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Dimensional analysis was employed to develop a predictive formula for the terminal velocity for a magnet
dropped down a metallic tube. In this particular application, the technique succeeded in generating the same
formula theoretically derived and that has been published by others. The analysis thus presented suggests other
applications that can be developed for motivating in the use of the technique.
Keywords: Lenz’s law, electromagnetic braking, magnets.

Análise dimensional foi utilizada na derivação de uma fórmula de predição da velocidade terminal de um ı́mã
em queda no interior de um tubo metálico. Nesta aplicação em particular, a técnica conseguiu gerar a mesma
fórmula derivada teoricamente e que foi publicada por outros autores. A análise aqui apresentada sugere outras
aplicações que podem ser desenvolvidas para motivar na utilização da técnica.
Palavras-chave: lei de Lenz, freio eletromagnético, ı́mãs.

1. Introduction

A rather popular experiment demonstrating Lenz’s law,

which has been analyzed in many works, is the fal-

ling magnet dropped down a metallic tube, in which,

the eddy currents induced in the tube wall, produce a

upward drag force that brings the magnet to its termi-

nal velocity. The result is that the time of falling of

the magnet is much longer than an otherwise identical

nonmagnetic object dropped through the same tube.

Saslow [1], revisiting Maxwell’s 1872 theory of eddy

currents, presented a discussion of Lenz’s law followed

by a calculation of the drag force on a magnetic dipole

falling down a long conducting tube. MacLatchy et al.

[2] described methods of calculating and measuring the

terminal velocity and magnetic forces in the magnetic

braking experiment. Hahn et al. [3] reported the re-

sults of precise measurements of the motion and dam-

ping of the magnet with variations of pipe composition,

length, thickness, radius, and position. They also pre-

sented the calculation of electromagnetic damping for

any pipe configuration, which is coaxial with the mag-

net’s motion. More recently, Levin et al. [4] presented

a calculation that quantitatively accounts for the ter-

minal velocity of a cylindrical magnet falling through a

long copper or aluminum pipe. In all these previous pu-

blished works, the same dependence of the terminal ve-

locity on magnetic dipole moment, mass, conductivity,

pipe wall thickness, and pipe wall radius was found.

In the paper of Pelesko et al. [5], an attempt has

been made to find the dependence of the terminal ve-

locity on these same variables via dimensional analysis.

However, these authors argued that such analysis was

not possible as posed, and have proceed in a combina-

tion of elementary physics and dimensional arguments,

as they put it, to uncover the dependence of the ter-

minal velocity on the various variables. The result was

that the approaches taken, failed to show the depen-

dence of the pipe wall thickness. Later on, Roy et al.

[6] complement this work, by considering the effect of

the thickness of the tube, by curve-fitting experimental

data taken from tubes with different thickness. This

can be considered an out of order approach to fix the

previous solution because, as will be shown later, di-

mensional analysis is capable to find the correct depen-

dence of all related variables. It is argued here that

both works have missed the opportunity to show the

full potential of dimensional analysis to deal with pro-

blems of this kind, and the present work tries to redeem

the correct use of the technique.
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Dimensional analysis is a powerful technique that

based on dimensional arguments and physical insight,

can be used to find the dependence on the variables

that control a particular phenomenon. It is very use-

ful to uncover the relationship amongst the pertinent

variables written in terms of dimensionless parameters.

The basic principle of dimensional analysis was

known since Newton, and has been used by many sci-

entists thenceforth, including Stokes, Maxwell, Fourier

and Rayleigh. Eventually, it was formalized in the Buc-

kingham π theorem [7], which describes how every phy-

sically meaningful equation involving n variables can be

equivalently rewritten as an equation of n−m dimen-

sionless parameters, where m is the number of funda-

mental dimensions used. Furthermore, and most im-

portantly, it provides a method for computing these

dimensionless parameters from the given variables.

2. Construction of dimensionless para-
meters for the falling magnet

The basic idea for constructing dimensionless para-

meters, following the procedure put forward by Buc-

kingham, is to choose amongst the variables that con-

trol the physical phenomena being addressed, those

which can be used as base to write the dimensions of all

the variables involved in the problem. First of all, these

variables should be measured in a consistent system of

units, such as the SI system, in which the basic units

are the meter (dimension of length L), kilogram (dimen-

sion of mass M), second (dimension of time T), ampere

(dimension of electrical current I). For the construction

of the dimensionless parameters this base of dimensions

suffices. There are physical phenomena which would be

necessary to include other dimensional elements such

as: the kelvin (K), the mole (mol), and the candela

(cd).

The identification of the variables involved, requires

a physical analysis of the problem at hand. The fal-

ling magnet is a phenomenon controlled by two forces:

gravity and magnetic drag. It can be shown that the

magnetic drag is directly proportional to the terminal

velocity k·vt, where k is the magnetic damping constant

[k] = kg × s−1 and vt is the terminal velocity. From

theory [1], it is known that the variables that control

the magnetic damping constant are, in turn: radius of

the tube [a] = m, the magnetic permeability in vacuum

[µ0] = henry × m−1 = kg × m × A−2× s−2, the mag-

netic dipole moment [M0] = A × m2, the conductivity

of the tube material [σ] = siemens × m−1 = A2× s3×
kg × m−3, and the thickness of the tube wall [w] = m.

Note that the influence of the geometrical parameters of

the magnet are supposedly already included in the mag-

netic dipole moment. These variables would be related

to an unknown function f(k, a, µ0, M0, σ, w) = 0.

The listed variables can be measured with the redu-

ced base of dimensions: (M, L, T, I). Six variables have

been listed (n = 6), which needs four fundamental ele-

ments to write their dimensions (m = 4). The number

of dimensionless parameters involved in this problem is

then given by n - m = 6 - 4 = 2 (two), which would

be related to a still unknown function ϕ(π1, π2) = 0,

where π1 and π2 are the two dimensionless parameters

to be constructed. Note that the original function, with

six primitive variables, is replaced by a function with

only two dimensionless parameters, and as we shall see,

without any loss of information. The reduction of the

number of variables is the main motive for applying the

dimensional analysis technique, particularly when the

function relating the dimensionless parameters (new de-

rived variables) must be found experimentally.

Once the variables have been identified, and the

base to write the dimensions of these variables has been

selected, the next step is to choose the so-called ‘new

base’ of dimensions. The elements of this new base

are selected amongst the variables that have been lis-

ted, which will substitute the elements of the original

base of dimensions. Since the original base has four

elements, four variables should be selected to represent

the elements of the original base. There is considera-

ble freedom allowed in the choice. The two most im-

portant rules to follow are: a) of course, the chosen

variable should contain in its dimensions, the element

of the original base which it will be substituted for; b)

the elements of the new base must not form a dimen-

sionless group. Here the variables µ0, a, σ, M0 have

been chosen to represent the dimensions M, L, T, I,

respectively.

The two dimensionless parameters will be construc-

ted from the two variables that were left, namely the

magnetic damping constant k, and the thickness of the

tube wall w. These variables will turn out dimensi-

onless by combine them with the elements of the new

base, each of them elevated to exponents to be deter-

mined according to the following procedure.

As the π parameters are all dimensionless i.e. they

have dimensions M0L0T0I0, we can use the principle of

dimensional homogeneity to equate the dimensions for

each π parameter.

For the first π parameter π1 = µx
0 · ay · σz ·M t

0 · k,
which in terms of the SI units can be written as 1 =

(kg ×m×A−2 × s−2)
x ·my ·(A2 × s3 × kg−1 ×m−3)

z ·
(A×m2)

t · (kg × s−1), and in terms of dimensions can

be written as [π1] = (M × L × I−2 × T−2)x · Ly · (I2×
T3× M−1× L−3)z· (I × L2)t· (M × T−1) = M0× L0×
T0× I0.

For each dimension (M, L, T or I) the powers must

be equal on both sides of the equation, so that
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for M : x− z + 1 = 0,
for L : x+ y − 3z + 2t = 0,
for T : −2x+ 3z − 1 = 0, and
for I : −2x+ 2z + t = 0

 ⇒ x = −2, y = 3, z = −1, t = −2,

giving π1 as π1 = µ−2
0 · a3 · σ−1 ·M−2

0 · k, or

π1 =
ka3

µ2
0σM2

0

, (1)

and a similar procedure is followed for the second π parameter π2.

π2 = µx
0 · ay · σz ·M t

0 · w

[π2] = (M× L× I−2 × T−2)x · Ly · (I2 × T3 ×M−1 × L−3)z · (I× L2)t · (L) = M0 × L0 × T0 × I0


M : x− z = 0
L : x+ y − 3z + 2t+ 1 = 0
T : −2x+ 3z = 0
A : −2x+ 2z + t = 0

 ⇒ x = 0, y = −1, z = 0, t = 0,

giving π2 as π2 = µ0
0 · a−1 · σ0 ·M0

0 · w, or

π2 =
w

a
. (2)

⌈

3. Derivation of an expression for the
terminal velocity from the dimensi-
onless parameters π1 and π2

Thus the problem of the falling magnet dropped down
a metallic tube may be described by the following func-
tion of the two dimensionless parameters that have been
constructed,

ϕ(π1, π2) = 0 ⇒ ϕ(
ka3

µ2
0σM2

0

,
w

a
).

Once identified, manipulation of the π parameters
is permitted. These manipulations do not change the
number of parameters involved, but may change their
appearance drastically.

Taking the defining equation as: ϕ(π1, π2, π3 . . .
. . . . . . πn−m) = 0. Then the following manipulations
are permitted.

1. Any number of groups can be combined by
multiplication or division to form a new
group which replaces one of the existing.
E.g. π1 and π2 may be combined to form
π1a = π1/π2 so the defining equation becomes
ϕ(π1a, π2, π3 . . . . . . . . . πn−m) = 0

2. The reciprocal of any dimensionless group is va-
lid. So ϕ(π1, 1/π2, π3 . . . . . . . . . 1/πn−m) = 0 is
valid.

3. Any dimensionless group may be raised to any
power. So ϕ[(π1)

2, (π2)
1/2, (π3)

3 . . . . . . . . . πn−m] =
0 is valid.

4. Any dimensionless group may be multiplied by a
constant.

5. And, according to the Implicit Function Theorem,
any group may be expressed as a function of the
other groups, e.g. π2 = ϕ(π1, π3 . . . . . . . . . πn−m).

The magnetic damping constant k is proportional to the
eddy currents induced in the tube, and since these are
proportional to the thickness of the tube wall w, then
according to manipulations 1 and 2 above, ϕ(π1, π2) = 0
may be written as

ϕ(π1 · π−1
2 ) = 0 ⇒ ϕ(

ka4

µ2
0σM2

0w
) = 0,

or

ka4

µ2
0σM2

0w
= c (3)

where c is a constant.
The manipulations performed are physically plausi-

ble since the eddy currents should be proportional to
the product σ w, as has been theoretically found by
Saslow [1].

It has been shown in the paper of Pelesko et al. [5]
that in the equilibrium mg = kvt, or k = mg/vt, where
m is the mass of the magnet and g is the gravity. This
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allows writing Eq. (3) in terms of the terminal velocity
as

vt = c
mga4

µ2
0σM2

0w
. (4)

With c =1024/45, Eq. (4) is the same expression
obtained by MacLatchy et al. [2] and by Levin et al.
[4]. Of course, the value of the constant c cannot be
provided by dimensional arguments only. Nonetheless,
a single experiment can fix the value of c and the deri-
ved formula for the terminal velocity [Eq. (4)] becomes
predictive.

In the experimental demonstrations of Levin et al.
[4], they used a copper pipe (conductivity σ = 5.71 ×
107 siemens × m−1) of length L = 1.7 m, radius a =
7.85 mm, and wall thickness w = 1.9 mm; a neody-
mium cylindrical magnet of mass m = 6 g, radius r =
6.35 mm, and height d = 6.35 mm, for which the mea-
sured time of fall T was equal to 22.9 s and that gives
vt = L/T = 1.7 m/22.9 s ≈ 0.074 m/s.

The magnetic dipole moment for the magnet was
calculated from the effective magnet charge qm multi-
plied by the magnetic height d as M0 = qm · d. Accor-
ding to Levin et al. [4], the effective magnet charge can
be estimated from

qm =
2πBr2

√
d2 + r2

µ0d
, (5)

where B is the intensity of the magnetic field, which
was measured as B = 393 mT.

With the aid of Eq. (5), the magnetic dipole mo-
ment for the magnet that was used in the demonstra-
tions Levin et al. [4] was estimated as M0 = 711 ×
10−3 A×m2 (with µ0 = 4π × 10−7 henry×m−1).

By isolating c in the first member of Eq. (4), and
substituting the above given numerical values for the
variables that appear in this equation, gives c ≈ 28.76
which seems to be in reasonable agreement with the
theoretical value of c = 1024/45 ≈ 22.76 obtained by
MacLatchy et al. [2] and by Levin et al. [4].

4. Conclusion

Given the complexity of theoretically analyzing the pro-
blem, the use of dimensional analysis seems to be a
simpler and straightforward approach to reveal the re-
lationship amongst the variables that control a given
phenomenon. In this application, with the data collec-
ted in just a single experiment, it succeeded in provi-
ding a predictive formula for the terminal velocity for
a magnet dropped down a metallic tube. The analysis
thus made, suggests numerous extensions that can be
developed for motivating in the use of the technique.
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