. The Hamiltonian formula-

tion is very adequate to show up important particulari-

ties of the di�erential equations that model mechanical

systems, and now we underline some of them.

P1. The very Hamiltonian function H is a constant

of motion, in fact it is regarded the total mechanical

energy of the system, as it is evident from (4.2). This

is readily seen by di�erentiation along orbits and using

(4.1)

c

dH(q; p)

dt
=

@H(q; p)

@q
_q +

@H(q; p)

@p
_p =

@H(q; p)

@q

@H(q; p)

@p
�
@H(q; p)

@p

@H(q; p)

@q
= 0:

d

This holds because we have assumed the Hamiltonian

function does not depend explicitly on time (i.e., conser-

vative systems), otherwise we had got dH=dt = @H=@t.

P2. A result of Liouville says that the Hamiltonian


ow 'Ht generated by (4.1) preserves volumes in phase

space: if one starts with a (measurable) region 
 in the

space (q; p) with volume (Lebesgue measure) V (
) at

initial time t0, then this volume is maintained under

time evolution, i.e.,

V ('Ht (
)) = V (
); for any t:

P3. We have at our disposal a very important way

to change coordinates in phase space (q; p), the so-called

canonical transformations. Given a di�erentiable func-

tion, say F2(q; P ), where P denotes the new momenta,

one gets the new position coordinates Q and old mo-

menta from the relations

Q =
@F2
@P

and p =
@F2
@q

:

For functions F1(q;Q), F3(p;Q) and F4(p; P ), all of

them called generating functions of the canonical trans-

formations, one obtains similar (not identical!) rela-

tions. The main advantages of considering canonical

transformations are that they preserve the Hamiltonian

form of the equations and the Hamiltonian in the new
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variables K(Q;P ) is readily obtained by direct substi-

tution K(Q;P ) = H(q(Q;P ); p(Q;P )). Summing up

_Q =
@K

@P
; _P = �

@K

@Q
:

As one example consider F2(q; P ) = qP , so that

Q = q and p = P , i.e., this is the generating function of

the identity seen as a canonical transformation. Anot-

her simple and interesting example is provided by the

generating function F1(q;Q) = qQ; in this case one ob-

tains p = Q and P = �q and, up to a sign, the roles of

position and momentum are interchanged.

P4. This property is, in fact, a corollary of P2.

Since the Hamiltonian temporal evolution does not

change volumes in phase space, its equilibrium points

are neither nodes nor repellors. Therefore the unique

kind of stable equilibrium point for Hamiltonian sys-

tems are elliptic points (see Figure 3; like the phase

space of the harmonic oscillator near the equilibrium).

Another consequence of P2 is that no solution of Ha-

miltonian systems can be Lyapunov asymptotically sta-

ble, since this property requires shrinking of volumes in

phase space.

Figure 3. Three kinds of equilibrium points in the plane:
each one is denoted by o.

If one combines the above mentioned result of Li-

ouville with another one by Poincar�e one gets a weak

notion of stability. Although this is not usually referred

to as stability we shall call it Poincar�e stability. It is a

typical result of ergodic theory and, in our case, can be

stated as follows.

Theorem 1 (Poincar�e's Recurrence) Suppose the

motion of a mechanical system is restricted to a region


 in phase space, with �nite volume V (
). For each

(measurable) set A � 
, with volume V (A), the return

set

RA = f(q; p) 2 Aj9(tj)
1
j=1

with

tj !1

such that

'Htj (q; p) 2 Ag

(is measurable and) is such that V (A) = V (RA).

In other words, the set of points that starts in A

and does not return to A an in�nite number of times

under the Hamiltonian time evolution has null volume!

It says, in some sense, that most points in phase space

generalize the behavior of a periodic orbit that actua-

lly returns to its initial position. That is the Poincar�e

stability. Unfortunately it is very di�cult to control

the return times and it is known that in some cases,

for example in systems described by Statistical Mecha-

nics (large number of particles), this time can be of the

order of the age of the universe.

V Integrability

As the very term indicates, integrability refers to suf-

�cient conditions to obtain rather explicit solutions of

some mechanical systems. Let's start with an one d.f.

system (a system that can be described by just one po-

sition coordinate q) in cartesian coordinates. Since the

energy value E is a constant of motion the system can

be restricted to the energy surface H�1(E). At this

point it is enlightening to see geometrically the rather

simplicity of this system; think of the Harmonic osci-

llator, for example, or any other system whose phase

space can be described by an elliptic equilibrium point

(see the third picture in Figure 3); each curve is deter-

mined by the energy value and an angle determines a

unique point on this curve, so the state of the system

could be described by the energy and an angle. It is

possible to get an analytical version of this geometric

description by calculating the energy E from the initial

conditions and taking into account that p = mdq=dt, so

that

E = H(q; p) =
p2

2m
+ U (q) =

m

2
(
dq(t)

dt
)2 + U (q);

and we have got a separable di�erential equation for

the solution q(t), which, in principle, can be integrated

by elementary methods. For example, it is enough to

simplify this equation to get

t� t0 = �

r
m

2

Z q

q0

d�p
E � U (�)
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with q0 being the initial condition at time t0 and take

the appropriate choice of sign. It is just a matter of

inverting a function to get the solution q(t), and one

says the mechanical problem has been integrated by

quadratures and it will be called \integrable."

For systems with 1 < N d.f. the natural genera-

lization of the above procedure is obtained by requi-

ring that there are at least N independent constants of

motion fKj = Kj(q; p)g
N
j=1. The relevant result here

is due to Liouville that requires the N (di�erentiable)

constants of motion are in involution, i.e., their mutual

Poisson brackets f�; �g vanish

fKi;Kjg �
NX
l=1

(
@Ki

@ql

@Kj

@pl
�
@Ki

@pl

@Kj

@ql
) = 0;

for any pair (i; j).

Theorem 2 Let H(q; p) be the Hamiltonian function

of an N d.f. system with N di�erentiable cons-

tants of motion fKjg
N
j=1 whose Poisson brackets vanish

fKi;Kjg = 0 for any pair (i; j) and are independent,

i.e., at each point of phase space the set of N gradient

vector �elds rKj is linearly independent. Then, this

system can be integrated by quadratures.

For Hamiltonian systems with just 1 d.f. the phase

space has dimension 2 and the conservation of energy

reduces the motion to curves (\surfaces of dimension

1"). Notice that each independent constant of motion

reduces by one unit the dimension of the surface in

which the motion takes place, but for N � 2 the pre-

sence of N independent constants of motion restricts

the orbits to a surface of dimension N (recall that the

phase space has dimension 2N ), and the involution con-

dition is required to \separate" individual d.f. and get

explicitly the solution curve.

De�nition 5 A Hamiltonian systems that satis�es the

hypotheses of Theorem 2 is called completely integrable

system (for brevity, integrable system).

Theorem 3 Consider an integrable Hamiltonian sys-

tem with N d.f. and let fKjgNj=1 be the relevant cons-

tants of motion. Then, there is a canonical trans-

formation such that the new momenta are given by

Pj = Kj ; j = 1; � � � ; N , and the new Hamiltonian fun-

ction has the form

H = H(K1; � � � ;KN )

(i.e., H does not depend on the new positions Qj).

Therefore, for an integrable Hamiltonian system it is

possible to �nd canonical coordinates (Qj ; Pj)Nj=1 such

that

c

Pj = const: and _Qj = !j �
@H

@Kj

= const: =) Qj(t) = !jt+ Qj(0); j = 1; � � � ; N:

d

By using topological arguments, Arnold and Jost

have revealed the structure of phase space of integrable

systems since they showed, in case the surface de�ned

by K1; � � � ;KN is compact and connected (this happens

very often), such surfaces are N -dimensional tori and

the above momenta Pj select a particular torus while

the coordinates Qj are the angles describing the points

on such torus. In this case the phase space can be de-

composed in layers of a \toroidal onion" and each to-

rus is invariant by the Hamiltonian 
ow (see Figure 4).

This is an important instance of restriction of motion

to manifolds in phase space. Think again of the parti-

cular case of the harmonic oscillator in phase space, the

energy selects a unique elliptic curve (a one-dimensional

torus) and the angle coordinate describes the oscillati-

ons around this curve. The integrable motion on each

torus in phase space consists of just compositions of ro-

tations (i.e., linear 
ows on the torus) and is, therefore,

to be considered synonymous of very simple motion.

There are several examples of completely integra-

ble Hamiltonian systems, including the noticeable 1 d.f.

systems discussed above, the problem of two bodies un-

der mutual gravitational attraction and the Toda lat-

tice. In fact, most traditional textbooks on Classical
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Mechanics are concerned exclusively to integrable sys-

tems since their motions are relatively simple as the

above theorem shows; however, such approach may give

the false suspicion that most Hamiltonian systems are

integrable and it is just a matter of technical skills to

�nd the constants of motion (maybe from symmetries)

and carry out the integration of Hamiltonian equations.

Figure 4. Scheme of the tori in an integrable 2 d.f. phase
space.

The primary importance of integrable systems is

that they are, in principle, soluble; fortunately there

are important integrable Hamiltonian systems. Before

the contributions of Poincar�e it was usual to think that

each problem in mechanics would be solved by transfor-

ming it into an integrable system, and the well-known

Hamilton-Jacobi equation was developed for this pur-

pose. An interesting physical oriented discussion and

examples can be found in Chapter 3 of [10].

Is the set of completely integrable Hamiltonian sys-

tems structurally stable (in the world of Hamiltonian

systems)? In other words, are su�ciently small pertur-

bations of a completely integrable system also comple-

tely integrable?

Is the solar system completely integrable? This ba-

sic question has attracted the attention of many im-

portant scientists and even though no exact answer is

known yet, there are many evidences supporting a ne-

gative answer. For example, even the general case of

just three gravitational bodies is known to be noninte-

grable.

Until the �rst half of the XX century there were

two opposite expectations about the answers of these

questions. Taking into account that the problem of two

gravitational bodies is integrable (even Newton had got

a complete solution) and the long distances among bo-

dies in the solar system, it was expected that small

perturbations of integrable systems should continue to

be integrable, and therefore the solar system would be

\stable." On the other hand, investigations on the foun-

dations of Statistical Mechanics had led to the expecta-

tion that an arbitrary small perturbation of integrable

systems would bring their orbits \covering all energy

surface" so that only the energy would remain a cons-

tant of motion and the systems could not be completely

integrable; this was the well-known ergodic hypothesis

and would justify the use of the microcanonical ensem-

ble. In this respect an important numerical work (one

of the �rst numerical works in Physics) became famous

as the Fermi-Pasta-Ulam experiment [6]; it consisted

of the numerical integration of the equations of motion

for a classical one-dimensional harmonic chain slightly

perturbed by nonlinear forces, and the ergodicity was

not found.

An \almost complete" answer to the question of per-

turbation of completely integrable systems appeared in

the �fties with the celebrated KAM theorem.

VI KAM Stability

To begin with we summarize, in just one phrase, the

main conclusion of the KAM theorem we are going to

discuss:

| most tori are just deformed and survive under

the perturbation of integrable systems.

It has become so common the citation of KAM the-

orem in texts on \chaos theory" that many students

have been misled by supposing it is a result of insta-

bility, so we have stressed the stability meaning of this

important set of results.

Consider an integrable system with N d.f. (e.g.,

two heavy bodies under gravitational interaction) des-

cribed by appropriate coordinates (see last section)

K = (K1; � � � ;KN ) with the Hamiltonian function

H0 = H0(K) and perturb it by "H1(Q;K), where

0 < " � 1, so that the perturbed system is described

by

H(Q;K) = H0(K) + "H1(Q;K):



30 Revista Brasileira de Ensino de F��sica, vol. 21, no. 1, Mar�co, 1999

The main problem is to �nd a canonical transformation

to new coordinates ( ~Q; ~K) such that the new Hamilto-

nian function ~H depends only on the new momenta ~K

H(Q( ~Q; ~K);K( ~Q; ~K)) = ~H( ~K);

so that the perturbed system is also completely integra-

ble. For simplicity we assume the unperturbed motion

is con�ned to compacted and connected surfaces (so on

tori, as we already know).

Usually one looks for a generating function

S(Q; ~K) = F2(Q; ~K) in power series of "

S(Q; ~K) = Q ~K + "S1(Q; ~K) + "2S2(Q; ~K) + � � � (6:3)

Notice that the zeroth order term is the generating fun-

ction of the identity canonical transformation, since for

" = 0 the unperturbed variables (Q;K) works. Taking

into account that the variables Q are angles on the tori,

one can use Fourier series

c

H1(Q;K) =
X
m

H1m(K)eimQ; S1(Q; ~K) =
X
m

S1m( ~K)eimQ

so that (after some algebra)

S(Q; ~K) = Q ~K + i"
X
m 6=0

H1m( ~K)

m:!0( ~K)
eimQ + � � �

d

where m = (m1; � � � ;mN ) are vectors of integer num-

bers, !0( ~K) � r ~KH0( ~K) = (!01; � � � ; !0N) being the

frequencies of the unperturbed tori.

The problem of integrability of the perturbed sys-

tem has been reduced to the convergence of the series

(6.3). For concreteness assume that we have no special

symmetry so that allH1m 6= 0. Besides the convergence

of the series in " one must control the scalar products

m:!0 = m1!01+ � � �+mN!0N that appear in the deno-

minators. Here, again, we emphasize some important

details:

(l) if the frequencies !0 = (!01; � � � ; !0N ) are (rati-

onally) commensurable then m:!0 = 0 for an in�nite

number of values of the vector m and the series does

not converge (this situation is usually called resonant).

(ll) even if (!01; � � � ; !0N ) is incommensurable the

quantities m:!0 never vanish but are arbitrary close

to zero, since vectors of rational numbers are dense in

IRN . This property questions the convergence of (6.3)

also for incommensurable frequencies: this is the well-

known problem of \small divisors" that abounds Celes-

tial Mechanics and recently has also permeated Quan-

tum Mechanics, Spectral Theory, Partial Di�erential

Equations, Nash-Moser implicit function theorems, etc.

(lll) there is no hope of proving the convergence

of (6.3) without connecting the speed m:!0 ! 0 with

the speed H1m ! 0 for m ! 1, a property related

to di�erential properties of the Hamiltonian function.

The coe�cients H1m are expected to control m:!0 for

m!1.

In the �fties A. N. Kolmogorov (see the Appen-

dix of [1]) proposed a method to proving the conver-

gence of (6:3) for some values of the unperturbed fre-

quencies !0. This method was based on Newton's

method to �nd the root of nonlinear functions and

the details was implemented independently by Arnold

and Moser. In the �rst proofs Arnold supposed the

Hamiltonian functions were analytic and Moser asked

for class C333 for systems with two d.f.! Currently

it is know that this theorem holds for class C3 and

there are counterexamples in class C3�� due to Her-

man [11]. This result and its rami�cations are know

as KAM technique. Let's enunciate the KAM theo-

rem for analytic Hamiltonians with two d.f. without

some technical details in order to avoid cumbersome

statements; e.g., it should be required that the fre-

quencies of the unperturbed system are not degenerate

det(@!0=@Kj) = det(@2H0=@Kj@Ki) 6= 0, because in

the proof the tori are speci�ed by their frequencies, a

condition not satis�ed for the harmonic oscillator! Let's

mention that in [19, 4] the authors tried a pedagogical

approach to the proof of KAM theorem.
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Theorem 4 (KAM Theorem) Let !0 = (!01; !02)

be incommensurate (i.e., � � !01=!02 is an irrational

number). Then, for 0 < " su�ciently small there exists

C(") > 0 with lim"!0C(") = 0 such that if

j
!01
!02
�
r

s
j >

C(")

s2:5
for all r; s 2 IN; s 6= 0; (6:4)

the series (6.3) converges. Furthermore, the Lebesgue

measure of the numbers � (in bounded sets) that do not

satisfy (6.4) goes to zero as "! 0.

Condition (6.4) is a particular speci�cation of the

irrational character of � and it says that the unpertur-

bed tori whose ratio of frequencies are su�ciently far

from rational numbers are preserved after the pertur-

bation of an integrable system. It is a stability result!

Notice that the KAM theorem deals with the behavior

of orbits for all times; there are interesting estimates for

�nite times due to Nekhoroshev [16] for some analytic

Hamiltonians.

Unfortunately the KAM theory says nothing for the

remaining tori and there is room for speculations about

chaotic behavior and pure numerical works. In fact,

the numerical works have revealed many features not

direct accessible to theorems yet. Notice that the set of

numbers � that satis�es (6.4) and the one that doesn't

are both dense in IR; this combination of results has

shown that Hamiltonian systems in general present a

complicated mixture of simple motion (represented by

the reminiscent tori) with complicated motions in the

regions not embraced by KAM theory. Moser has com-

pared this mixture in phase space with a sponge; its so-

lid part consisting of the reminiscent tori with bounded

motions while the solutions in the holes of the sponge

being capable of complicated behavior.

What about the solar system? We know that alt-

hough the problem of just two gravitational bodies is

integrable the perturbation by other bodies has impor-

tant e�ects; for example, the Earth elliptic trajectory

rotates at the ratio of 0:3� each century and certainly

the present trajectories of the satellites are very di�e-

rent from their trajectories in the past.

In 1866 Kirkwood observed gaps in the asteroids

distribution between Mars and Jupiter as function of

their distance to the Sun. In the last decades such gaps

have been directly related to the KAM theory in some

approximations (they reside in the region of frequencies

the KAM theorem does not hold).

Numerical simulations of the solar system have been

useful but not very helpful (yet!) as far as the stability

problem is concerned. For example, by using a speci-

�cally designed machine called Digital Orrery, a group

fromMassachusetts Institute of Technology (in Boston,

U.S.A.) has numerically integrated the orbits of the pla-

nets of the solar system around 107 years (about 20

percent of the age of the Solar System), and just small

variations in the energy of the outer planets have been

veri�ed.

VII Final Remarks

An interesting phenomenon may occur for systems with

3 � N d.f., which dramatizes yet again the nature of

Classical Mechanics, the so-called Arnold di�usion. It is

a consequence of di�erent dimensions; in case of 2 d.f. a

two-dimensional torus separates the three-dimensional

energy surface into two connected components, while

for N � 3 an N -dimensional torus does not separate

the (2N � 1)�dimensional energy surface into two dis-

tinct components (it is like curves in three-dimensional

spaces). Therefore, in case of three or more d.f. an

orbit that starts in a region where the tori were des-

troyed may wander through other regions of the energy

surface. This possibility is still not well investigated

but it is expected to occur very slowly in time. For

examples exhibiting Arnold di�usion see [5].

For hundreds of years the solar system, governed

by the inverse square law of force, has been conside-

red the paradigm of order and predictability, which

was reinforced by Newton's solutions and recovery of

Kepler's laws, but today the best answer for the ques-

tion of its stability, in a very general sense, is \we do

not know." Maybe the appropriate formulation of this

stability question should include the possibility of the

trajectories of planets in the solar system be capable of

Arnold di�usion.

Now we point up some important research topics in

theoretical Classical Mechanics:

� What kind of motion does occur when a torus

is destroyed? Signi�cant contributions have been

given by Aubry and Mather [7].
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� Finding estimates for the perturbation intensity

assuring all tori have been destroyed.

� A deeper understanding of Arnold di�usion.

� Building a semiclassical theory of nonintegrable

Hamiltonian systems. This is part of a sub-

ject called Quantum Chaos. The inappropriate

quantization rules of \old Quantum Mechanics"

for nonintegrable systems was realized by Eins-

tein in 1917.

� Existence of periodic orbits in Hamiltonian sys-

tems and presenting lower bounds for the number

of such orbits [20]. This point has also relations

to Quantum Chaos.

� Looking for weak conditions for the validity of

KAM theorem; here we cite the contributions of

R�usmann [18] and Gallavotti [9].

� It was numerically found that the stabilization of

Earth's obliquity [13], i.e., there is a large chaotic

zone in obliquity avoided by the Earth, is due to

the presence of the Moon. Its obliquity exhibits

only small variations of �1:3� around the mean

value of 23:3�, while Mars's obliquity was found

to follow a chaotic orbit. This is also related to

the ice ages and asks for a rigorous treatment and

a precise theorem.

To �nish I would like to stress that we would hardly

know so much about gravitation and Classical Mecha-

nics if our solar system were composed by a binary star

(with comparable masses)! Think of that...
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