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On equivalent expressions for the Faraday’s law of induction
(Formulações equivalentes da lei de Faraday)
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In this paper we give a rigorous proof of the equivalence of some different forms of Faraday’s law of induction
clarifying some misconceptions on the subject and emphasizing that many derivations of this law appearing in
textbooks and papers are only valid under very special circunstances, thus are not satisfactory under a math-
ematical point of view. We show also that Faraday´s law of induction is a relativistic invariant law in a very
precise mathematical sense.
Keywords: Faraday’s law, principle of equivalence, relativistic invariance.

Neste trabalho é dada uma prova de equivalência entre diferentes formas de se escrever a lei de indução
de Faraday, elucidando alguns eqúıvocos sobre o tópico e enfatizando que muitas derivações desta lei apresen-
tadas na maioria dos livros e artigos são válidas somente sob circunstâncias muito particulares e, portanto, não
satisfatórias sob o ponto de vista matemático. Também mostramos que a lei de indução de Faraday é relativis-
ticamente invariante em um sentido matematicamente bem preciso.
Palavras-chave: lei de Faraday, prinćıpio de equivalência, invariância relativistica.

1. Introduction

Let Γt a smooth closed curve in R3 with parametriza-
tion x(t,ℓ) which is here supposed to represent a fila-
mentary closed circuit which is moving in an a convex
and simply-connected (open) region U ⊂ R3 where at
time t as measured in an inertial frame,2 there are
an electric and a magnetic fields E : R × R3 → R3,
(t,x) 7→ E(t,x) ∈ R3 and B : R × R3 → R3, (t,x) 7→
B(t,x) ∈ R3. We suppose that when in motion the
closed circuit may be eventually deforming. Let Γ be
a smooth closed curve in R3 with parametrization x(ℓ)
representing the filamentary circuit at t = 0. Then, the
smooth curve Γt is given by Γt = σt(Γ) where σt (see
details below) is the flow of a velocity vector field v :
R×R3 7→ R3, which describes the motion (and deforma-
tion) of the closed circuit. It is an empirical fact known
as Faraday’s law of induction that on the closed loop
Γt acts an induced electromotive force, E , such that

E = − d

dt

∫
St

B · n da, (1)

where St is a smooth surface on R3 such that Γt is its
boundary and n is the normal vector field on St. We

write Γt = ∂St with Γ = ∂S. Now, on each element
of Γt the force acting on a unit charge which is moving
with velocity v(t,x(t, s)) is given by the Lorentz force
law. Thus3 the E is by definition

E =

∫
Γt

(E+ v ×B) · dl, (2)

where dl := ∂x(t,s)
∂s dℓ and Faraday’s law reads [3–7]∫

Γt

(E+ v ×B) · dl = − d

dt

∫
St

B · n da. (3)

Note that (E+ v ×B) is the Lorentz force acting on
a unity charged carrier in the circuit according to the
laboratory observers and it is sometimes called the ef-
fective electric field [3]. In the appendix we show how
the first term of Eq. (3) is related with measurements
done by observers at rest in an inertial reference frame
commoving at a given instant t with velocity v relative
to the laboratory frame.

We want to prove that Eq. (3) is equivalent to∫
Γt

E · dl = −
∫
St

∂B

∂t
· n da, (4)

1E-mail: fabior@mpcnet.com.br or ra008618@ime.unicamp.br.

2For a mathematical defintion of an inertial reference frame in Minkowski spacetime see, e.g., Refs. [1, 2].
3In this paper we use a system of units such that the numerical value of the speed of light is c = 1.
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from where it trivially follows the differential form of
Faraday’s law, i.e.,

∇×E+
∂B

∂t
= 0. (5)

Those statements will be proved in Section 3, but
first we shall need to recall a few mathematical results
concerning differentiable vector fields, in Section 2.

2. Some identities involving the inte-
gration of differentiable vector fields

Let U ⊂ R3 be a convex and simply-connected (open)
region, X : R×U → R3,(t,x) 7→ X(t,x) be a generic
differentiable vector field and let v : R×U → R3 be a
differentiable velocity vector field of a fluid flow. An
integral line4 of v passing through a given x ∈ R3 is a
smooth curve σx : R →R3, t → σx(t) = σ(t,x) which
at t = 0 is at x (i.e., σx(0) = x ) and such that its
tangent vector at σ(t,x) is

∂

∂t
σ(t,x) = v(t, σ(t,x)). (6)

Let moreover σt : U → R3, σt(x) = σ(t,x). We call
σt the fluid flow map. Let J = (0, 1) ∈ R and let Γ
be a closed loop parametrized by Γ : J → R3, ℓ 7→
Γ(ℓ) := x(ℓ) and denote by Γt = σt(Γ) the loop trans-
ported by the flow (see Fig. 1). Then

σ(t,x(ℓ)) := x(t, ℓ) (7)

is clearly a parametrization of Γt. We have the propo-
sition:

Figure 1 - The closed loop Γ being transported by the fluid flow
σt.

⌋

Proposition

d

dt

∫
Γt

X · dl =
∫
Γt

D

Dt
X · dl+

∫
Γt

X · [(dl · ∇)v], (8a)

=

∫
Γt

D

Dt
X · dl+

∫
Γt

[X× (∇× v)] · dl+
∫
Γt

[(X · ∇)v)] · dl, (8b)

=

∫
Γt

∂

∂t
X · dl−

∫
Γt

[v×(∇×X)] · dl, (8c)

where
d

dt
X =

D

Dt
X :=

∂

∂t
X+ (v·∇)X (9)

is the so-called material derivative5 and

dl =
∂

∂ℓ
σ(t,x(ℓ))dℓ =

∂x(t, ℓ)

∂ℓ
dℓ (10)

is the tangent line element6 of Γt at σ(t,x(ℓ)).
Proof. We can write

d

dt

∫
Γt

X · dl = d

dt

1∫
0

X(t, σ(t,x(ℓ))) · ∂

∂ℓ
σ(t,x(ℓ))dℓ

=

1∫
0

d

dt
[X(t, σ(t,x(ℓ)))] · ∂

∂ℓ
σ(t,x(ℓ))dℓ+

1∫
0

X(t, σ(t,x(ℓ))) · ∂

∂t

∂

∂ℓ
σ(t,x(ℓ))dℓ. (11)

Now, taking into account that for each x(ℓ), ∂
∂tσ(t,x) = v(t, σ(t,x(ℓ))) we have

D

Dt
[X(t, σ(t,x(ℓ)))] =

∂

∂t
X(t, σ(t,x(ℓ))) + (v · ∇)X(t, σ(t,x(ℓ))), (12)

4Also called a stream line.
5Mind that the material derivative is a derivative taken along a path σt with tangent vector v|σx

. It is frequently used in fluid
mechanics, where it describes the total time rate of change of a given quantity as viewed by a fluid particle moving on σx. In the present
case it appears because in the integral

∫
Γt

X · dl we need the values of X for each t at all points of Γt, i.e., X(t, σ(t,x(ℓ))).
6Take notice that dl is not an explicit function of the cartesian coordinates (x, y, z).
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hence, the first term in the right side of Eq. (11) can be written as

1∫
0

d

dt
[X(t, σ(t,x(ℓ)))] · ∂

∂ℓ
σ(t,x(ℓ))dℓ =

∫
Γt

[
∂

∂t
X+ (v · ∇)X]·dl =

∫
Γt

D

Dt
X · dl. (13)

Also writing σ(t,x(ℓ)) = (x1(t, ℓ), x2(t, ℓ), x3(t, ℓ)) we see that the last term in Eq. (11) can be written as

1∫
0

X(t, σ(t,x(ℓ))) · ∂

∂t

∂

∂ℓ
σ(t,x(ℓ))dℓ =

1∫
0

X(t, σ(t,x(ℓ)))·
[
∂

∂ℓ
v(t, σ(t,x(ℓ)))dℓ

]
=

∫
Γt

X · [(dl · ∇)v]. (14)

We now recall that for arbitrary differentiable vector fields a,b : U → R3 it holds

∇(a · b) = (a · ∇)b+ (b·∇)a+ a×(∇×b) + b×(∇× a). (15)

Setting a = dl and b = v and noting that (v·∇)dl = v × (∇×dl) = 0, it implies that

(dl · ∇)v = ∇(dl · v)−dl× (∇× v). (16)

We need also to recall the well known identity

a · (b× c) = b · (c× a), (17)

which implies setting a = X, b = dl and c = (∇× v), that

−X · [dl× (∇× v)] = −dl · [(∇× v)×X], (18)

and also the not so well known identity7

X · [∇(dl · v)] = [(X · ∇)v] · dl, (19)

to write that∫
Γt

X · [(dl · ∇)v] = −
∫
Γt

X · [dl× (∇×v)]+

∫
Γt

[(X · ∇)v] · dl =
∫
Γt

[X× (∇× v)] · dl+
∫
Γt

[(X · ∇)v)] · dl. (20)

Finally, using Eq. (13) and Eq. (20) completes the proof of Eq. (8a) and Eq. (8b). Also, from Eq. (8b) it follows
if we recall Eq. (15) that

d

dt

∫
Γt

X · dl =
∫
Γt

∂

∂t
X · dl+

∫
Γ

[(v · ∇)X)] · dl+
∫
Γt

[X× (∇× v)] · dl+
∫
Γ

[(X · ∇)v)] · dl

=

∫
Γt

∂

∂t
X · dl−

∫
Γt

[v×(∇×X)] · dl.

from where the proof of Eq. (8c) follows immediately.

⌈

Remark 1 Before proceeding, we recall that if
X = v we have

d

dt

∫
Γt

v · dl =
∫
Γt

D

Dt
v · dl, (21)

a result that is known in fluid mechanics as Kelvin’s
circulation theorem (see, e.g., Refs. [8, 9]).

Now,

d

dt

∫
Γt

X · dl = d

dt

∫
St

(∇×X) · n da, (22)

where, if S is a smooth surface such that ∂S = Γ, then
St = σt(S). Also n is the normal vector field to St.
Then using Eq. (8c) we can write

7See the Appendix for a proof of this identity.
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d

dt

∫
St

(∇×X) · n da =

∫
Γt

∂

∂t
X · dl−

∫
Γt

[v×(∇×X)] · dl =
∫
St

∂

∂t
(∇×X) · n da−

∫
St

∇× [v×(∇×X)] · n da.

(23)

Also, denoting Y : = ∇×X we can write

d

dt

∫
St

Y · n da =

∫
St

[
∂

∂t
Y −∇× (v ×Y)

]
· n da. (24)

Despite Eq. (24), for a general differentiable vector field Z : R×U → R3 such that ∇ · Z ̸= 0 we have

d

dt

∫
St

Z · n da =

∫
St

[
∂

∂t
Z+ v(∇ · Z)−∇× (v × Z)

]
· n da, (25)

the so-called Helmholtz identity [10]. Note that the identity is also mentioned in [11]. A proof of Helmholtz identity
can be obtained using arguments similar to the ones used in the proof of Eq. (8a). Some textbooks quoting
Helmholtz identity are [12–16]. However, we emphasize that the proof of Faraday’s law of induction presented
in all the textbooks just quoted are always for very particular situations and definitively not satisfactory from a
mathematical point of view.

We now want to use the above results to prove Eq. (3) and Eq. (4).

⌈

3. Proofs of Eq. (3) and Eq. (4)

We start remembering that in Maxwell theory we have
that the E and B fields are derived from potentials,
i.e.,

E = −∇ϕ− ∂A

∂t
,

B = ∇×A, (26)

where ϕ : R × R3 → R is the scalar potential and
A : R × R3 7→ R is the (magnetic) vector potential.
If Eq. (26) is taken into account we can immediately
derive Eq. (3). All we need is to use the results just
derived in Section 2 taking X = A. Indeed, the first
line of Eq. (23) then becomes

d

dt

∫
St

(∇×A) · n da =

∫
Γt

∂

∂t
A·dl−

∫
Γt

[v×(∇×A)]·dl,

or

d

dt

∫
St

B · n da =

∫
Γt

∂

∂t
A · dl−

∫
Γt

(v ×B) · dl

=

∫
Γt

(
∂

∂t
A+∇ϕ− v ×B

)
· dl

= −
∫
Γt

(E+ v ×B) · dl. (27)

To obtain Eq. (4) we recall that from the second line
of Eq. (23) we can write (using Stokes theorem)

d

dt

∫
St

B · n da =

∫
St

∂

∂t
B · n da−

∫
St

∇× [v ×B] · n da

=

∫
St

∂

∂t
B · n da−

∫
Γt

(v ×B) · dl.

(28)

Comparing the second member of Eq. (27) and
Eq. (28) we get Eq. (4), i.e.,∫

Γt

E · dl = −
∫
St

∂

∂t
B · n da, (29)

from where the differential form of Faraday’s law fol-
lows.

Remark 2 We end this section by recalling that in
the physical world the real circuits are not filamentary
and worse, are not described by smooth closed curves.
However, if the closed curve representing a ‘filamen-
tary circuit’ is made of finite number of sections that
are smooth, we can yet apply the above formulas with
the integrals meaning Lebesgue integrals.

4. Conclusions

Recently a paper [17] titled ‘Faraday’s law via the mag-
netic vector potential’, has been commented in Ref. [18]
and replied in Ref. [19]. Thus, the author of Ref. [17],
claims to have presented an “alternative” derivation for
Faraday’s law for a filamentary circuit which is moving
with an arbitrary velocity and which is changing its
shape, using directly the vector potential A instead of
the magnetic field B and the electric field E (which is
the one presented in almost all textbooks).

Now, Ref. [18] correctly identified that the deriva-
tion in Ref. [17] is wrong, and that author agreed with
that in Ref. [19]. Here we want to recall that a presen-
tation of Faraday’s law in terms of the magnetic vector
potential A already appeared in Maxwell treatise [20],
using big formulas involving the components of the vec-
tor fields involved. We recall also that a formulation
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of Faraday’s law in terms of A using modern vector
calculus has been given by Gamo more than 30 years
ago [21]. In Gamo’s paper (not quoted in Refs. [17–19])
Eqs. (8c) appear for the special case in which X = A
(the vector potential) and B = ∇×A (the magnetic
field), i.e.,

d

dt

∫
Γt

A ·dl =
∫
Γt

∂

∂t
A ·dl−

∫
Γt

[v×(∇×A)] ·dl. (30)

Thus, Eq. (30) also appears in Ref. [17] (it is there
Eq. (9)). However, in footnote 3 of [17] it is said that
Eq. (30) is equivalent to “ d

dt

∫
Γt

A · dl =
∫
Γt

D
DtA · dl”,

where the term
∫
Γ
[(A ·∇)v)] · dl is missing. This is the

error that has been observed by authors [18], which also
presented a proof of Eq. (8b), which however is not very
satisfactory from a mathematical point of view, that be-
ing one of the reasons why we decided to write this note
presenting a correct derivation of Faraday’s law in terms
of A and its relation with Helmholtz formula. Another
reason is that there are still people (e.g., Ref. [22]) that
do not understand that Eq. (3) and Eq. (4) are equiva-
lent and think that Eq. (3) implies the form of Maxwell
equations as given by Hertz, something that we know
since a long time that is wrong [23].

We also want to observe that Jackson’s proof of
Faraday’s law using ‘Galilean invariance’ is valid only
for a filamentary circuit moving without deformation
with a constant velocity. The proof we presented is
general and valid in Special Relativity, since it is based
on trustful mathematical identities and in the Lorentz
force law applied in the laboratory frame with the mo-
tion and deformation of the filamentary circuit mathe-
matically well described.

A Proof of the identity in Eq. (19)

We know from Eq. (16) that

∇(dl · v) = (dl·∇)v+dl× (∇× v). (31)

Let
{
e1, e2, e3

}
be an orthonormal base of R3. We can

write, using Einstein convention,

(∇×v) = ei∂i × v = ei × ∂iv, (32)

where ∇ = (∂1, ∂2, ∂3) = e1 ∂
∂x1 + e2 ∂

∂x2 + e3 ∂
∂x3 = ei∂i,

with ∂i =
∂

∂xi and {xi}, i = 1, 2, 3 are Cartesian coor-
dinates. It follows then

dl× (∇×v) = dl× (ei × ∂iv). (33)

Using the known identity a×b×c = (a · c)b− (a · b)c
in Eq. (33), we obtain

dl× (ei × ∂iv) = (dl · ∂iv)e
i − (dl·ei)∂iv. (34)

On the other hand, considering dl = (dl1, dl2, dl3) =
dlie

i, we have

(dl·∇)v = (dli∂i)v = (dl · ei)∂iv. (35)

Hence, substituting Eq. (34) and Eq. (35) in Eq. (31),
we can rewrite it as

∇(dl · v) = (dl · ei)∂iv+(dl · ∂iv)e
i − (dl·ei)∂iv

= (dl · ∂iv)e
i. (36)

From this last result, it is easy to see that

X· [∇ (dl · v)] = X·
[
(dl · ∂iv)e

i
]
= Xi(dl · ∂i)v

= dl·(Xi∂i)v = dl· [(X·∇)v] = [(X·∇)v] · dl,

where X = (X1, X2, X3) = Xiei, ei · ej = δji .

B Phenomenological interpretation of
the first member of Eq. (3)

Let S be the inertial laboratory frame and S′ the iner-
tial frame that at time t has velocity u = v (t, σ(t,x(ℓ)))
(which is the velocity of an element of the circuit Γt).

The electric and magnetic fields observed in S′

are [3, 4]

E′
∥ = E∥, B′

∥ = B∥ (37)

E′
⊥ = γ (E⊥ + u×B⊥) , B′

⊥ = γ (B⊥ − u×E⊥)

where γ =
√
1− u2 is the Lorentz factor and the sym-

bols ∥ and ⊥ denotes the components parallel and or-
thogonal to u. Then, taking into account that dl′∥ = γdl

and dl′⊥ = dl⊥ and by letting u = v (t, σ(t,x(ℓ))) it fol-
lows that∫

Γt

(E+ v ×B) · dl = 1

γ

∫
Γt

E′ · dl′ = −dΦ

dt
, (38)

where Φ =

∫
St

B · n da is the flux of B.

Using the right-side identity in Eq. (38), we can
write ∫

Γt

E′ · dl′ = −γ
dΦ

dt
= −dΦ

ds
, (39)

since ds = dt′ = γ−1dt is the element of proper time
for an observer at rest in the commoving frame S′

(with standard coordinates
(
x′0 = t′, x′i). The inte-

gral

∫
Γt

E′ · dl′ is interpreted as the difference of po-

tential measured by a voltmeter carried by an observer
in S′ (this is obviously clear when the field v is con-
stant and the loop Γt is not deforming). So, we see

that

∫
Γt

(E+ v ×B) · dl differs by terms of second or-

der in v2 from the differential potential measured by
an observer in S′.

Finally, we show an important result.8 Let F =
1
2Fµνdx

µ ∧ dxν a 2-form field, be the so called electro-
magnetic field [1,24,25], where

(
x0 = t, xi

)
are standard

8Which may be intelligible for readers with working knowledge of the mathematical methods of modern field theory [1, 2, 24].
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coordinates in a inertial reference frame in a Minkowski
spacetime.9 Then the antisymmetric matrix with en-
tries Fµν is

0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 . (40)

We now show that Φ is an invariant relativistic quan-
tity. Indeed, it can be written as

Φ =

∫
St

F. (41)

To show that, recall that if A = ϕdx0 + Aidx
i is the

electromagnetic potential (ϕ being the the scalar poten-
tial and A = (A1,A2, A2) the vector potential), then
F = dA. Then by Stokes theorem we can write (tak-
ing into account that St is, for any t, a 2-dimensional
open spacelike surface in Minkowski spacetime and that
Γt = ∂St is the boundary of St)∫

St

F =

∫
St

dA =

∫
∂St

A

=

∫
Γt

A =

∫
Γt

ϕdx0 +

∫
Γt

Aidx
i

=

∫
Γt

Aidx
i =

∫
Γt

A · dl

=

∫
St

(∇×A) · nda =

∫
St

B · nda. (42)

This shows that Eq. (3) (and its equivalent Eq. (34))
is a relativistic invariant law.
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9Minkowski spacetime [2,24] is a manifold diffeomorphic to R×R3 equipped with a metric field η and its Levi-Civita connection. In
a standard coordinates of an inertial reference frame η = ηµνdxµ ⊗ dxν , where the matrix with entries ηµν is diag(1,−1,−1,−1).


