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Green’s functions for the wave, Helmholtz and Poisson equations
in a two-dimensional boundless domain
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In this work, Green’s functions for the two-dimensional wave, Helmholtz and Poisson equations are calculated
in the entire plane domain by means of the two-dimensional Fourier transform. New procedures are provided
for the evaluation of the improper double integrals related to the inverse Fourier transforms that furnish these
Green’s functions. The integrals are calculated by using contour integration in the complex plane. The method
consists basically in applying the correct prescription for circumventing the real poles of the integrand as well as
in using well-known integral representations of some Bessel functions.

Keywords: Green’s function, Helmholtz equation, two dimensions.

Neste trabalho, as fungbes de Green para as equacGes bidimensionais da onda, Helmholtz e Poisson sdo cal-
culadas na totalidade do dominio plano por meio da transformada de Fourier bidimensional. Sdo apresentados
novos modos de se efetuarem as integrais duplas improéprias relacionadas as transformadas de Fourier inversas
que fornecem essas fungbes de Green. As integrais sdo calculadas a partir de integrais no plano complexo. O
método consiste basicamente em determinar o caminho de integragdo que se desvia corretamente dos polos reais

do integrando bem como em usar representacoes integrais bem conhecidas de algumas funcoes de Bessel.
Palavras-chave: funcio de Green, equacdo de Helmholtz, duas dimensoes.

1. Introduction

Green’s functions for the wave, Helmholtz and Poisson
equations in the absence of boundaries have well known
expressions in one, two and three dimensions. A stan-
dard method to derive them is based on the Fourier
transform. Nevertheless, its derivation in two dimen-
sions (the most difficult one), unlike in one and three,
is hardly found in the literature, this being particularly
true for the Helmholtz equation.? This work aims at
providing new ways of performing the improper dou-
ble integrals related to the inverse Fourier transforms
that furnish those Green’s functions in the bidimen-
sional case.

It is assumed that the reader is acquainted with the
usual prescriptions for circumventing the real poles of
a function being integrated over the real axis: the ie-
prescription [B-8] and that which leads to the Cauchy
principal value. In this respect, Ref. [B] is closely fol-
lowed. As described in this reference, in physical appli-
cations, the improper integrals that arise are often not
well defined mathematically, being necessary to con-
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sider the physical conditions to determine the correct
prescription. For this reason, the wave and Helmholtz
equations solved in this work refer to concrete situa-
tions.

Sections 2, 3 and 4 are devoted to the wave,
Helmholtz and Poisson equations, respectively. Section
5 concludes the body of the paper with final comments.

2. Wave equation

For the reasons given in the Introduction, in order to
calculate Green’s function for the wave equation, let
us consider a concrete problem, that of a vibrating,
stretched, boundless membrane

VZZ(I‘,t) - CiQZtt = _Tilf(lvt)a
[rinR* tinR]. (1)
In this, z(r, ) is the membrane vertical displacement at

the point r of the zy-plane at the time ¢, f(r,t) is the
external vertical force per unit area, and ¢ = /T /o,

2For this equation, the author is aware of the procedure sketched in Ref. [m], p. 173-176
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where T is the stretching force per unit length (uni-
form and isotropic) and o is the mass per unit area.
We admit that the membrane has always been (since
t — —o0) lying at rest on the zy-plane until the source
of vibrations f starts generating waves.

The associated Green’s function G(r,t|r’,t') is the
solution of (W) with a unit, point, instantaneous source
at the point r’ at the time ¢’

— CizGtt ==
[rand 1’ in R?,

V2G(r,t|1' 1) T '5(r—1')6(t—t)

tand t’ in ]R] . (2)
We consider here the causal Green’s function, for which
Gt t)y=0 if t<t , (3)

meaning that, before the instantaneous action of the
unit point source, the membrane is found in its original

J

V2G(r,t|r ) — c2Gy =
—k2G(k, t|r, V) — ¢ 2d*G /dt* =
—k2G (k wlr' ) + (w/c)
Gk,w|r ) =

Qé _ [—T71 6ik-r'/(2
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state - horizontally and at rest - in accordance with the
causality principle.

To solve the problem defined by Egs. (B) and (B),
we Fourier transform (B), both in the spatial and time
variables - according to the definitions

F{G(xr,t|r', 1)} =
1

- 2 ’ogt
= Gl t|x', ') (4)

d>?r eik""G(r7 t|r't) =
RZ

TGk, t|r' )} =

dt e“'G(k,t |/ 1 =G(k,wl|r, 1),
=/ [¥.#) =Gl w1 1)

and solve the resulting equation to obtain G (k,w|r/,t)

Fr

T 's(r—1)o(t—-t) ==

[Tt em)] ot — ')

™) et )Vor =

271 eik~r’eiwt'/ (2%)3/2

We then calculate the inverse Fourier transforms,

7 {G} = G first [carried out below, in Eq. (B)]. This

is an integral of the type discussed in Ref. [B], whose

evaluation as part of a contour integral in the w-plane

imposes the need of prescribing the way to circumvent
the two real poles at w = +kc.

For ¢t < t/, in closing the contour with a semicircle
Cr of radius R — oo, we obtain a vanishing integral
along Cg if we let it lying in the upper half-plane (as
Fig. M(a) shows), according to Jordan’s lemma. There-
fore, fulfillment of Eq. (B) necessitates the path of in-
tegration along the real axis to be that in Fig. O(a),

Gk, t|r't")

0
CQT_I ik-r’ :
7(271_)2 e - 27 Res(—k

eiker /(—2kc)

= H:t_l{é(ka w | I'/, t/)} =

¢) + Res(kc)
———

— k22

approaching both poles from above (which is equivalent
to calculate the limit as e — 07 of the Fourier integral
with both poles shifted of —ie), thus leaving both poles
outside the contour and leading to the expected null
result. For t > ¢/, we adopt this same prescription in-
dicating how the path along the real axis circumvents
the poles, but, because of Jordan’s lemma, we close the
contour as in Fig. O(b), with Cr in the lower half-
plane, thus enclosing both poles, at which the residues
now contribute to the result.

In the notation of Ref. [B], such a way of calculating

the improper integral leads to its D__-value®
_2T- 71w(t t')
C 1k r’
D_ )

(2m) / w? — k22 (5)

(t<t)

_C g sinker
(t>t) | = 27T © kil

e~ikeT /(2kc)

where 7 = ¢ — t/ and U(7) is the unit step function (equal to 0 for 7 < 0 and to 1 for 7 > 0).

3¢«D__” means that, in applying the ie-prescription method, both the left and right poles are shifted of —ie. Cauchy’s P-value as
well as the D4 4-, Dy_- and D_-value of the improper integral are not physically acceptable, because they do not vanish for ¢ < ¢/

and are thus inconsistent with the causality principle.
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(a) t <t/

Cr

—kec ke

- plane

in a two-dimensional boundless domain 1304-3

—kc ke

(b) t >t

Figure 1 - The contours used to evaluate the integral in Eq. (B) for (a) t < ¢’ and (b) ¢t > t'.

Now evaluating 71 of the result above, we obtain

Gr,t|r',t) = 57 HG(k t|r' 1)} =
cU(T) 2, _ik(r—r/) SiDkcT
St / P e rer, (6)
4
ki, 7
k
pP=T— r/ ¥
kﬂ]

Figure 2 - The axes of the Cartesian coordinates k; and ky of the
vector k used to evaluate the double integrals in Eqgs. (B), (IA),
(M) and (E23).

This double integral becomes easier to perform if we
express the area element of the k-plane in the polar co-
ordinates, d2k = k dk dy (instead of the Cartesian ones,
d*k = dk, dk,), and choose the k,-axis in the opposite
direction of the vector p = r — r’, as shown in Fig. B.
In addition, noticing that k - (r — r’) = kpcos(m — ),
we can write

271 00
G(r,t|r',t") ;%//eikpcoswsinkcrdkdw
0 0
u e’} 1 27
= 0275;) dk sin ker [%/dga elkp cos “’1 . (7)
0 0

The brackets in this equation enclose an integral repre-
sentation of the Bessel function Jo(kp), which also ad-

mits another well-known integral representation; that
o a
is,

2
1

%/d@ 1kpcos<p_J0 k‘p
0

/ du bm’“”“ L ®)

Therefore, with the substitution of this latter integral
representation of Jo(kp) for the former one in Eq. (@),
we can continue the calculation as follows

;o _cZ/I(T)OO . 2 7 sin kpu
Glr,t [, ) = 2T Lr =
cU(r )C>C du

2
= dk sinkpusinker| . (9)
2T \/u2 [ / ]

Now recognizing that the last pair of brackets en-
closes an integral representation of the delta function
0(pu— c1) [B,8] and then changing the variable of inte-
gration from u to & = pu — ¢7, we can write

G(r,t|1/ ) = cU(7) [ dud(pu—cr) _

27TT VuZz —1

/ dg o(¢
271'Tp / +c7' '

This integral is easily evaluated by using the sifting property of the delta function;® we obtain

et 1) = cu()x 02 if p—er>0 (ie. T—p/c<O0)
21 Tp 1/ (%) -1 if p—er<0 (ie. 7—p/c>0)
if 7—ple<0 _ UT)U(T —p/c)

_ U(r) y {0
27 T\/712 — (p/c)? 1

if 7—p/c>0

2T/ — (p/c)?

U(r—p/e)

4The first integral representation, by bisecting the range of integration and making the changing of variable ¢ — 27 — ¢ in the latter
part, becomes the Eq. (2) in Ref. [@], §2.3, with n = 0 and z = kp. The second one is also found in this reference, §6.13, Eq. (3), with

v =0 and z = kp.

5That is, fab dx 6(x) f(x) is equal to f(0) if @ < 0 < b and is zero otherwise.
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But, in the product U(7)U(T — p/c), we can drop the first unit step function without altering the result (this is
readily seen by plotting them both). We then obtain the final result

1 Ut —p/c)

G(r,t|r', ") = G(p,7)

3. Helmbholt equation

In this section, we calculate Green’s function for the
Helmholtz equation in an unbounded two-dimensional
domain. Being more specific, we solve Eq. (I3), which
arises in the following concrete problem.

Suppose that, in the membrane problem of the pre-
vious section, the source term is given by

flr,t) = ¢(r)e™t (> to), (10)

that is, the external vertical force per unit area varies
harmonically with time with frequency wq at all points
of the membrane, being ¢(r) (a non-negative function
everywhere) its maximum magnitude at the point r.
In addition, we admit that we are only interested in
the stationary solution zs(r,t) that will prevail after
a very long time has elapsed as a consequence of the
forced harmonic oscillation.

It is well-known that, when this steady-state motion
is reached, all points of the membrane will be vibrat-
ing harmonically with the same frequency wp, but with
amplitudes described by some function ((r), that is

2et(r, 1) = C(r) e 7“0t (¢ > tg). (11)

Therefore, the desired stationary solution becomes de-
termined as soon as ((r) is calculated. By substituting
Egs. () and (1) in Eq. (W), we verify that ((r) is the
solution of the two-dimensional Helmholtz equation

VEC+kgC(r) = =T7'¢(x) [ko=wo/c],  (12)

whose solution is given by ¢(r) = [, d*r'I(r|r') p(r'),
where I'(r|r’) is the Green’s function for the above
equation, the solution of

V2l + k2D (r|r') = -T7'6(r — 1) [randr in R?].

(13)

Since Eq. (3) is Eq. (@) with ¢(r) = 6(r —1’), we see

that I'(r|r’) describes the amplitude of the stationary

motion when the external vertical force is concentrated
at v’ and oscillates with unit amplitude.

Let us solve Eq. (I03). We first take the same Fourier

transform F, defined in Eq. (#), obtaining
—K2T(k|r) + k2T (k|r) = —T "/ (2r) =
T-1 eik»r'

2 k2 — k3’

and then calculate the inverse Fourier transform
T—l e—ikAp

P’k —— =r—1r']. (14
(27r)2/R2 k2 — k2 lp=r =] (14)

We present two methods of calculating this integral in
the next two subsections.

I(k|r) =

I'(r|r')=

T 77— (p]e)?

3.1. First method

To evaluate Eq. (IA), we again choose the k,-axis in
the opposite direction of the vector p, as in Fig. B,
but we now proceed with the Cartesian coordinates of
k=Fke, +kye,

T S dk,
P i) = G /,oodk”“'e mp/ookgwf;—k%'

I(ka)

(15)

The integral denoted by I(k,) above can be calcu-
lated as part of a contour integral in the k,-plane. It
does not matter if we close the contour with a semicircle
of radius R— oo through the upper or lower half-plane;
let us close it through the upper half-plane (Figs. B and
B). However, to investigate the poles of the integrand,
we need to consider two separate cases: |k;| > ko and
|kr‘ < ko.

For |k,| > ko, by writing the denominator of the
integrand in the form

e (02 ) = (b ) (bR,

we verify that only the pole iy/k2 — k3 is inside the
contour (Fig. B); therefore

k:y - plane

$ ik — K2
¢ —i k2 k2

Figure 3 - The closed contour used to evaluate the integral I (k)
defined in Eq. (@) for |ks| > ko.

Y
v
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Imk

ks =k
(b) @,
(c) D,y
[ A9 ),

Figure 4 - Four ways of circumventing the real poles in the evalua-
tion of the integral I(kz) defined in Eq. (I3) for |k;| < ko. These
are the possible ie-prescriptions; for each one, the corresponding
D-value (D_4, etc) is indicated.

1
I(ky) = 2riRes (iw/kg—kg) = 2ri N
xz MO
s
= N [[ka| > ko] (16)

For |k;| < ko, that denominator in the form
2 (- k2) =
(ky+ VIE=12 ) (b — VIR = R2 )

clearly shows the existence of the two real poles
++/k3 — k2 . Since the residues at them are given by

Res (£/k3 — k2 )=+1/(2

that
k)= £mi/\[R k2 [kl <k] (1)

are possible values for I(k,). In fact, the 4+ and — signs
correspond, in the notation of Ref. [B], to the D_, - and
D, _-value of I(k,), obtained with the first and second
prescriptions shown in Fig. B. The D, ,- and D__-value
(obtained with the third and fourth prescriptions) as
well as the Cauchy P-value of I(k,) all vanish. We
proceed with both signs in Eq. (I3), because only at
the end, by physically analyzing the two corresponding
solutions, we will be able to take the correct sign.

Let us now perform the integral with respect to k,
in Eq. (). In view of the distinct results in Eq. (ID)

— k2 ), we can deduce

in a two-dimensional boundless domain 1304-5

and Eq. (I3) for I(k,), we split the interval of integra-
tion in two (for |k;| = |ko|, convergence occurs when
=P[° dk,/ k2 = 0 , which makes no contribu-

tion)
I(r|r) = /dkm +/de] e*eP I(k,)
lkz|>ko  |kz|<ko
dkym ™0 [ dky 7 eiw]
/k2 _ k2 /k2 _ k‘2
|k |>ko PREI r

The intervals of integration of both integrals above are
symmetric with respect to the origin. Therefore, if we
substitute cos kyp + isin k,p for e*=P we get integrals
of odd terms (exhibiting sin k. p), which vanish, and of
even terms (exhibiting cos k,.p), which can be replaced
by twice the integral over the positive values of k,

I'(r|r) =
T-1 coskyp k coskyp
| 27 [k e £ 27 [ Uy — e
(2m)? i N Jo Vg — k2

The first integral, with the change of variable given
by k, = kou, becomes a known integral representation

of the Neumann function of order zero®?

oo

coskyp cos kopu s
dky——= = | du————=—= = —= No(kop).
ke  AVE2-K 1 Vur-1 2 o(kop)

The second integral, with the change of variable k, =
ko cos 1, also becomes a known integral representation®

ko cos kzp

dky————
0 VkE— k2

We thus get

/2
= / dd cos(kop cos¥) = gJo(kop).
0

-1

T s LT
re|r) = 5 [_5 No(kop) £ i3 Jo(kop)

+iT-t
4

[+iNo(kop) + Jo(kop)] ,

which is equal to (iT7'/4) Hél)(kop) for the plus sign
and to (—i7~1/4) HéZ)(kop) for the minus sign.
However, the stationary membrane motion
I(r|r')e ot according to the radiation condition
(see Ref. [M], p. 471), must be a wave moving away
from the unit point source (i.e., from the harmonic
force of unit amplitude at r’). This imposes the choice
of the first Hankel function.¥ The final result is then
I(e|') = I'(p) =

i
77 10 (kop)  [p=r =]

(18)

6Ref. [@], §6.21, Eq. (15), where this function is denoted by Y instead of Np.

"Ref. @], §2.2, Eq. (9), with n =0 and z = kop.

8A good explanation of the representation of outgoing and incoming cylindrical waves by means of the Hankel functions is given
in Ref. [M], Sec. 9.12, p. 470. Notice, however, that, in this reference, the outward-traveling wave is formed with the second Hankel

(

function H02>7 because the time factor used there is €0t instead of the e~1“0? used here.
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3.2. Second method

The integral in Eq. (Id) can also be calculated in polar coordinates. The first steps are similar to those performed
in going from Eq. (B) to Eq. (B)

2m

T—l e—lkp T 1
AN 2 —
PElr) = g /RQd FeTw 271')2/
0

00 2
7! dk k 1 ; T sin kpu
_ — |d ikpcosp| _ d
o /k2 kQ[ /“’e o / [/u u21]
0 0

1
Jo(kp) Jo(kp)

ksmkpu T [ du S(u)
= . 1
/dk 2 /\/u2—1 (19)
1

ikp cos ¢ k dk d@
e k;2
0

T*

\/ u2 [

= S(u)

To evaluate the integral S(u) defined above, we write it in a more appropriate form

o0

B 1 k(eikpu _ efikpu) B E+(’LL) o E*(u) B k eilkpu
S(“)*i/dk %A(k2—K2) 4 [Ei(“)_/_ e —kg}

— 00

The residues of the integrands in E*(u) and E~(u) (denoted by Res; and Res_, respecively) at the poles 4kq
are
Resy (£ho) = e¥%07*/2  and  Res_ (ko) = e¥hore /2 .

Therefore, referring to the contours shown in Fig. B (which are closed with infinite semicircles that, according to
Jordan’s lemma, do not contribute to the integrals), we calculate the four possible D-values of S(u) as follows

D ,S(u) = [D_,Et(u)—D_,E~(u)] /(4i) = [2miRes (ko) — (—2mi)Res_(—ko)] /(4i)
= (n/2) [e*or /2 4 e*ort 2] = (7/2) eort (20)

D, S(u) = [Dy Et(u)—D, E~(u)] /(4i) = [2miRes (—ko) — (—2mi)Res_ (ko)] /(4i)
= (m/2) [e7 o /2 4 e7horn 2] = (/2) e Rorn (21)
0

—
D S() = [Py, E*(w) = Do\ B (u) ] /(4) = 2 [Res. (ko) + Res, (ko)) /(4)

= (m/2) [e7Torm /2 + ethort /2] = (7/2) cos(kopu) (22)
r—L
D__S(u) = [D__E*(u)—D__E (u)]/(4i) = —(—2mi) 2miRes_(—ko) + Res_(ko)] /(4i)
= (m/2) [eor® /2 + e horv 2] = (7/2) cos(kopu) (23)

In order to determine the P-value of S(u), let us first calculate the P-values of ET(u) and E~(u) employing
the contours in Figs. B(c) and B(h), respectively. Denoting the semicircles of radius r — 0 used to circumvent the
poles at +kg by (£ko,r) and the semicircle of radius R — oo centered at the origin by (0, R), we can write

PE*(u) = lim [ -

r—0
fimee Lot (chor)  (+hor)  (OR)
= +27i[Resy(—ko) + Resx (ko)] — (£7i)Ress(—ko) — (£mi)Resx (ko) — O

= £7i[Resy (—ko) + Resy (ko)] = i [eTH0r" /2 + eiik"p“/Q] = +micos(kopu) ,

01 k eFikoru g,
k2 — k3

from which
PS(u) = [PET(u) — PE~ (u)] = (/2) cos(kopu). (24)
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Among the several results for S(u) calculated above,
given by Eqgs. (EO) to (BA), it is its D_,-value, given

by Eq. (£0), which is to be taken and substituted in
Eq. (), because, by doing so, we obtain the correct

result, that given by Eq. (I3)

Tt [*>
2 /1
Here, in the last step, we used the integral repre-
sentation of the first Hankel function of order zero
H (z) = (~2i/m) [ duere/vuz=1 | given in Ref. [H],
§6.13, Bq. (1).

du (m/2) efore i

1
Ir|x') = —— 7 HG (kop).

4. Poisson equation

To calculate Green’s function for the Poisson equation

in an unbounded two-dimensional domain, that is, the

solution of
VQ(r|r)=2r6(r—r') [randr’ inR*],

we again take the Fourier transform defined in Eq. (@),

obtaining

ik~r7k2

—E2Rk|r) =5 = 2k|r)=—e

k-plane

—k, WY,
T
D, E (b)
D, E" (c)
o B (d)

in a two-dimensional boundless domain 1304-7

and then calculate the inverse Fourier transform:
1 e ikp

Q(r|r’):—% T d’k [p=r—1']. (25)

To evaluate this integral, we act as in the case of the
wave equation, that is, we choose the k,-axis in the op-
posite direction of the vector p, as in Fig. B, and adopt
the polar coordinates k and ¢ of k. Next, we recognize
the integral with respect to ¢ as the first integral rep-
resentation of Jo(kp) given in Eq. (B). The result is the
following function of p only

2m

et =-4 |

® elkp cos ¢
/ kdk dp =
0

o) 27 )

dk 1 ikpcosp _ /

o2 i s :_Q .
eIk (6)
0 0 0

~—— —
Jo(kp)

The integral with respect to k becomes straightfor-
ward if we differentiate it with respect to p and then
use the chain rule to change to a derivative with respect
to k

T k
-,

=)

D, E

S (f)

ru N ./ g

. i (g)
D _FE

Figure 5 - The contours in the k-plane associated to the four possible D-values of the integrals E* (u) (at the left) and E~(u) (at the

right).
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/ _ < QJO(kp)_
2'(p) = /Odkap :

/Oo 9 Jo(kp) _ {Jo(kp)ro _ 1
— | dk — - = =,
o Ok p [ PR

since Jo(x) equals 1 at © = 0 and goes to 0 as © — 00
Now, integrating with respect to p, we obtain the final
result

2(r|r’) = 2(p) =Inp+constant [p=|r—1'|],
also obtained in Ref. [0, p. 169-170 (by a much more
complicated method). The arbitrary additive constant
is physically irrelevant. In fact, Green’s function for the
Poisson equation can be interpreted, for instance, as the
electrostatic potential at r due to electrical charge con-
centrated at r’, and only potential differences are rele-
vant. However, unlike in the three-dimensional case, in
which such constant is found to be zero by choosing the
zero potential at infinite distances away from the point
charge at r’, this cannot be done in the two-dimensional
case, because the potential diverges (logarithmically) as
the distance from the line charge at r’ increases.

5. Final comments

As said in the Introduction, the Green’s functions con-
sidered here have well known expressions, which are
obtained in a number of ways (e.g., by descenting from
the easier three-dimensional case). Therefore, we did
not aimed at presenting new results but new meth-
ods. In this respect, concerning the footnote in the first
page, we should say that, for the Helmholtz equation,
the procedure adopted here differs considerably from
that in Ref. [0], where that equation is converted into
an ordinary differential equation (in the y variable) by

Toscano Couto

means of a one-dimensional Fourier transform (in the z
variable).

For the Helmholtz equation, two procedures for
evaluating the inverse Fourier transform which fur-
nishes the Green’s functions were presented. They
differ on the coordinates used to carry on the dou-
ble integrals. It seems that the calculation employing
the Cartesian coordinates is somewhat less cumbersome
than that based on the polar coordinates.
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