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A conductive loop of wire moving with constant velocity in a magnetic field is one of the most used examples
in physics textbooks in connection to the Faraday-Lenz law, highlighting the consistency of electromagnetism
with the principle of conservation of energy. It is frequently concluded that currents are not induced in a perfectly
conducting loop because an induced current would have to be infinite and therefore would violate the principle
of energy conservation. In this paper we discuss this problem and show that a model that includes the loop
self-inductance prevents the divergence of the current and leads to results compatible with the conservation of
energy.
Keywords: Faraday-Lenz law, auto-inductance, electrical resistance, perfect conductor.
Uma espira condutora movendo-se com velocidade constante através de uma região com um campo magnético

constitui-se em uma das situações mais utilizadas em livros didáticos de f́ısica em conexão com a lei de Faraday-
Lenz, servindo para evidenciar a consistência do eletromagnetismo com o prinćıpio da conservação da energia.
Da análise dessa situação é frequentemente extráıda a conclusão de que correntes não são induzidas em espiras
perfeitamente condutoras porque nestas uma corrente induzida teria de ser infinita e portanto violaria o prinćıpio
de conservação de energia. No presente artigo apresentamos uma discussão sobre este problema e mostramos que
um modelo para a espira que inclua sua autoindutância não apresenta divergência da corrente e leva a resultados
compat́ıveis com a conservação da energia.
Palavras-chave: lei de Faraday-Lenz, autoindução, resistência elétrica, condutor.

1. Introduction

The electromagnetic (EM) theory, set forth in the XIX
century as a coherent body of knowledge, is one of the
greatest intellectual achievements of the human history.
It unified electrical and magnetic phenomena, settled
the ground for the understanding of the light as an
electromagnetic wave, and lead to the conception that
EM waves do not need a material support in order to
propagate. Significant part of our present technology
is directly related to practical applications of the EM
theory, and the understanding about the inner works of
any electronic product requires basic knowledge of fun-
damental concepts of the EM theory. The theory deals
with vector fields E and B, which satisfy a set of math-
ematical laws known as the Maxwell laws, which are

extensively studied in undergraduate courses in physics
and engineering. However, despite the usual emphasis
on the study of these very important laws of natural
science, some features remain insufficiently explored in
textbook treatments.

In the present paper we discuss some of these insuf-
ficiently explored features, related to a simple example
which is usual in textbooks on electromagnetism as il-
lustration of the relationship between the time varia-
tion of the magnetic flux through the area limited by a
closed circuit and the induced eletromotive force (emf).
The example considers a rectangular conducting loop
of wire, with sides h and w and electrical resistance R,
moving with constant velocity v through a rectangular
region abcd, which is perpendicular to a uniform and
stationary magnetic field B (Fig. 1).
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Figure 1 - Conducting loop of wire before entering a region with
uniform and stationary magnetic field.

It can be easily shown that an induced emf ε occurs
in the loop, starting when it initiates the penetration
in the abcd region and vanishing when it is completely
inside this region. The emf starts again when the loop
starts to leave the abcd region and vanishes when it
leaves the region. The absolute value of the emf is

|ε| = Bhv , (1)

and the intensity of the induced electric current is

|i| = Bhv

R
. (2)

Figure 2 shows the induced current as a function
of the position of the leading side of the moving loop,
considering x = 0 the position in which the loop starts
the penetration of the abcd region, and x1 = ab the po-
sition in which the loop starts to leave this region. The
magnitude of the current is the same in the entrance
and in the exit phases, but the sense of the current is
inverted, as described by the Lenz law.
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Figure 2 - Induced current as a function of the position of the
leading side of the moving loop, in the case of a purely resistive
loop.

As a consequence of the induced current the loop
suffers a magnetic force whose magnitude is given by

|FB| =
B2h2v

R
, (3)

both in the entrance phase and in the exit phase. The
magnetic force is opposite to the sense of motion of the
loop, in both phases. For the movement of the loop to
be maintained at constant speed, some agent external
to the system loop+magnetic field must apply a force
of the same magnitude as the magnetic force, but in op-
posite sense. That is, the external force must point in
the same sense as the velocity of the loop. The external
agent therefore introduces power into the system, given
by

PF =
B2h2v2

R
. (4)

On the other hand, power is dissipated in the loop,
by the so-called Joule effect, in an amount given by

PR = Ri2 =
B2h2v2

R
. (5)

These results show that the power introduced into
the system by the external agent, given by Eq. (4), is
exactly the same as the power dissipated by Joule effect,
given by Eq. (5). The conclusion, always emphasized
by the textbooks, is that the Faraday-Lenz law is con-
sistent with the principle of energy conservation.

This textbook example clearly shows that the in-
duced currents, the forces and the powers involved, in-
crease when the electrical resistance of the loop is re-
duced. An interesting variation of the situation can
therefore be proposed: What happens if the electrical
resistance of the loop is reduced until vanishing, that
is, if the loop is made from a perfectly conducting ma-
terial?

Well known textbooks discuss this limiting situation
using arguments which may be understood erroneously,
if interpreted as simple extrapolation of the result given
by Eq. (2). For instance, in the book by Tipler and
Mosca (2004, p. 923) [1]:

. . . there can be no electric field in a super-
conducting ring because it has no resistance,
so a finite electric field would drive an infi-
nite current. The flux through the ring is
thus frozen and cannot change.

Similar statement can be found in the book by
Chabay and Sherwood (2010, p. 963-964) [2]:

Suppose that you try to change the flux
through a superconductor ring. This chang-
ing flux would be associated with a curly
electric field (. . . ). This curly electric field
would drive an infinite current in the ring,
because there is no resistance!
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Statements like these may easily appear to have

been obtained by direct use of Eq. (2). However,

Eqs. (2) to (5) are not strictly valid when the electrical

resistance becomes very small, leading to divergence in

the limit of vanishing resistance. The divergence does

not occur in the physical phenomena, it is rather con-

sequence of the use of a model which does not take into

account the inductance of the loop. In the following

sections we discuss some particular cases and demon-

strate that the divergences in Eqs. (2)-(5) do not occur

if a more complete model is utilized for the descrip-

tion of the loop. For the analysis, we assume that the

emission of electromagnetic radiation is negligible in all

cases considered.

The problem of the conducting loop, either resis-

tive or with vanishing resistance, taking into account

the self-inductance, has been discussed in a paper by

Saslow [3], which develops and discuss the pertinent

differential equations. Another and more recent analy-

sis appears in Ref. [4], which discusses the occurrence of

self-inductive effects in the context of perfectly conduct-

ing and superconducting circuits, rather than resistive

circuits, and intends to be useful to motivate the inter-

est of students on the topic of superconductivity. The

present paper adopts a perspective somewhat comple-

mentary to that of Ref. [4]. It does not intend to discuss

the superconducting state, but offers a detailed discus-

sion on the transition between circuits which can be

considered as purely resistive and circuits with vanish-

ing resistance, with the discussion restrained to the use

of concepts which are usual in general physics classes.

The approach which is proposed in the present paper

avoids the use of second-order differential equations, re-

lying instead on a mathematical approach more con-

sistent with that of textbooks on general physics, like

those already mentioned [1, 2].

The structure of the paper is the following: in sec-

tion 2 we discuss the case of a conducting loop of

wire moving with constant velocity, taking into account

the self-inductance and the resistance of the loop. In

sub-section 2.1 we present the limiting case of a per-

fectly conducting loop, still taking into account the self-

inductance. The transition between the perfectly con-

ducting case, in which the resistance vanishes and the

self-inductance can not be neglected, and the opposite

case in which the self-inductance is negligible and the

loop can be considered exclusively resistive, is discussed

in more detail in sub-section 2.2. Section 3 presents

the case of a loop of wire moving exclusively under the

effect of a magnetic field, without forces produced by

external agents. Some numerical results and estima-

tions appear in section 4. Finally, conclusions and final

remarks appear in section 5.

2. Resistive and inductive loop moving
with constant velocity

The textbook example discussed in the introduction
section is based on a model which can be called the re-
sistive model, in which the self-inductance of the loop is
neglected. The use of the resistive model implies the in-
stantaneous appearing of an induced current with con-
stant intensity, as described by Eq. (2). The instanta-
neous response is clearly the result of an approximation,
since in the actual case the current must vary smoothly
when there are changes in the emf.

The point is that in the derivation of Eq. (2) the
current transient due to self-inductive effects has been
neglected. If the self-inductance L is taken into ac-
count, and considering the constant emf ε = Bhv, the
induced current is a time-dependent quantity,

i(t) =
Bhv

R

(
1− e−t/(L/R)

)
, (6)

the well-known solution of the initial value problem for
the RL circuit,

L
di

dt
+Ri = Bhv , i(0) = 0 . (7)

If the time constant τ = L/R is very small compared
to the time intervals which are relevant, for instance
the interval for the complete entrance of the loop in
the abcd region, the duration of the transient current
becomes negligible, and the constant value of current
predicted by the resistive model becomes an useful ap-
proximation.

Equation (6) is well defined for finite values of R and
L, because it is a solution of a differential equation de-
scribing a circuit with constant emf and non-vanishing
resistive and inductive characteristics, Eq. (7). The
limiting case in which the inductance L is made to van-
ish amounts to that briefly considered in section 1. The
case in which the resistance R can be considered van-
ishing is considered in the following sub-section.

2.1. The case of a perfectly conducting and in-
ductive loop

Here we consider the case of a loop of wire with re-
sistance R = 0 and finite self-inductance L. The loop
moves with constant velocity and is incident on a re-
gion with uniform magnetic field, as depicted in Fig. 1.
A constant emf is produced while the loop enters the
region abcd. The initial value problem describing the
situation is obtained from Eq. (7), simply as follows

L
di

dt
= Bhv , i(0) = 0 . (8)

whose solution is given by

i(t) =
Bhv

L
t . (9)
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The induced current can be written in terms of the
position of the leading side of the moving loop, x = vt,
considering x = 0 the position of entrance in the abcd
region,

i(x) =
Bh

L
x . (10)

It is seen that the induced current grows linearly
with the distance of penetration into the region where
there is a uniform magnetic field, attaining maximum
value for x = w, i.e., when the loop is entirely in the
abcd region. It is clear that there is no divergence in
the induced electric current in the case of a perfectly
conducting loop of wire, differently from what would be
obtained with use of Eq. (2).

The magnetic force resisting the entering loop is
therefore proportional to the distance of penetration,

FB =
B2h2x

L
, (11)

as well as the motive power developed by the external
agent,

PF =
B2h2v

L
x . (12)

To discuss the conservation of energy, we evaluate
the rate of variation of the magnetic energy associated
to the loop with inductance L,

PB =
d

dt

(
Li2

2

)
= Li

di

dt
=

B2h2v

L
x , (13)

where in the last step we have used Eq. (9) for i(t).

It is seen that the rate of variation of the magnetic
energy during the phase in which the loop is entering
the abcd region, given by Eq. (13), is exactly the same
as the power provided by the external agent, Eq. (12),
indicating that at least in the entrance phase the purely
inductive case also satisfies the principle of energy con-
servation.

After the moment in which the loop is totally in-
serted into the region abcd, the magnetic flux over the
area of the loop is constant and therefore the induced
emf vanishes. However, because the electrical resistance
is zero, the electric current remains unchanged. On the
other hand, when the loop starts to leave the region, the
magnetic flux starts to decrease, and it is easy to show
that the current linearly decreases, vanishing when the
loop leaves completely the abcd region. The current
along the whole transit of a perfectly conducting loop
through the abcd region is shown in Fig. 3, as a function
of the position of the leading side of the loop.
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Figure 3 - Induced current as a function of the position of the
leading side of the moving loop, in the case of a purely inductive
loop.

Figures 2 and 3 are noticeably different. Part of the
difference which is visually noticeable is related to the
inversion of the sense of current propagation which hap-
pens in the case of the purely resistive loop, depicted in
Fig. 2. Due to the inversion in the sense of the current,
the resistive force is opposite to the loop velocity, both
in the entrance and in the exit of the region abcd. The
external agent makes positive work in both phases of
the motion, and the total work done is equal to the en-
ergy dissipated by Joule effect, as seen in Eqs. (4) and
(5). In the purely inductive case, on the other hand,
the magnetic force is opposite to the velocity when the
loop is entering the region and in the same sense as
the velocity when the loop is leaving the region. The
external agent makes positive work when the loop is en-
tering the region, in the same amount as the increase in
the magnetic energy, as demonstrated by Eqs. (12) and
(13), and makes negative work when the loop is leaving
the region, in the same amount as the decrease in the
magnetic energy. The total work made by the external
agent is null, and the energy conservation principle is
not violated.

2.2. Transition between the resistive and the
perfectly conducting cases

Figures 2 and 3 show the behavior of the electrical cur-
rent when the loop is exclusively resistive and when it
is exclusively inductive, respectively. These two cases
may be understood as limiting situations for the general
case of a loop with resistive and inductive properties.
This more general case is illustrated in Fig. 4, which
shows the current as a function of time, as predicted
by Eq. (6), for four inductive and resistive loops which
enter the abcd region with the same velocity. To fit
the behavior of the current over a long time range, the
scales in the two axis are not linear. For the four loops
represented, the self-inductance is the same, while their
electrical resistances have the same ratios as 1:2:5:10.
The initial growth of the current, independently of the
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time constant τ = L/R, is exactly the same that hap-
pens in the case of a perfectly conducting loop, whose
behavior is described by Eq. (9), and is represented by
the dashed straight line passing through the origin. It
is seen that, when the electric resistance tends to zero,
the current simply tends to grow continuously, without
divergence, while the flux due to the external magnetic
field is increasing over the loop area.
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Figure 4 - Intensity of the induced current as a function of time
after the entrance in the region of uniform magnetic field, for
four loops with the same self-inductance and different values of
the resistance.

In fact, it is easy to verify that the limit of Eq. (6)
for R → 0 is Eq. (9). Using Eq. (6) and expanding the
exponential function in powers of the non-dimensional
quantity (Rt/L), we obtain

i(t) = Bhv

(
t

L
−R

t2

L2
+ . . .

)
→ Bhv

L
t , (14)

where the last result is obtained in the limit R → 0.
Moreover, for finite R, the first order approximation

shows that the current is proportional to t for small val-
ues of t. That is exactly what is seen in Fig. 4. For any
value of R, the initial rate of current variation is the
same as the rate of variation for the case of perfectly
conducting loop, given by Eq. (9).

On the other hand, for finite R and for t → ∞,
Eq. (6) predicts that the limiting value of the current
is inversely proportional to R, as in Eq. (2), since

lim
t→∞

e−Rt/L = 0 . (15)

The curves depicted in Fig. 4 confirm that the limit-
ing value of the current increases for decreasing electri-
cal resistance. The time for attaining the limiting value
of the current also increases for decreasing resistance,
because the time constant is proportional to R−1.

Figure 4 also highlights an important property re-
lated to the time constant τ , namely, that at t = τ the
current attains nearly 63% of its maximum value, which
would be attained at such a time for linear growth.

3. Perfectly conducting loop moving
exclusively under the effect of a mag-
netic field

In this section we discuss a situation which has a fun-
damental difference relative to the cases discussed in
the previous section. Here we consider a perfectly con-
ducting moving loop which does not suffer the action
of external forces. Only magnetic forces are in action
when the loop enters or leaves the abcd region. From
an energetic point of view the kinetic energy of the loop
decreases when the loop enters the region, due to the
magnetic force opposed to the sense of motion, and oc-
curs a corresponding increase in magnetic energy. Since
there is no dissipation in a perfect conductor, and since
electromagnetic radiation is assumed to be negligible,
the summation of kinetic energy Ec and magnetic en-
ergy EB is a constant,

Ec + EB =
1

2
mv2 +

1

2
Li2 =

1

2
mv20 , (16)

where v0 is the initial speed of the loop.
From Eq. (8), assuming v = v(t),

L
di

dt
= Bhv(t) , i(0) = 0 . (17)

Remembering that v(t) = dx/dt, Eq. (17) can be
written as follows

di =
Bh

L
dx , i(x = 0) = 0 , (18)

whose solution is given by

i =
Bh

L
x . (19)

This result is exactly the same as obtained in
Eq. (10). It is therefore demonstrated that, even for
variable loop velocity due to the effect of the magnetic
force, the intensity of the induced current grows linearly
with the distance of penetration of the leading front of
the loop into the abcd region.

If the loop velocity vanishes before the loop is com-
pletely inside the abcd region, the magnetic force sends
the loop moving back, reflecting it from the region with
the magnetic field, so that the loop recovers the initial
kinetic energy, but moving in opposite sense. For that
to occur, the length of the segment along the motion
must be larger than the distance of maximal penetra-
tion in the region abcd, namely w > X, where X is the
point where the kinetic energy vanishes,

1

2
mv20 =

1

2
Li2(X) . (20)

Using Eq. (19), condition (20) be put in the follow-
ing form,

1

2
mv20 =

1

2
L

(
BhX

L

)2

, (21)



1309-6 Silveira et al.

which leads to the following expression for the distance
of maximum penetration into the abcd region,

X =

√
mL

Bh
v0 . (22)

Consequently, the condition for occurrence of reflec-
tion from the abcd region is as follows,

w >

√
mL

Bh
v0 . (23)

If condition (23) is not satisfied, the loop enters com-
pletely in the abcd region, despite the breaking mag-
netic force. Therefore, it emerges in the opposite side.
When leaving the region, the magnetic force is in the
same sense as the motion, and the current decreases
and finally vanishes, when the loop has recovered the
initial velocity.

The conclusion is that, due to the absence of dissipa-
tion in the perfectly conducting loop, the loop recovers
the initial kinetic energy, no matter if it suffers reflec-
tion from the abcd region or if it crosses through that
region. Similar result was found in the analysis of the
motion of a magnet passing through a superconducting
tube [5].

4. Some numerical results

For further comparison between the cases of purely re-
sistive and purely inductive loops moving with con-
stant velocity under the influence of an external agent,
we produce some numerical estimates, considering two
square loops with side h, made from a cylindrical wire
with transverse radius r, with r < h. We assume
h = 5.0 cm and r = 1.0 mm. The magnitude of
the magnetic field in the abcd region is assumed to
be 0.05 T. For order of magnitude estimate we assume
that the mass density of the wire is near that of cop-
per, ρm ≃ 8.9 × 103 kg/m3, and that the resistivity of
the wire in the resistive case is nearly that of copper,
ρ ≃ 1.7× 10−8 Ω·m.

The electric resistance of the resistive loop is given
by

R = ρ
4h

πr2
, (24)

and the inductance of the square loops is given by [6]

L ≃ 2µ0h

π

[
ln

(
h

r

)
− 0.774

]
, (25)

where µ0 is the magnetic permeability of the vacuum.
For the values of parameters which we have assumed,
R ≃ 1.1× 10−3 Ω and L ≃ 1.3× 10−7 H.

Assuming that the inductance can be neglected, i.e.,
assuming the validity of the resistive model, we use
Eq. (2) and obtain the magnitude of the current in
the purely resistive loop,

|iR| =
Bvπr2

4ρ
. (26)

On the other hand, the maximum magnitude of the
current in the purely inductive loop can be obtained
from Eq. (9),

|iL|max. =
Bπh

2µ0 [ln (h/r)− 0.774]
, (27)

where Eq. (25) has been used for the inductance of the
loop.

The ratio between the current intensities in the
two limiting cases, obtained from Eq. (27) divided by
Eq. (26), is therefore

|iL|max.

|iR|
=

2ρh

µ0vr2 [ln (h/r)− 0.774]
≃ 416

v
. (28)

Considering the loop speed v ≃ 1.0 m/s, this rough
estimate shows that the maximum value of the current
in the perfectly conducting loop is nearly 400 times the
intensity of the current in the purely resistive loop. The
current intensities in the perfectly conducting and in
the resistive loop, Eqs. (27) and (26), would be re-
spectively ≃ 1000 A and ≃ 2.3 A. This simple example
shows that the perfectly conducting loop with inductive
properties, despite avoiding the divergences predicted
when the inductance is neglected, may indeed feature
currents which are much more intense than the current
in a resistive loop with the same geometry.

We also make numerical estimates of the conditions
for which it is reasonable to neglect the effects of self-
inductance for a moving loop of wire, considering typi-
cal parameters. As discussed in the paragraph following
Eq. (7), the inductive effects can be neglected in the
case of a resistive loop if the time constant τ = L/R is
very small compared with a typical time interval. For
the parameters which we have assumed for the resistive
loop, τ ≃ 1.2 × 10−4 s. As a relevant time scale it is
possible to use the time for the loop to enter or to leave
the abcd region, given by h/v. The condition for rele-
vance of self-inductance effects, therefore, can be cast
as follows

v ≥ 5.0× 10−2

1.2× 10−4
≃ 416

m

s
. (29)

In the case of loop speed v = 1 m/s, as assumed
in the previous paragraph, self-inductive effects can
be neglected for resistive loops. Even for v = 10 or
20 m/s, relatively high values for laboratory demon-
stration, self-inductive effects can be safely neglected.

Finally, we discuss on the conditions which deter-
mine whether a perfectly conducting loop of wire mov-
ing without the influence of an external agent is re-
flected or enters completely into the region abcd. Solv-
ing Eq. (23) for v0, remembering that we are consid-
ering w = h, we obtain that the loop is reflected if the
initial velocity satisfies the condition

v0 <
Bh2

√
mL

. (30)

For the parameters which we have assumed, the per-
fectly conducting loop is reflected if v0 < 4.6 m/s.
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5. Final remarks

In the present work we have used basic concepts of
electromagnetic theory to discuss what happens with a
perfectly conducting loop of wire moving through a re-
gion with a uniform and stationary magnetic field. The
study was motivated by the observation that even well-
known textbooks may convey the notion that induced
currents do no appear in such loops, since the appear-
ing of a current would violate the principle of energy
conservation [1]. Using a mathematical approach con-
sistent with that of textbooks on general physics, we
have tried to show that such reasoning is not correct,
being a consequence of neglecting the self-inductance of
the loop, which can not be neglected when the electric
resistance is negligible.

In the discussion of the problem we have considered
the case of a loop with resistive and inductive proper-
ties moving with constant velocity, with emphasis on
the limiting cases of purely resistive and purely induc-
tive loop, and also the case of a loop moving without
influence of a external agent. In the latter case, the
velocity of the loop varies due to the interaction with
the magnetic field. The theoretical analysis has been
illustrated by some numerical estimates.

Our analysis has used a particular physical situation
to emphasize the general feature that conclusions which
are spurious and incompatible with observations can be
obtained from theoretical analysis, if limited modeling
is utilized for description of situations which are beyond
the range of validity of a model, and that more accurate
modeling can put the analysis back in consonance with
observations. Other similar situations can be found in
different physical contexts. For instance, some analogy
can be found with a mechanical situation, related to
the inertia of a body. The current does not diverge in a
perfectly conducting loop of wire under the effect of an
induced eletromotive force, due to the self-inductance,
in the same way as the velocity of a body does not

change instantly under the effect of a force, due to the
body inertia.

The bottom-line is that the phenomena which have
been discussed offer excellent opportunity for discussion
of basic features of electromagnetic theory, and also op-
portunity for discussions on the limitations of models
which are utilized for description of physical systems.
A model will always be a simplified representation of re-
ality, so that the results obtained with use of the model
are valid only within a limited context [7–9].
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