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Wave propagation in a non-uniform string
(Propagação de ondas em uma corda não-uniforme)
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In this article I present the behavior of the reflection and transmission coefficients of a pulse at a joint between
two strings with mass densities µ1 and µ2. The joint is made of a string segment with mass density varying
linearly from µ1 to µ2. It will be shown that the reflection of the pulse at the joint depends largely on the ratio
between the pulse width and the length of the joint. Analogies with other physical systems such as antireflection
coatings and tsunamis will be considered briefly.
Keywords: wave, pulse, string, non-uniform, inhomogeneous, discontinuous, anti-reflection, anti-reflective,
tsunamis, pulse energy.

Neste artigo mostro o comportamento dos coeficientes de reflexão e transmissão de um pulso propagando
através de uma emenda entre cordas com densidades de massa µ1 e µ2. A emenda é um segmento de corda
com densidade de massa variando linearmente desde µ1 à µ2. Será mostrado que a reflexão do pulso na emenda
depende sensivelmente da razão entre a largura do pulso e o comprimento da emenda. Discutirei brevemente
analogias com outros sistemas f́ısicos como camadas anti-refletoras e tsunamis.
Palavras-chave: onda, pulso, corda, não-uniforme, não-homogêneo, descont́ınuo, anti-refletor, tsunamis, ener-
gia de pulso.

1. Introduction

The basic concepts of wave mechanics in physics courses
and textbooks for undergraduate students are usually
illustrated with sine functions of a vibrating string.
In these functions, properties such as standing waves,
wavelength, period/frequency, phase and amplitude are
well defined and they can be easily calculated given the
tension and the mass density of the string. The rele-
vance of these introductory chapters on wave mechanics
is its applicability in many areas of physics like acous-
tic, optics, electromagnetism and quantum mechanics.
In the textbooks and in the internet one can find vari-
ous animations of waves in uniform strings [1–5] and in
strings with different mass densities [6] joined together.
There are also various articles describing the behavior
of waves in non-uniform strings, e.g. the effect of non-
uniformity on natural tones in musical instruments [7],
in quantum waves [8,9] and seismological wave propaga-
tion inside the Earth [10]. The more sophisticated the
physical model, the more phenomena one can describe
and explain. In this work I introduce a specific non-
uniformity in the string, being a sophistication that is
not covered in the introductory texts, but it allows un-
derstanding the working principle of the anti-reflection

coatings.
In this article, the non-uniformity consists of two

semi-infinite strings with mass densities µ1 and µ2

joined with a string segment with mass density varying
linearly from µ1 to µ2. The objective is to show the be-
havior of the reflection of a pulse passing through the
string joint. To simulate a pulse is preferred instead
of a sinusoidal travelling wave because the former is a
limited wave package and it is easier to visualize and
compare the amplitudes or the pulse width variations
as the reflection drops.

2. The wave equation

The propagation of a wave in a string is described by
the wave equation

∂2y(x, t)

∂t2
= v2

∂2y(x, t)

∂x2
, (1)

where y(x,t) is the transversal displacement of the wave
at position x and time t and v is the velocity in the x
direction or group velocity, to be distinguished from the
transversal velocity of the string ∂y/∂t. The v depends
on the tension and mass density of the string according
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to

v

√
B

µ
, (2)

where B is the tension in the string, expressed in N,
and µ is the linear mass density, expressed in kg/m.

3. Physical system

Figure 1 shows a representation of non-uniform string
fixed at two boundaries far from the joint. Since our
analysis will be restricted to the central portion of the
string the pulse interaction with the boundaries will be
neglected; so, in the pictures hereafter these boundaries
will not be indicated. A pulse with a Gaussian profile
having width ∆x and initial amplitude y0 propagates
to the right. In x = 0 there is a joint segment of length
∆L, where the mass density of the string varies linearly
from µ1 to µ2. Later in this article it will be important
to consider that the string is inextensible so the pulse is
formed by mass accumulation (not by strain) and the
tension of the string is provided by a hanging weight
(not by elastic forces).

After interacting with the joint the pulse will be
partially reflected and partially transmitted. Here I’ll
present a numerical analysis of the reflection R coeffi-
cient as a function of ∆L and ∆x. R is defined by the
ratio between the energy of the reflected pulse and the
energy of the incident pulse

The initial wave with the characteristics shown in
Fig. 1 can be written as a standard Gaussian function

y(x, 0) = y0 exp

[
− (x− x0)

2∆x2

2
]
, (3)

where x0 is the peak position and ∆x is the width of
the Gaussian. The mass density of the string varies
according to the function

µ(x) =

 µ1 for x ≤ 0
µ1 +

x
L (µ2 − µ1) for 0 < x ≤ ∆L

µ2 for x > ∆L
. (4)

For the description of R it is efficient first to con-
sider the energy of the pulse. Figure 2 shows an exam-
ple of a pulse propagating to the right in a referential
system Q. The pulse interacts with the joint and is
partially reflected. The frames drawn enclosing the in-
cident, the reflected and the transmitted pulses are the
local referential system named Pi (i = 0, 1 or 2) that
moves together with the pulse. This referential coordi-
nate system facilitates the evaluation of the energy of
the pulse as was demonstrated by Juenker [11]. In this
analysis it is important that the string in inextensible,
so the pulse is made by the action of mass only and
not by stretching the string. In the system P , the pulse
doesn’t move; however, the string is seen moving from
the right to the left along the pulse like a train in a
Gaussian shaped railroad with local velocity v ,which
will be denoted by v1 in the string with mass density
µ1 and v2 for µ2 (see Fig. 3).

The energy of the propagating pulse can easily be
obtained from Juenker’s procedure as follows: In P any
mass element, dm, has a velocity v parallel to the string.
From P one can conclude that the velocity, v*, of dm
in Q is the vector sum of its velocity in P plus the ve-
locity of P in Q as indicated in Fig. 3. Using the law
of cosines, v* results in

Figure 1 - (color online): Representation of the system at t = 0.

Figure 2 - (color online). Representation of pulse propagation across a joint: the energies of the initial, reflected and transmitted pulses
are entirely enclosed in the frames of the referential systems P0, P1 and P2 respectively.
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Figure 3 - (color online). In a referential P the string is seen mov-
ing from the right to the left throughout the wave with velocity
v. As P moves with velocity v in Q the resulting velocity v* is
obtained from the law of cosines.

(v∗)2 = 2v2(1− cos θ). (5)

The kinetic energy of a mass element is

dE =
dm(v∗)2

2
=

µds(v∗)2

2
µv2(1− cos θ)ds, (6)

where v* was replaced by the expression in Eq. (5).
Note from Fig. 3 that cosθ = dx/ds so the energy of a
mass element is given by

dE = µv2
(
1− dx

ds

)
ds = µv2(ds− dx). (7)

The total energy of the pulse is the integral of
Eq. (7)

E =

∫ xb

xa

µv2(ds− dx) = µv2(∆s−∆z), (8)

where ∆z = xb − xa is the length of the frame that
completely encloses the pulse and ∆s is the integral in
ds which gives the total length of the Gaussian curve
in the interval ∆z. Usually Eqs. (7) and (8) cannot
be solved analytically when the pulse interacts with a
non-uniform segment. Notice that to evaluate the en-
ergy in Eq. (8) it doesn’t matter if ∆z is larger than
necessary to enclose the pulse, because the difference
∆s−∆z will tend to a constant. ∆s−∆z is the string
accumulated to create the pulse.

The initial, reflected and transmitted pulse energies,
E0, E1 and E2 respectively, are

E0 = µ1v
2
1(∆s0 −∆z0), (9)

E1 = µ1v
2
1(∆s1 −∆z1), (10)

E2 = µ2v
2
2(∆s2 −∆z2). (11)

The R and T are given by the ratio

R =
E1

E0
, (12)

T =
E2

E0
. (13)

4. Numerical analysis

In this section I explain the numerical evaluation of
the wave function. The propagation of the wave is
calculated using finite differences in the time domain
(FDTD). The string is divided in a large number of cells
with length dx. The solution at a time t is evaluated
from the solutions of the previous two time intervals
t−dt and t−2dt as shown in Fig. 4.

Figure 4 - Schematic procedure of FDTD.

The differential Eq. (1) is written as an equation of
differences [12]

y(i, j) = (1− r)y(i, j − 1) + r [y(i+ 1, j − 1)+

y(i− 1, j − 1)]− y(i, j − 2), (14)

where i corresponds to the index of the ith node of the
string, j is the jth time interval and

r =

(
v
dt

dx

)2

. (15)

The condition 0 < r ≤ 1 is necessary for Eq. (14) to
converge [12]. The y(i,j) has a direct relation to y(x,t)
since each (x,t) has a corresponding cell (i,j) according
to x = xini+idx and t = jdt. Initial conditions are

y(i, 0) = y0 exp

[
− (idx− x0)

2∆x2

2
]
, (16)

and the boundary conditions are fixed rims

y(1, j) = y(itot, j) = 0. (17)
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The energies (9) to (10) are obtained numerically
from the expression

E =

i2∑
i=i1

{
µ(i)v2

√
(y(i, j)− y(i− 1, j))2 + dx2

}
−

µ(i)v2(i2 − i1)dx, (18)

where, i1 and i2 are the first and last cells of the frame
that contains the pulse, µ(i) is the position depending
mass density. Eq. (18) is not applicable if the pulse
is interacting with the joint, because the shape of the
pulse is changing. Then, Eq. (5) is not valid because
there is one more velocity component that depends on
the position in a complicated way. To use Eq. (18) the
reflected and transmitted pulses must be far from the
rims and from the joint, so the numerical propagation
must be carried out until this condition has been met.

5. Results

Figure 5 compares two cases in which a pulse passes
through a discontinuous joint and a smooth joint seg-
ment. It can be seen that the amplitude of the reflected
pulse in the smooth joint is smaller and wider, which
implies that its energy is lower. However, the transmit-
ted wave is taller, so the total energy is conserved.

Figure 5 - (color online). Reflection in a discontinuous and in a
smooth joint.

Figure 6(a) and (b) show the behavior of R in which
a pulse is passing the joint. Figure 6 (a) shows R for
µ1 = 1 kg/m to µ2 = 4, 9 and 16 kg/m. Figure 6(b)
shows the other way around in which the pulse passes
from high density µ1 = 4, 9 and 16 kg/m to low den-
sity µ2 = 1 kg/m. In all cases the reflection decreases
as the length of the joint increases. It can be seen that
for ∆L = 0 the reflection coefficients in both cases are
equal. Figure 7 compares R for two pulse widths. The
smaller the width, the smaller is the reflection. In the
limit of ∆x ≪ ∆L then R → 0 and if ∆x ≫ ∆L then
R → constant independent of ∆x or ∆L.

Figure 6 - (color online). Reflection coefficient as a function of
∆L as the pulse passes (a) from low to high or (b) from high to
low densities.

Figure 7 - (color online). Short pulses have smaller reflection
coefficients at the joint segment.

The transmission coefficient is simply T=1-R, so the
curves for T are not shown here.

6. Analogies with other physical sys-
tems

As any analogy this analysis only provides insights to
some extent to other physical systems, after which it
fails due to their particularities. Nevertheless, this anal-
ysis is worthwhile, since it helps comprehending quali-
tatively the transmission of light in anti-reflection coat-
ings and tsunamis. I’ll describe these examples briefly.
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6.1. Anti-reflection coatings

The refraction index variation between two media al-
ways causes some light reflection at the interface. It is
tempting to make an analogy between the index of re-
fraction and wavelength in optics and the mass density
and the pulse width respectively in non-uniform strings.
Some anti-reflection coatings deal with a smooth gradi-
ent of the refractive index and these coatings or tran-
sitions show indeed very good anti-reflection behavior.
An interesting example is the moth eye, in which anti-
reflection pyramidal nanostructures have grown at the
interface. These structures are smaller than the wave-
length of visible light, so the light passes as if the pyra-
mids are a continuous layer of varying index [13].

6.2. Tsunamis

The Earth crust accommodation can cause the seabed
to lift, lower or displace to the sides. In any case, a large
water column is displaced. Also in this case it is tempt-
ing to make a comparison between the depth of the wa-
ter with the mass density and the water displacement
with the pulse on a string. Then the decreasing depth
of the seabed is analogous to a string joint with decreas-
ing mass density. When the pulse is transmitted to a
low density string its amplitude increases. The same is
expected in water, which explains why a small ampli-
tude at the deep see becomes a tsunami at the beach.
In this case however, the analogy is weak because it
fails in two other noticeable characteristics: the pulse
in the string is faster and wider in the lighter string
whereas tsunami waves become slower and narrower in
shallow waters. Water waves have different boundary
conditions and involve mass conservation; so, for the
amplitude to increase, more water must be taken from
the front, rear and beneath the wave and Eq. (1) does
not account for this. It is interesting to see the simula-
tion of a tsunami in Ref. [14] and to compare this with
the pulse in a string in the simulation in Ref. [15].

7. Conclusion

The simulation of pulses in a non-uniform string leads
to the following conclusions:

The reflection coefficient is reduced when the tran-
sition between two strings is smooth in terms of mass
density. An equivalent phenomenon is observed at the
interface of two transparent media where the optical re-
flection also decreases largely upon a smooth transition

of the refractive index.
The reflection coefficient depends on the ratio of

the pulse width and the length of the joint segment.
The analogy in anti-reflective coatings is that these are
designed to be efficient in a certain wavelength band,
whereas for large wavelengths the coating is too short
to diminish the reflection appreciably.

Acknowledgement

I’m thankful Prof. Daniel den Engelsen for his help in
preparing the manuscript.

References

[1] A. Kandus, F.W. Gutmann and C.M.C. Castilho, Re-
vista Brasileira de Ensino de F́ısica 28, 427 (2006).
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