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A pedagogical symmetry analysis of electrodynamics is presented. We �rst discurss the ten-
sorial character of the quantities which appear in electromagnetism. Then, we postulate that
the laws of electrodynamics are described by linear equations containing those electromag-
netic quantities and their �rst-order derivatives with respect to space and time coordinates.
We also impose the condition that the laws are invariant under proper and improper space
rotations and under time reversal. The Maxwell equations and the London equation are
obtained. The Lorentz force, which contains the mon-linear ��H term cannot be obtained
correctly. The same analysis is extended to the case in which magnetic monopoles are also
present.

Classical electrodynamics can be deductively ob-

tained starting from the form of the relativistic action

of a set of particles i in an electromagnetic �eld [1] . In

the Gaussian units this action can be written as
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In Eq.(1), mi, ei, ~�i are mass, charge and velocity

of the particles, respectively, and the electric and mag-

netic �elds are de�ned as derivatives of the vector and

scalar potentials:
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It is di�cult to be exaggerated when emphasizing

the amount of information and predictive power con-

tained in Eqs. (1), (2). The Maxwell equations
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are deduced, and from Eqs. (4) and (5) the continuity

equation

~r �~j +
@P

@t
= 0 (7)

is obtained immediately, which implies that electric

charges are conserved. Further, the equation of mo-

tion of a charged particle in an electromagnetic �eld is

obtained

d
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Thus, all classical electromagnetic phenomena are a

consequence of the following principle:

The dynamics of charged particles and electromag-

netic �elds are such as to make the integral in Eq. (1)

an extremum, if the position of the particles and the

value of the potentials are �xed at the time limits t1,

and t2.

Very simple and economic, considering the enor-

mous variety of electromagnetic phenomena which are

involved. The �elds created by charges at rest or in mo-

tion, the motion of charged particles under the in
uence

of other charged particles, the way in which radiation

in generated, propagate in free space and interact with

matter, all those things have to obey only one rule,
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which is the least action principle stated above. That

is the classical limit. Quantum mechanics allows some

probability that the particles and �elds move such that

the action does not deviate too much from the classi-

cal extremum value. The Planck's constant is the ref-

erence standard for what means small or large action

deviation.

Of course, the electrodynamical theory was not his-

torically built that way. A tremendous experimental

basis led to the formulation of severed physical laws.

With those laws and some guess based on symmetry

considerations Maxwell formulated the famous set of

equations which carry his name. On the other hand,

Newton's mechanics was mathematically manipulated

by Leonard Euler and Lagrange, culminating in the

least action principle formulation. At the turn of this

century the work of Lorentz and Einstein resulted in the

so-called covariant ( relativistically invariant) formula-

tion of mechanics and electromagnetism in one uni�ed

theoretical scheme: classical electrodynamics. Hence,

this theory is the great synthesis encompassing about

250 years of scienti�c work. The action formula in Eq.

(1) is the summit of this edi�cation. From every point

to there we are going up in our scienti�c adventure.

From there to any other point we are going down just

predicting details which are already contained in the

seminal principle.

An important question concerning electrodynamics

is the following: Okay, the action formula (1) contains

as unique solution all the laws of electromagnetism.

Suppose, however, that we are still on the valleys and

do not know this summit. How much we must learn be-

fore trying to guess the rest of the scheme? This article

is a little digression on this question. The �rst point to

consider is wheter or not the question makes sense. It

does! Contrarily to what happens with a jigsaw puzzle,

when guessing the secrets of nature usually the knowl-

edge of small pieces of the picture allows the solution of

the whole game scheme. Recognizing the tail of a cat

is the same as seeing the whole cat. If there is a lake

here, there must be there a curled road climbing a hill

up to a white castle.

Quantitative information is usually harder to obtain

and less relevant for the game solution than qualitative

information. And perhaps no other qualitative consid-

eration carries more predictive power than symmetry.

All those detailed measurements which resulted in the

empirical laws by Coulomb, Ampere and Faraday are

hard to perform and even harder to condense in the

mathematical form describing the laws. For the mod-

ern physicist, guided by the contemporary paradigms,

it could have been much easier.

The most obvious entity in electromagnetism is the

electric charge. Very simple qualitative tests prove that

the charge is a scalar quantity: the interaction between

two given electric charges at rest depend only on their

mutual separation and the force is along the line con-

necting them. Everything in electrostatics can be de-

scribed in terms of two quantities, charge density � and

electric �eld ~E. The �rst is a scalar and the second is

a vector.

Very fortunately, nature supplied us with rather

simple means of manipulating electric charges. The

availability of good electric conductors and insulators

in nature is quite a piece of good luck. That allows

the strict control of the 
ow of electric charges through

metal wires and their stable setting in bodies in vac-

uum or inside insulators. An electric current is thus

seen to have a distinctive action on other or in mov-

ing charges. The force of electric currents on a moving

charge is always perpendicular the velocity of the latter.

At a �xed point in space there is one unique direction

along which the electric charge can move without be-

ing acted on by any force. Hence the �eld created by

an electric current associates one directional quantity

to each point in space. The direction of the magnetic

�eld is the force-free direction for moving charges. We

are thus tempted to say that the magnetic �eld ~H is a

vector �eld. But that is not true. The magnetic force

is allays perpendicular to the magnetic �eld ~H, besides

being perpendicular to the charge velocity ~�. However,

there is a subtle e�ect which manifests when we exam-

ine the �eld created by a current circulating in a coil or

a ring. Fig. 1 shows a ring in which a current circulates

counterclockwise. Tests indicate that the force-free di-

rection for charges motion at the ring axis is along the

axis, i.e., the z-direction. This is consequently the di-

rection of the magnetic �eld. There is no objective way

to decide between +z and �z as the positive direction

of the �eld. We arbitrarily de�ne it as the +z direction,

i.e., the direction to side from which the current is seen

counterclockwise. However, one thing is completely ob-

jective: a positive charge moving along +y is subject

to a force along +x.

Now, let us re
ect the ring with the current in a

vertical mirror perpendicular to y, as shown in the �g-

ure. Now the current in the re
ected ring will become

clockwise as seen from the top and the re
ected mag-
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netic �eld will point along �z. The force along a pos-

itive charge moving along +y will now be along �x!

That is a very strange transformation law. A vector is

not a�ected by a re
ection in a plane parallel to its di-

rection. We de�ne the magnetic �eld as pseudo-vector.

Fig. 2 shows how a vector (~E) and a pseudo-vector

( ~H) transform under re
ection in a plane. The pseudo-

vector does everything right as if it were a vector but

at the end reverses the direction.

Figure 1. Part (a) shows a ring conducting a current coun-
terclockwise as seen from the top. At a point along the ring
axis at the top side, a positive electric particle moving on
the +y direction is subject to a force ~Fa on the +x direc-
tion. Part (b) shows the same apparatus as seen re
ected
on a mirror. Right and left are exchanged and the electric
charge moving on the +y direction is forced along the �x
direction. If we consider that the electnc charge is a scalar,
it is invariant under re
ection and consequently we have to
conclude that ~Hb = � ~Ha:

Hence, we have identi�ed two �eld sources, � and ~j

(the density of electric current) and two �elds ~E and ~H.

We should look for equations involving these variables

and their derivatives with respect to space and time co-

ordinates. That is the Newtonian paradigm: the funda-

mental laws of nature are di�erential equations in space

and time. The contemporary physicist knows that it is

possible to write the fundamental equations as di�er-

ential equations of �rst order, if we have choosen the

appropriate dynamical variables. Let us hope that we

did, and keep derivatives only of �rst order in space

and time. We end up with a large number of quantities

such as ~E, @
~E
@t
, ~riEj; i; j = 1; 2; 3; etc ... However, from

then we have to build mathematical objects with well

de�ned tensorial character, in order to obtain equations

which are invariant under space rotations. Here again,

we limit ourselves to tensors of zeroth and �rst order

and the selected objects are ~E, @ ~E
@t
, ~r� ~E; ~r� ~E; etc...

Figure 2. Re
ection of a vector ~E and a pseudo-vector ~H
on a mirror plane, at three orientations. Observe that if
~H = ~E; ~H 0 = � ~E0.

Simple tests show that the sources �, ~j act inde-

pendently and creat �elds which add linearly (princi-

ple of superposition), which means that the equations

should be linear. Finally, we make the assumption that

electrodynamics obeys parity, i. e., its laws cannot dis-

tinguish between right and left. We also suppose that

the laws are invariant under time reversal. That means

that we cannot mix in the same equation vectors and

pseudo-vectors, because if we re
ect the world in a mir-

ror the vectors and pseudo-vectors transform di�erently

and the law will fail. We have also to consider the be-

havior of the mathematical objects under time reversal.

After classifying our objects and collecting them is sim-

ilar groups we have.

�; ~r � ~E - scalar, symmetric ( under time reversal )

(SS)

~r � ~H - pseudo-scalar, antisymmetric (PSAS)
~r� ~E; @ ~H

@t
- pseudo-vector, symmetric (PVS)

~r� ~H; @ ~E
@t
;~j, - vector, antisymmetric (VAS)

~r �~j; @�
@t

- scalar, antisymmetric (SAS)

~E; @~j
@t
; ~r� - vector, symmetric (VS)

~H; ~r�~j - pseudo-vector, antisymmetric (PVAS)

We can now write the fundamental laws of electro-

magnetism as linear relations of the variables above

~r � ~E + a1� = 0 (9)

~r � �H = 0 (10)



A.S. Chaves 387

~r� ~E + a2
@ ~H

@t
= 0 (11)

~r� ~H + a3
@ ~E

@t
+ a4~j = 0 (12)

~r �~j + a5
@�

@t
= 0 (13)

@~j

@t
+ a6 ~E + a7~r� = 0 (14)

~H + a8~r�~j = 0 (15)

The relations 9-12 are the Maxwell equations. The

constants a1; a2, a3 and a4 are arbitrarily de�ned, with

the only restriction that a2a3 = �c�2, where c is the

speed of propagation of the electromagnetic interac-

tions. Combing the equations 1 and 4 we have

~r �~j �
a1a3

a4

@�

@t
= 0 (16)

which is equivalent to equation (13), i.e., a5 is not an

independent coe�cient. The conservation of the total

electric charge implies that a5 = �1. Traditionally the

conservation of electric charge is not stated as an inde-

pendent principle in electromagnetism. The coe�cients

a1, a3 and a4 are instead arbitrated in such a way that

a1a3 = a4 and this conservation principle becomes im-

plicit in the Maxwell equations.

Equation (15) is known to hold in a superconductor,

i.e., a non-dissipative medium, and was postulated in

1935 by London and London [2] to explain the perfect

diamagnetism in superconductors, known as Meissner

e�ect.

In the present approach the equation (14) describes

the motion of charges in the presence of an electro-

magnetic �eld. The term a6 ~E is the contribution of

the electric �eld to the change in current and the term

a7~r� is the contribution of the charge density inhomo-

geneity. One should recall that for a heavily damped

system such as an ohmic conductor the equivalent to

Eq. (14) would be

~j = � ~E � A~r� ; (17)

where � is the electrical conductivity and the term A~r�

(or B~r� where � is the chemical potential) is the a�n-

ity which brings the system to thermodynamical equi-

librium. One should observe that Eq. (17) is not invari-

ant under time reversal, which is expected for a damped

system.

In presence of a magnetic �eld, it is known that a

term of the form C~j � ~H appears in Eq. (14) as re-

quired by Eq. (8). This term was excluded from Eq.

(14) due to the linearity postulate. One thus sees that

the present approach results in imperfect prediction of

eleckomagnetic phenomena. The existence of the term
~j� ~H breaks both the linearity and the homogeneity of

the set os equations. A set of homogeneous equations

on X1, X2, ... Xn is invariant to a change of scale, in

the sense that if X10, X20, ... Xn0 is a solution, �X10,

�X20, ... �Xn0 will also be, � being an arbitrary con-

stant. However, there is in nature an upper limit c to

the possible speeds, and due to this the equations of

motion cannot be strictly homogeneous. In fact, if they

were homogeneous, given that a speed � 6= 0 is possible

for the charge particles, then any speed �� would be

also possible. In fact, the relativistic correction to the

mass of the charged particles is also missing in Eq. (4).

Our system of equations 9 - 15 can be easily modi-

�ed if we accept the existence of magnetic monoples.

The density of magnetic monopoles �m would be a

pseudo-scalar antisymmetric under time reversal and
~jm would be a symmetric pseudo-vector. The new set

of equations would be

~r � ~E +A1� = 0 (18)

~r � ~H + A2�m = 0 (19)

~r� ~E + A3

@ ~H

@t
+A4

~jm = 0 (20)

~r� ~H +A5

@ ~E

@t
+ A6

~j = 0 (21)

~r �~j +A7

@�

@t
= 0 (22)

~r �~jm +A8

@�m

@t
= 0 (23)

@~j

@t
+A9

~E + A10
~r� +A11

~r�~jm = 0 (24)

@~jm

@t
+A12

~H +A13
~r�m + A14

~r�~j = 0 (25)
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It is clear that the introduction of magnetic

monopoles brings great symmetry to the fundamental

equations of electromagnetism.

If we add \by hand" the Lourentz forces ~j � ~H and
~jm � ~E in the Eqs. (24), (25), we obtain

@~j

@t
+A9

~E+A10
~r�+A11

~r�~jm +A15
~j� ~H = 0 (26)

@~j

@t
+A12

~H+A10
~r�m+A14

~r�~j+A16
~jm� ~E = 0 (27)

The set of equations 18 - 23 and 26, 27 are suppos-

edly the set of laws which govern classical electrody-

namics in the presence of magnetic monopoles.

The magnetic monopoles are a pseudo-scalar, which

means that they reverse sign when re
ected in a mir-

ror. It is important to catch the meaning of that in

terms of observable phenomena. Suppose that someone

holds a magnetic dipole and approaches it to a magnetic

monopole. If the monopole is attracted to the south

pole he concludes that it is a north monopole. But one

of his colleagues is watching the experiment through a

mirror, as indicated in Fig. 3. As re
ected rigth be-

comes left and vice-versa, the magnetic dipole reverses

sign and the re
ected monopoles is attracted to north

pole. For the other observer it is consequently a south

monopole. That is the meaning of it: re
ected north

is south and re
ected south is north, and reversing the

sign of the magnetic charge transform north \sign" into

south \sign", and vice-versa. It can look strange, but is

it consistent. Monopoles of equal sign repel each other

and monopoles of apposite sign are muttually attracted.

That is the result of Eqs. (19) and (25) for A2 and A12

negative. This behavior is invariant under re
ection in

a mirror and that is what matters. In fact, every law in

electrodynamics in invariant with respect to space ro-

tations, proper and inproper, and with respect to time

reversal. The equations 18 - 27 were writen under this

requeriment.

Thus, we have just seen that classical electrodynam-

ics can be almost perfectly derived as the complete set

of equations, invariant under space and time inversion,

connecting the electric and magnetic charges, their cur-

rents, the electric and magnetic �elds and the space and

time �rst-order derivatives of these quantities. This

simple prescription leads uniquely to the Eqs. (18) -

(25). The purely relativistic side forces acting on cur-

rents, in form ~j � ~H and ~jm � ~E, are non-linear terms

which have to be added \by hand", such that Eqs. (26),

(27) are substituted for Eqs. (24), (25).

Figure 3. A magnetic monopole is attracted to the north
pole of a magnet. After re
ection on a mirror plane it is seen
as attracted to the south pole. This means that the sign of
the magnetic monopole is reversed under space re
ection.

It is important to point out that the action prin-

ciple, which is very e�ective on deducing the laws of

electrodynamics in the absence of magnetic monopoles,

cannot be easily extended to do the same in the pres-

ence of these poles. The problem was �rst discussed by

Dirac in his pioneer work [3], and is related to di�cul-

ties on constructing the potentials �m and ~Am which

are generated by the magnetic charges and currents.

That is outside of the scope of this article. For a recent

approach and references on the subject, see Cardoso de

Mello et al [4].
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