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Notas e Discussões

Gauss’s law, infinite homogenous charge distributions

and Helmholtz theorem
(A lei de Gauss, distribuições de carga homogêneas de extensão infinita e o teorema de Helmholtz)
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Rediscutimos a validade da lei de Gauss no caso de distribuições discretas e cont́ınuas de carga que se esten-
dem por todo o espaço.
Palavras-chave: eletromagnetismo clássico, eletrostática, lei de Gauss.

We rediscuss the validity of Gauss’s law in the case of homogenous discrete and continuous charge distribu-
tions fulfilling all space.
Keywords: classical electromagnetism, electrostatics, Gauss’s law.

In physics, some questions that we can formulate
though frequently not realizable from a practical point
of view, must as a matter of principle be satisfactorily
answered. Moreover, they can be pedagogical useful
tools and help the teacher to introduce new topics or
discuss particularly hard ones. The following interest-
ing question belongs to this type of question and can
be found in [1]: Given a uniform charge distribution
ρ that fulfills all the space, what is the value of the
electric field at an arbitrary point of the distribution?
The answer given in [1] though correct is nevertheless
intriguing. By symmetry the electric field must be zero
everywhere which makes perfect sense, but this means
that the electric flux through an arbitrary surface S
enclosing a certain charge Q (S) is zero in conflict with
the integral form of the Gauss’s law that states that
the flux must be equal to Q (S) /ε0. In order to keep
the symmetrical solution for the field it is stated that
Gauss’s law is not valid in this situation because there
are charges at the infinity. It is pedagogically worth to
understand and rediscuss this problem and its answer
and this is our aim in what follows.

Let us begin by taking an alternative route to
Gauss’s law. Consider a point charge q placed at a
distance d from a point C and a hypothetical Gaussian
sphere of radius R centered at C, see Fig. 1. Consider
also a point P on the surface of the Gaussian sphere.
If the distance of the point charge to P is r, then the
electric field at P is given by

Figure 1 - Point charge and hypothetical Gaussian spherical sur-
face.

E =
q

4πε0 r2
êr. (1)

It is convenient to treat d, R, and r as vectors, then
r = d + R and we can write

êr =
r
r

=
d + R

r
=

d + R

(d2 + R2 + 2dR cos θ)1/2
, (2)

where θ plays the role of a polar angle. The electric flux
through an infinitesimal area centered around P is given
by d Φ = E·n̂ da, where the outward normal vector n̂ at
P can be set equal to êR = R/R. Therefore, the electric
flux through the infinitesimal area da = R2 sin θ dθ dϕ
is
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dΦ =
q

4πε0

(d + R) · êR da

(d2 + R2 + 2dR cos θ)3/2

=
q

4πε0

(d cos θ + R) R2 sin θ dθ dϕ

(d2 + R2 + 2dR cos θ)3/2
. (3)

The total flux through the spherical surface is

Φ =
qR2d

2ε0

∫ π

0

cos θ sin θ dθ

(d2 + R2 + 2dR cos θ)3/2

+
qR3

2ε0

∫ π

0

sin θ dθ

(d2 + R2 + 2dR cos θ)3/2
. (4)

Introducing the standard variable transformation x =
cos θ and the real positive parameter λ = d/R, the
total flux can be recast into the form

Φ (λ) =
q

2ε0
F (λ) , 0 ≤ λ < ∞, (5)

where F (λ) is defined by

F (λ) = λ

∫ +1

−1

x dx

(1 + λ2 + 2λx)3/2
+

∫ +1

−1

dx

(1 + λ2 + 2λx)3/2
.

(6)
This integral can be evaluated and the result is

F (λ) = 1− signum (λ− 1) , (7)

where for a real number p

signum (p) =
{

+1, if p > 0 ,
−1, if p < 0 .

(8)

It folows that if d > R, that is λ > 1, then F (λ) = 0,
and if d < R or 0 ≤ λ < 1, then F (λ) = 2. If d = R, or
λ = 1, the integral is undefined. Therefore we conclude
that if q is outside the Gaussian spherical surface, the
electric flux is zero, if q is inside the flux is equal to q/ε0.
Because there is nothing special about the direction we
have chosen in Fig. 1 to evaluate the flux we can extend
this result to an arbitrary number of point charges. If
we have N point charges outside the Gaussian sphere
and M point charges inside of it we can make use of
the superposition principle and write for the total flux

Φ =
1
ε0

N+M∑

j=1

qj F (λj) , (9)

where λj = dj/R. Making use of Eq. (8), we see that
Eq. (9) simplifies to

Φ =
1
ε0

M∑

j=1

qj . (10)

All charges outside the region enclosed by Gaussian sur-
face, no matter where they are, do not contribute to the

electric flux through the Gaussian sphere. This result
can be easily extend to continuous charge distributions.
Of course we can obtain Gauss’s law by making use of
the concept of solid angle and arbitrarily shaped sur-
faces, but our Gaussian sphere can be made as large as
we please and enclose any number of point charges (or
a portion of the continuous distribution).

The main lesson that we can infer from the calcu-
lation above is that having charges at the infinity is
not a good reason to discard Gauss’s law in the context
posed in [1], because these charges do not contribute to
the flux whatsoever and hence seem not to be respon-
sible for the failure of Gauss’s law in this context. The
flux depends entirely on the charges inside the Gaussian
sphere and we still have a conundrum to solve.

One way out of it is to consider Maxwell’s two equa-
tions for electrostatics

∇ ·E =
ρ

ε0
, (11)

and
∇×E = 0, (12)

and realize that the first one is not compatible with
the answer dictated by the underlying symmetry of the
distribution, that is, E = 0 everywhere is not a valid
solution of Maxwell’s equations when we take ρ as a
continuous uniform charge distribution fulfilling all the
space. This solution is somewhat frustrating but seems
to be the correct one. Is there some other solution for
the electric field when ρ is a continuous uniform charge
distribution fulfilling all the space? Yes, but there is a
price we must pay, the homogeneity of the space is lost.
The solution is

E (r) =
ρ

3ε0
(x x̂ + y ŷ + z ẑ) =

ρ

3ε0
r. (13)

Isotropy is retained, but now there is a privileged point,
the center of the distribution. Notice that given the na-
ture of the charge distribution there are charges at the
infinity (and the field increases indefinitely there). This
solution is a mathematically valid solution of Eqs. (11)
and (12) though it poses other kind of problems.

The same problem, but this time concerning the
gravitational field in a cosmological context, was con-
sidered by Newton in his correspondence with Bent-
ley [2]. What is the gravitational field in a uniform mass
distribution that fulfills all the space? Newton’s answer
is analogous to the one given in [1] for the electrostatic
case, namely: g = 0 everywhere in space. Of course,
Newton whose correspondence with Bentley is dated
to 1692-93 was not aware of the existence of Gauss’s
law which was published in 1813 and his answer raised
other type of questions. It must be also mentioned
that a spheroidal shaped space filled with a uniform
charge/mass distribution can be also considered, but in
this case the field will not be purely radial.
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We can ask ourselves under what conditions Eqs.
(11) and (12) and their gravitational analogues have a
finite, physical meaningful solution, in other words, un-
der what conditions a vector field F is determined by
its divergence and its curl? This question makes sense
if we also specify certain conditions that the field must
obey on the boundaries of the region of interest, the
boundary conditions. If we impose the condition that
the vector field must vanish very far away from its finite,
localized sources, Helmholtz’ theorem [3] assure us that
the field is uniquely determined by its divergence and
its curl. Specifically, given a vector field F(x), defined
in some region R, and the field equations

∇ · F(x) = D(x), (14)

∇× F(x) = C(x), (15)

with ∇ · C(x) = 0, we can split F(x) into two parts,
an irrotational part F1(x) such that ∇ · F1 = D and
∇× F1 = 0, and a divergenceless one F2(x) such that
∇ · F2 = 0 and ∇× F2 = C. Then we can write

F1(x) = −∇Φ, (16)

and

F2(x) = −∇×A(x), (17)

where Φ and A are auxiliary functions defined in R. If
we choose R conveniently and assume that the auxil-
iary functions behave at least as 1/r very far away from
a field point labeled by x, make use of Green’s theorem,
and finally perform the translation x → x− x ′, we ar-
rive at

Φ(x) =
1
4π

∫
D(x ′) d3x ′

‖x− x ′‖ , (18)

and

A(x) =
1
4π

∫
C(x ′) d3x ′

‖x− x ′‖ . (19)

For more mathematical details and insights see [3–7].
This result is true for an extended localized source. For
a pointlike source some extra care must be taken [3].

There are other examples of the trouble we can get
into if we take too seriously unphysical situations and
disregard appropriate boundary conditions. Consider,

for instance, a uniform but otherwise time-varying mag-
netic field pervading all space. Because there is not a
single point that we can consider as the center, sym-
metry arguments lead us to conclude that the induced
electric fields are null everywhere in conflict with Fara-
day’s law.

The infinite homogeneous distributions that moti-
vated this note do not obey the conditions under which
Helmholtz’ theorem holds. But how we should deal
with these types of distributions that appear also in
the form of plane charge and mass distributions, infi-
nite line distributions, etc.? First of all notice that they
are unphysical, though useful approximations if certain
conditions are met. For those cases, symmetry argu-
ments and not Eqs. (11) and (12) or their gravitational
equivalents can be used to determine the electrostatic
or gravitational field just as Newton and reference [1]
did though their answers are not valid solutions of the
corresponding field equations.
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