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The conductivity (K) of porous media represents an important physical parameter in several areas of knowl-
edge. In saturated flow, the saturated conductivity (Kp) is the most important parameter of porous system and it
is related to the fluid and porous media properties. In order to evaluate the potential of a new tool for measuring
Ky, such as the computational simulation with Boltzmann models for fluid flows, two experiments were carried
out using two simplified media: 1) a cylindrical cavity and 2) a cavity having a parallelepiped shape. Both have
simple geometries that allow analytical K solutions in order to compare with the experimental and simulated
results. Glycerin was used as infiltrate fluid due to its high viscosity that permits laminar flows and the use
of Darcy’s law to evaluate Kj. The results demonstrate a good agreement among techniques (experimental,
computational, and analytical) of K determination for cavities that present Reynolds number (Re) smaller than

one.
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1. INTRODUCTION

Conductivity (K) represents a physical parameter which
defines the easiness with which a fluid can flow throw a cer-
tain porous media and it depends on the media properties as
well as on the percolating fluid [1]. Factors related to the
porous media structure such as types of porous, pore size
distribution, number of pores, tortuosity and connectivity di-
rectly affect the K values [2,3]. Conductivity achieves its
maximum value when the porous media is saturated (Ky) and
its value decreases quickly as moisture decreases.

Conductivity direct measurements usually demand a lot
of work, are expensive and time consuming. For this rea-
son some authors have proposed theoretical models to esti-
mate this physical property. For porous media such as soil,
Alexander & Skaggs [4] presented a theoretical model for the
hydraulic conductivity measurement of non saturated soils
from the retention curve data considering that water flows
through capillary tubes. Falleiros et al. [5] analyzed the spa-
tial and temporal variability of K in relation to the water dis-
tribution in the soil using an exponential model. Zhuang et
al. [6] developed a theoretical model to estimate K in non sat-
urated soil from some of its parameters and compared their
results with those obtained by other models.

Another alternative to measure K in porous media is the
one that uses computational simulation. There are a lot of
works which use simulations such as the Boltzmann model
to obtain K from porous media. Some works use pore struc-
tures obtained through computerized tomography [7]. Other
works use structures reconstructed from porous and connec-
tivity information obtained from 2D images [8].

The Boltzmann model used to determine K computation-
ally is able to simulate dynamically the mass transport as
well as the momentum, which in this case is the Navier-
Stokes equation (NS equation). The model is based on the
evolution of a relaxation equation for a fluid particle distri-
bution in a discrete spatial lattice, in which relaxation time
defines viscosity.
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The main objective of this work was to evaluate the Boltz-
mann model potential to obtain saturated conductivity of
empty cavities such as cylinders and boxes. This objective
was achieved through comparisons among Ky (experimen-
tal, analytical, and simulated) values of simple geometries
when a Newtonian fluid flows through them.

2. MATERIAL AND METHODS
2.1. Experimental Setup

The device used for the K experimental measurement ba-
sically consists of a Mariotte tube and a ‘drainage hole’ sys-
tem (Figure 1). The height of the ‘drainage hole’ imposes a
constant H hydraulic load on the investigated empty cavities
(Figure 2). This system can be coupled either to the cylinder
or to the box. Experiments were carried out with glycerin
with three different viscosity values.
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FIG. 1: Schematic drawn of the experimental setup used in the Ky
(saturated conductivity) experimental measurements.
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The choice of the glycerin is because the Darcy’s law is not
universally valid for all conditions of liquid flow in porous
media. As the cavities are empties if water was used as per-
colating fluid the flow velocity it would be very high. In this
specific case the linearity of the flux versus hydraulic gradi-
ent relationship fails. In the experiment the Reynolds number
(Re) was determined to guarantee the use of the Darcy’s law
to evaluate Ky (Re<1).

The cylinder and box have the following dimensions:
0.45 cm x 20.5 cm (diameter x length) and 0.635 cm X
0.635 cm x 4.7 cm (width x height x length).

The experimental procedure involved the following steps:
1) saturation of the empty cavities by glycerin; 2) glycerin
viscosity measurement by the Stokes method; 3) glycerin
viscosity measurement by the cylinder method [9]; 4) mea-
surement of glycerin percolated through cavities to obtain its
volume; 5) measurement of time interval for glycerin perco-
lation; and 6) use of the Darcy’s law to calculate the saturated
conductivity Ko (cm s~!) of the empty cavity:

Vv L

T At (L+H) M)

Ko

where V (cm?) is the percolated glycerin volume, A (cm?) is
the cross section area, ¢(s) the percolated volume time inter-
val, L (cm) is the height and H(cm) is the glycerin column
height above the cavity (Figure 1).

(a) (b)

FIG. 2: Empty cavities used for the evaluation of Ky (saturated con-
ductivity). (a) cylinder and (b) box.

The measurements of cavities Ky and the glycerin kine-
matic viscosity v (cm?s~!) occurred at the same temperature,
which was monitored with the 0.1 °C resolution.

2.2. Analytical solutions

The cylinder and box Ky is obtained by solving the NS
equation for a Newtonian fluid in an incompressible regime
and a non-slip condition on the walls [10,11]. The K, analyt-
ical expression for a d diameter cylinder is well known and
is presented in equation (2):
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in which g (cm s~2) is the gravity acceleration.
For a box with a side square straight section area [ (cm)
the analytical expression for K is given by [10]:

g = tanha,
Kobox = 5= 1-6 ; (3)
T 12v ( n; o)

in whicho,, = (2n—1)%, n=1,2,....

2.3. Numerical simulation

For K\ values obtained through computational methods,
the Boltzmann model was used. The three-dimensional
physical space represented in the simulation, necessarily has
to be discretized and a three-dimensional lattice is used for
this. The sites in this lattice might represent solid and pores.
Being a site in the lattice located by the vector X and having
by, neighbors, the evolution equation for the particle distri-
bution function N;(X,T) is given by the so-called “Lattice
Boltzmann Equation’:

NX+&,T+1)=NX,T)+ (X, T), 4)

where T is the time discrete variable, i is the direction of one
of the closest b, neighbors, ¢; the velocity vector in direction
i, with i = O representing the b, resting particles.

The dynamics occurs in two steps in this model, the col-
lision and the propagation steps. Collision is the step that
simulates the molecular collisions needed so that thermody-
namic equilibrium occurs; this step is represented by the term
Q;(X.T) in equation (4), called collision operator. At the
collision step time is not incremented. This step is local and
does not involve interactions with neighboring sites:

#i )i

N,(X,T) =N(X,T) + (X, T), )
The variable N; (X,T) is called “collided” distribution func-
tion and represents a new value at the same site X and the
same step of time 7.

Equation (4) represents the propagation step, it transports
the collided term N; (X,T) to the neighboring site X + &, at
posterior time 7 + 1. A simple and sufficient form of colli-

sion operator which recovers the NS macroscopic equation
is known as BGK! [12] operator:

N —N;
0 ==—=, (©)

where 7 is the relaxation time, which regulates the number of
time steps that the N; particle distribution takes to get closer
to the equilibrium distribution Nf 9, Thatis, if N; < Nf 7 Q>
0 and the term Q; will be added to ; making N; tend to

N4, the same analysis might be done for the case in which
N; > N4

! Varibles X and T were omitted to reduce notations.
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The particle density p in a site and the momentum, in this
method are given by:

b
Y Ni=p, 7
i=0
bm )
Y Nici = pii. ®)

Taking that into consideration and imposing conservation
of mass and momentum to the collision operator:

b
Y 2:=0, ©)
i=0
b
Y. Q:i=0, (10)
i=1

where b = b, + by,.

Particle distribution for the N;? is usually obtained through
the N;¥ expansion, in power series at the macroscopic veloc-
ity i, being O(u?) sufficient so that NS equation is recov-
ered. In this case, demands on N;?, besides conditions given
by equations (7) and (8) are that the pressure be independent
from macroscopic velocity and obey the flow density tensor
of the momentum:

bm

Y N{%ciacip = pag + P Uaug, (11)
i=0

where cjq is the o0 component of ¢; and the hydrostatic pres-
sure p is given by:

Buc>
P=—5P (12)
where D is the Euclidian dimension of space in which the
lattice is immerse and ¢? = |c,-|2. With this, the balance dis-
tribution form for moving particles is given by:

D D(D+2 D
N7 = % + bF;c2 Cialto, + P 2(bmc4 )c,-auac,-ﬁuﬁ = Wl
‘ 13)
In the main directions x, y and z the equilibrium distri-
bution must be doubled (N;? = 2N;?) so that viscosity is
isotropic [13]. ‘ '
Resting particles have the following equilibrium distribu-
tion:

Ned = %b, ke C%uz. (14)

For a macroscopic analysis of the dynamics proposed by
equation (4) time § and space scales 4 are usually used and
the Knudsen variable k, = % = % is defined, where L and 7,
are, respectively, the macroscopic characteristic length and
time. With this, the Chapman-Enskog [14] method can be
used, considering the equilibrium distribution disturbance, to
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show that equation (4) becomes the Navier-Stokes, given by
equation (15), disregarding the O(k,zz) contributions:

0;(pug) +9a(p)dup + da(Puaupg) = vPOa(daup + dpite),
15)
in which o and B are indexes that represent the spatial coor-
dinates x, y or z. For these indexes Einstein’s notation is seen
(repeated indexes sum). The equation (15) is the B compo-
nent of the NS equation with kinematic viscosity v given by:

N i
=50+ |t 2 (16)

The boundary conditions used in the simulation are pe-
riodic, that is, the fluid which leaves one end of the cavity
is injected in the other end. The interaction between fluid
and solid occurs so that there is no sliding, in this case, the
‘bounce back’ condition was adopted, in which a fluid parti-
cle that collides with the walls has its velocity inverted. The
program return permeability k, which is calculated (equation
17) with the Santos et al. [8] method, where in a stationary
flow, the momentum applied to the fluid is equal to the loss
of momentum on the walls:

(muy)

k=l
¢<mux>lost

a7
in which ¢ is the porosity, (mu,) is the fluid average momen-
tum in the cavity and (mu,),,, is the average momentum lost
by the fluid in the collisions with the cavity walls in a propa-
gation step.

In order to obtain K from the permeability the relation be-
low is used:

K=& (18)
v

3. RESULTS AND DISCUSSION

The experimental saturated conductivity values (Koexp)s
analytical (Kogne) and simulated (Kosim,) for both empty
cavities, as well as the simulated permeability (k.;), are
presented in table 1.

The Koana value for the cylinder is found through equation
(2), assuming d = 0.45 cm. The determination of K, for
the box is carried out through equation (3), considering / =
0.635 cm, where the two first terms in the infinite series are
sufficient to obtain good approximation.

In simulations the necessity to represent cavities (Figure
2) through a discrete lattice, raises the need of evaluating a
minimum value for the cavities dimensions in which the dis-
cretization problems are minimized. The value of 200 sites
for the lateral dimension / of the box was chosen based on
results of figure 3, where the permeability dependence k is
shown, calculated in the simulation for a square box, accord-
ing to the side / of the box (for the cylinder, the same behav-
ior is observed).

The scale factor used in simulations was i = 02%5— =
0.003175 for the box and & = % =0.00225 for the cylinder.

The velocity fields for cavities of different sizes are shown
in figure 4, these fields are not accessible in most experi-
ments.
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TABLE 1: Saturated conductivity (Kg) results for the three analyzed methods (analytical, experimental, and simulated). The value of

gravity acceleration used in the calculations was 979 cm.s™~

—

Kchp KOanal KOsimul Re ksimul v
(cms™)  (ems™)  (ems™) o (cm?) (cm’s™)
Cylinder ;).8i0.06 0.8 0.8+0.04 0.2 0.0064044 83+0.3
Box 1 1.5+0.08 s 1.5+£0.01 0.2 0.0141724  9.5%0.1
Box 2 6.7£0.08 ~ 4.2 4.2+0.09 1.6 0.0141724  3.3+0.3

Errors of K, (experimental and simulated) and v were obtained by error propagation.
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FIG. 3: Simulated permeability (k) values in function of the box
width (1).

FIG. 4: Velocity fields for the cavities with different dimensions.
Greater and darker arrows represent higher velocities. (a) Box with
dimensions of 200 sites x 200 sites x 1 site; (b) and 40 x 40 x 40
and (c) cylinder with 200 diameter and 1 high.

A constant control of temperature was kept in the exper-
iments aiming at minimizing the variations in the Ky mea-
surement, since viscosity, which originated from molecules
collision, suffers great variations with the temperature and
strongly influences the Kj results.

The Boltzmann model simulates the NS equation because
its dynamics respects the mass conservation principles as
well as the momentum, being such conditions fundamental

to the Newtonian fluid flow at a constant temperature. There-
fore, simulations captured the physics relevant to the flow in
the experimental arrangement of the tested cavities, present-
ing excellent agreement with experimental results, validating
the model.

Once flows of interest in the soil physics area are framed
in the flow profile addressed by this work, water flow in soil
samples usually occur with Re < 1 [15]. As K experimental
measurements usually present difficulties, numeric simula-
tion might be an interesting alternative for future predictions
of this physical property without the need to collect sam-
ples and experimental measurements. This way, Boltzmann
method appears as an alternative tool which might contribute
with the development of this knowledge area in the future.

4. CONCLUSIONS

Results of this work lead to the following conclusions:

1. Fluid viscosity monitoring during Kj experimental
measurements compensates possible errors due to tem-
perature variations;

2. Results obtained show good agreement of the three
methods of K measurement (analytical, experimen-
tal, and simulated) when Re < 1. For box 2, whose
Re > 1, percentage deviation between simulated (or
analytical) and experimental was 59.5%;

3. Boltzmann model is a tool with potential for further
work involving Ky measurements for more complex
porous media.
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