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I. Introduction

A renewed interest in the mathematical formalism

and physical interpretation of the energy ow vector S

of the electromagnetic �eld has emerged due to some

apparently counter intuitive physical features of the or-

thodox interpretation of the Poynting vector and the

Poynting ux [1].

Feynman [2] in his Lectures on Physics II analyzes

three situations where these shortcomings are stressed.

These are: (a) a constant current owing through a

wire, (b) a slowly-charging capacitor, and (c) a com-

bination of non-parallel static electric and magnetic

�elds. Intuitively we expect in case (a) the energy ow-

ing along the wire, in (b) the energy originating in the

current charging the capacitor, and in (c) no energy

ow. He calls these situations paradoxes; however as in

all paradoxes a careful scrutiny of the issues will reveal

their underlying meanings. Feynman hirmself, used to

say that \a paradox is only a confusing in our under-

standing". The outcome is quite di�erent when some

other physical aspects of the current and energy ow

vector are taken into consideration in particular the re-

gion space over which these magnitudes are considered.

Several authors trying to explain the obvious and

observed Joule e�ect in a conductor with steady cur-

rent have proposed alternative choices for the vector

S , other than the standard de�nition E�H . However

they fail to reproduce the (Larmor's) radiation formula

for an accelerated charge [3]. More recently C.S. Lai

[4] has proposed a truncated form of E � H with E

de�ned through the vector potential that accounts for

the Larmor radiation formula, but does not lead to a

transparent interpretation of the equality of the rate

of energy ow and the velocity of propagation of the

energy carriers, neither follows directly from the rela-

tivistic theory of the electromagnetic �eld [1].

It has been emphasized [5] that in every physical

situation the quantity which is physically signi�cant is

not S but rather the ux of S , however we will iden-

tify the Poynting vector with the energy ux at a given

point in the �eld since this interpretation leads to many

simple and obvious relationships, just mentioned, such

as the equality of the rate of energy ow and the ve-

locity of propagation of the energy carriers, and also to

its deduction directly from the relativistic theory of the

electromagnetic �eld [6].

We will examine cases (a), (b) and (c) proposed by

Feynman, and it will be shown that one needs not de-

part from the classical and usual interpretation of the

Poynting's vector in order to explain then in simple and

physically clear terms: the Joule e�ect in a conductor

with a steady current is due to the work of electromo-

tive forces of non electrostatic origin, and the appar-

ently meaningless continuos circulation of energy along

closed paths in a static electromagnetic �eld acquires

physical meaning if conservation of angular momentum

is assumed and the hidden mechanical momentum is

taken into account.

Case (a)

In is discussion of case (a) Feymman ignores that

the wire through which is owing a constant current

is part of a circuit that must be closed or pass away

to in�nity. In order to maintain a steady current

in it is necessary that electromotwe forces of a non-

electrostatic origin act in de�nite sections of a current
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circuit. It is their work that compensates the expen-

diture of electric energy liberated as Joule heat. In

the same manner that when dealing with a system of

electric charges, Earnsshaw's theorem stablishes that

purely electrostatic systems cannot be stable and that

in order to ensure the required stability (a real fact) we

must introduce constraints of steady currents obliges us

to assume that apart from electric forces of a stationary

electric �eld a certain �eld of forces of non-electrostatic

origin may also act on the electric charges in conduc-

tors. This forces will be called \extraneous" and its �eld

denoted by Eext . In the �eld of steady currents the

intensity of an electromagnetic �eld and consequently

its energy remains constant so that the work ofthe ex-

traneous e.m.fs completely transforms into heat. This

work is done, however, only in the portions of the cir-

cuit where Eext di�ers from zero, whereas the joule

heat is liberated in all the portions of the circuit. (Ref.

6, pag. 465), Hence the energy spent by the sources

of extraneous e.m.f. ows to where it is consumed as

electromagnetic energy.

Figure 1. Poynting �eld for a cylindrical homogeneous con-
ductor, con�ned between two cross sections to its axis.

To analyze this case (a) consider a segment of a

cylindrical conductor of length 1 and cross-sectional

area �r2 with current density j . (Fig. 1). Assume

that the magnetic �eld coincides with the �eld of an

in�nite straight current having the same intensity the

magnetic lines of force being circles concentric to the di-

rection of the current, whose magnitude on the surface

of the conductor is

H =
2� rj

c
:

First, assume Eext = 0 in the portion of the con-

ductor being considered, then E points in the same

direction as the current j and is equal to

E =
j

�
�, being the conductivity. Since the vectors j and H

are perpendicular, S is directed inward, normal to the

surface of the conductor its magnitude given by

jSj =
j2r

2�
Hence, into the surface of the conductor, ows the

energy

Z
Snda =

j2

�
V

from the sorrounding space, where V is the volume of

the portion being considered. This energy, coming from

the electromagnetic �eld is liberated in this segment of

the conductor as Joule heat. It ows into this region

of space from those portions of the conductor in which

work is done. To help the current owing steadily, as

supposed in our example, we must modify the original

assumption and introduce an \extraneous" electromag-

netic force such that Eext 6= 0. Then,

E =
j

�
�Eext

and

S =
1

�
(j�H) � Eext �H:

The �rst term on the right hand side of this equa-

tion is the energy ux directed into the conductor. The

second term has a minus sign and therefore ows in the

opposite direction, out of the conductor. This energy

returns to other portions of the conductor to be liber-

ated there in the form of heat. Hence, in general, it is

the electromagnetic energy due to the current which is

converted into heat. This energy is mainly localized in

the external space surrounding the conductor and en-

ters through its outer surface. This is more clearly man-

ifested in fast varying currents produced by a rapidly
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varying �eld Eext . When the �eld Eext oscillates

very rapidly the electromagnetic energy does not pen-

etrate to the interior of the conductor and is converted

into heat only in a thin surface layer where the cur-

rent is concentrated. This kind of energy does not have

time to reach the internal layers of the conductor and

is converted into heat only within the surface layers

of the conductor, in which the alternating currents are

concentrated, (skin e�ect).

Case (b)

This case is solved by Feynman [2] calling the atten-

tion of the reader to the fact that to check the calcula-

tion one has to assume that the energy is not coming

down the wires but is coming in through the edges of

the gap since the Poynting vector S points inward to-

ward the axis parallel to the plates. The energy density

in the region of space between the plates increases as

the density of charge on the plates increase. According

to Feynman, as the charge accumulates on the plates of

the capacitor, electromagnetic energy ows in through

the sides of the capacitor from far away regions of space.

In his calculation, the Poynting S points inwards to an

axis lying inside the capacitor parallel to the plates and

perpendicular to the magnetic �eld. He argues that, as

the charges come close together the �eld in the regions

between the plates which was weak gets stronger, so

the �eld energy which was way out moves toward the

capacitor and eventually ends up between the plates.

Case (c)

In this case, Feynman considers the seemingly para-

doxical situation that arises when an electric static

charge is near a bar magnet. In this case, S is di�erent

form zero and should represent a continuos circulation

of energy along closed paths, which in a static electro-

magnetic �eld, as is the case here, is devoid of physical

meaning.

The situation ceases to be peculiar if the electromag-

netic momentum density g is taken into account. As

we need to deal with the concept of angular momen-

tum, consider the case of a long cylindrical capacitor

placed in a uniform magnetic �eld, H , parallel to its

axis (Fig. 2). We then have a con�guration of electric

and magnetic �elds which is in a certain respect very

similar to the case of a charge outside a bar magnet.

Figure 2. A cylindrical capacitor placed in a uniform mag-
netic �eld parallel to its axis. In the space between the
capacitor plates there is a radial electric �eld of intensity
E = 2qr

1r2
. (1 = length of the capacitor; r, vector distance

from the �eld to the capacitor).

The electric �eld in the space between the capacitor

is radial and its magnitude is

E =
2qr

1r2

Where q is the charge on the inner plate of the ca-

pacitor, 1 the length and r the distance from a �eld

point to the capacitor axis. Thus, in the space between

the plates the Poynting vector is di�erent from zero and

equals

S = �
c

4�
(E�H) =

cq

2�1r2
(r �H)

The lines of Poynting's vector are concentric circles

whose planes are perpendicular to the axis of the ca-

pacitor.

To examine this problem we take into account the

density of electromagnetic momentum g which is pro-

portional to the Poynting's vector S through, g = 1=cS,

giving

g =
q

2�cr21
(r �H)

This momentum density is localized in the static

�eld and its existence leads to results that can be veri-

�ed experimentally. Knowing the space distribution of
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the electromagnetic momentum, the angular momen-

tum L relative to the center of inertia can be deter-

rnined from,

L =

Z
(R� g)dV 6= 0

Here, R is the distance from the volume element dV

(where the volume density is g ) to the center of inertia

of the capacitor.

If we discharge the capacitor, then both the electric

�eld E and the electromagnetic angular momentum L

will vanish and consequently due to the law of conser-

vation of the angular momentum the system [capacitor

+ magnet] will acquire in the course of the discharge a

mechanical angular momentum equal to L. This could

be veri�ed experimentally by discharging the capacitor

in the absence of external forces (or that the torque

of these forces equals zero), condition that could ac-

tually be attained by bringing close to the capacitor

(�lled with, say gas) some radioactive substance caus-

ing ionization of the gas between the plates. The sys-

tem [capacitor + magnet] acquires a mechanical angu-

lar momentum equal to L. If the magnet is �xed and

the capacitor can rotate freely, it should acquire an an-

gular velocity ! equal to L=I, where I is the moment

of inertia of the capacitor relative to its axis.

Conclusion

Apparently paradoxical results obtained by consid-

ering the Poynting vector S as the energy ow per unit

area at any given point are dispelled if one is consistent

in accepting the existence of an external electromag-

netic �eld for any steady current and the conservation

of angular momentum (mechanical + electrical) in the

electromagnetic �eld.
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