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Measurement of the Plasma Boundary Shift and Approximation of the Magnetic Surfaces on the
IR-T1 Tokamak
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In this research we measured the plasma boundary shift using array of magnetic pick-up coils on the IR-T1
tokamak. Also we approximated the magnetic surfaces by an equilibrium calculation. Firstly, four magnetic
probes were designed, constructed, and installed on outer surface of the IR-T1 tokamak chamber and then
plasma boundary displacement measured from them. On the other hand, magnetic surfaces approximated by
equilibrium calculation of the Grad-Shafranov equation based on expansion of free functions as quadratic in
flux function.
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1. INTRODUCTION

To a very good approximation in tokamaks, the problem
of achieving toroidal equilibrium separates into two parts.
First, the magnetic configuration must provide radial con-
finement, i.e., radial pressure balance in the poloidal plane
so that the pressure contours form closed nested surfaces.
Second, the configuration must compensate the radially out-
ward expansion force inherent in all toroidal geometries, i.e.,
toroidal force balance. But, in the second one, plasma may
intend to shift inward or outward, which is very dangerous
for tokamak plasma. Therefore, plasma equilibrium study is
one of the fundamental problems of the magnetically con-
fined plasmas. There are many available global solutions of
the steady state magnetohydrodynamics equations, in partic-
ular, the Grad-Shafranov equation. Control of plasma posi-
tion plays an important role in plasma confinement and to
achieve optimized tokamak plasma operation. Accurate de-
termination of the plasma position during confinement time
is essential to transport it to a control system based on feed-
back. Over the years different methods have been developed
to analyze the equilibrium problems and determination of
both plasma boundary shift and magnetic surfaces [1-21].

In this paper we presented magnetic probes method for
measurement of the plasma boundary shift and approxima-
tion of magnetic surface based on analytical solution of the
Grad-Shafranov equation on the IR-T1 Tokamak, which is a
small, air core, low beta and large aspect ratio tokamak with
a circular cross section, (see Table 1). Details of the mag-
netic probes method for the determination of plasma bound-
ary shift will be discussed in section 2. Approximation of
magnetic surfaces based on analytical solution of the Grad-
Shafranov equation will be presented in section 3. Experi-
mental result also will be presented in section 4. Summary
and conclusion are also will be presented in section 5.

2. MAGNETIC PROBES TECHNIQUE FOR THE
MEASUREMENT OF PLASMA BOUNDARY SHIFT

Because of dependence of the plasma position and plasma
current distribution to the magnetic field distributions around
the plasma, magnetic pickup coils can give us information
about the plasma position or plasma boundary shift. Poloidal
and normal components of the magnetic fields distribution in
the quasi-cylindrical coordinates (r,θ,φ) around the circular
cross section plasma are [1]:
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where Λ = βp + li/2−1 is the Shafranov parameter and a, b,
Ip, R0, βp, li, and ∆R are the plasma minor radius, chamber
minor radius, plasma current, chamber major radius, poloidal
beta, internal inductance, and plasma boundary horizontal
shift, respectively. Therefore, by rearranging the above equa-
tions the following relation for the horizontal shift of the
plasma boundary is obtained:
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As observable, this relation depends only on the plasma cur-
rent and magnetic fields distribution. Also the vertical dis-
placement of the plasma boundary is [2]:

∆Z =
π b2

µ0Ip
∆B2θ (4)

Equations (1) and (2) are accurate for the low beta, large as-
pect ratio, and circular cross section tokamaks as IR-T1, also:

∆B1θ = Bθ (θ = 0)−Bθ (θ = π) ,
∆B2θ = Bθ (θ = 3π/2)−Bθ (θ = π/2) ,
∆Br = Br (θ = π/2)−Br (θ = 3π/2) .

(5)
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According to this approach, four magnetic probes were de-
signed, constructed, and installed on the IR-T1 tokamak, two
magnetic probes were located on the circular contour Γ of
the radius b = 16.5cm in angles of θ = 0 and θ = π to detect
the tangential component of the magnetic field Bθ and two
magnetic probes are also located above, θ = π/2, and below,
θ = 3π/2, to detect the normal component of the magnetic
field Br (see the Fig. (1)).

By substituting the poloidal and normal components of
the magnetic fields which are measured by the four mag-
netic pickup coils (after compensation and integration of
their output) in Equations (3) and (4)(∆B2θ measured using
the poloidal Mirnov coils), horizontal and vertical displace-
ments of the plasma boundary were determined. Experimen-
tal results will be presented in the section 4.

FIG. 1: Positions of the four magnetic probes on outer surface of
the IR-T1 tokamak chamber.

3. APPROXIMATION OF THE MAGNETIC SURFACES
BASED ON ANALYTICAL SOLUTION OF THE

GRAD-SHAFRANOV EQUATION

Maxwell’s equations together with the force balance equa-
tion from MHD equations, in the cylindrical coordinates
(R, Z) reduce to the two-dimensional, nonlinear, elliptic par-
tial differential equation, or Grad-Shafranov equation [3]:
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F
R
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and p(ψ) and F(ψ) are two free functions, and where µ0
and J are the vacuum permeability and plasma current den-
sity respectively. Many authors solved the Grad-Shafranov

equation by expanding the free functions on different order
in ψ. In this section, we presented quadratic order (which
proposed by Guazzotto [4]), and approximated on the IR-
T1. If we choose the free functions to be quadratic in ψ as
[4]:
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where ψ0, p0, b0 are the values of ψ, p, and F on magnetic
surfaces axis, R0 is the tokamak major radius, and B0 is the
vacuum toroidal field.

The Grad-Shafranov equation reduces to:
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where β0 = 2µ0 p0/B2
0. With normalizing variables as

R2/R2
0 = x, and Z/a = y, Eq. (9) can then be written as:
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The solution of Eq. (10) in cylindrical coordinates (R, Z)
can be written as:

ψ = ∑
m
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where x = −i
(
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ρ, and for up-down symmetric case,
Ym obtained as:
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Also Xm (ρ) can be written as:
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, Wλm,µ (ρ), and Mλm,µ (ρ) are the Whit-

taker functions, and in this model µ = 1/2.
Guazzotto proposed only three terms for m, and then ψ can
be written as:
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where am, bm, and km are nine unknown coefficients which
must be determined. The first six of them can be obtained
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from boundary conditions. The boundary conditions for the
points of inner, outer, and top of the plasma cross section are
(see Figure (2)):

ψ(R0 +a, 0) = 0, ψ(R0−a, 0) = 0,

ψ(R0, a) = 0, ∂ψ

∂R (R0, a) = 0,
(16)

where a is the plasma radius, and condition for right convex-
ity on the inboard midplane is:

1
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a
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also two conditions (one defining the location of the mag-
netic axis (Raxis) and the other the normalization for ψ on
magnetic axis) are:

∂ψ

∂R
(Raxis, 0) = 0 ,

ψ(Raxis, 0)
ψ0

= 1. (18)

FIG. 2: geometry used for the boundary conditions.

These are seven boundary conditions for seven unknown co-
efficients (am, bm, Raxis).

But for other three coefficients, by setting k1 = 0 (the sim-
plest solution for GSE independent of Z), and introduce one
approximate value for the γ (γ ≈ 2(q/ε)2 (

δ Bφ/Bφ

)
, neg-

ative for diamagnetism plasma, and where q = aBφ/R0Bθ

and ε are the safety factor and inverse aspect ratio respec-
tively), and assuming that k2 be imaginary and k3 be real,
the values of α, k2, k3 can be approximated by minimiz-
ing the error function between traditional plasma shape (R =
R0 + a cosθ, Z = a sinθ), and analytical plasma shape. Ap-
propriate error function between them defined as follow [4]:
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√
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2
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where subscripts (A and T ) indicates the analytical and tra-
ditional plasma shape parameters respectively, and sum in
minimum include 3 angles (0, π /2, π) for our purpose (cir-
cular plasma).
In general by minimizing the error function (e.g. by Math-
ematica software) as possible to zero, and finding optimal
values for α, k2, k3, and also solving seven equations for the
boundary conditions (Eqs. (16), (17), and (18), six unknown

coefficients (am, bm), moreover Raxis can be find. Therefore
the approximated magnetic surfaces can be plotted by substi-
tuting these nine coefficients and also input parameters as Ip,
α, R0, and ε in Eq. (15). For example the magnetic surfaces
at t = 15ms correspond to approximated γ≈−0.32 be shown
in the Fig. (5).

FIG. 3: Magnetic Surfaces Approximated by the Analytical Method
at t=15ms in Target Shot correspond to γ ≈ −0.32 on IR-T1 Toka-
mak, Displacement of the magnetic surfaces relatively to the plasma
boundary observable.

4. EXPERIMENTAL RESULT

For the determination of plasma boundary shift using the
magnetic probes method, we needed for determination of the
magnetic fields distribution around the plasma. Therefore we
designed, and constructed a four magnetic pickup coils, and
installed them on outer surface of the IR-T1 chamber, and
then desired components of the magnetic fields were mea-
sured. From this measurement and using the Eq. (3), the
plasma boundary shift measured. The Figure (4) shows the
result.
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Parameters Value 

Major Radius 45 cm 

Minor Radius 12.5 cm 

Toroidal Field 〈 1.0 T 

Plasma Current 〈 40 kA 

Discharge Time 〈 35 ms 

Electron Density 0.7-1.5×10 13  cm 3−  

 
Table 1.  Parameters of the IR-T1 Tokamak 

 

FIG. 4: (a) Plasma current, (b) Time interval of the Plasma Bound-
ary Vertical Displacement, and (c) Time Interval of the Plasma
Boundary Horizontal Displacement measured by the magnetic
probes.

5. SUMMARY AND CONCLUSION

In this research we measured the plasma boundary shift
using array of magnetic pick-up coils on the IR-T1 toka-
mak. Also we approximated the magnetic surfaces by an
equilibrium calculation. Firstly, four magnetic probes were
designed, constructed, and installed on outer surface of the
IR-T1 tokamak chamber and then plasma boundary displace-
ment determined from them. The possible minor errors in
this research are because of (1) approximation in the mea-
surement of magnetic fields distribution because of discrete
probes measurement, (2) possible error in the compensation
of error fields, (3) the approximate values chosen for γ, and
(4) the errors do not become zero during minimizing the er-
ror function.
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