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Contribution of adiabatic phases to noncyclic evolution

M.T. Thomaz∗
Instituto de Fı́sica, Universidade Federal Fluminense,

Av. Gal. Milton Tavares de Souza s/no, CEP 24210-346, Niterói-RJ, Brazil
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We show that the difference of adiabatic phases, that are basis-dependent, in noncyclic evolution of non-
degenerate quantum systems have to be taken into account to give the correct interference result in the calcula-
tion of physical quantities in states that are a superposition of instantaneous eigenstates of energy. To verify the
contribution of those adiabatic phases in the interference phenomena, we consider the spin-1/2 model coupled
to a precessing external magnetic field. In the model, the adiabatic phase increases in time up to reach the
difference of the Berry’s phases of the model when the external magnetic field completes a period.
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In 1928 Born and Fock[1] proofed the Adiabatic Theorem.
In a quantum system with non-degenerate energy spectrum,
this theorem says that if the system at t = 0 is an eigenstate of
energy with quantum numbers {n}, along an adiabatic evolu-
tion it continues to be in an eigenstate of energy at time t with
the same initial quantum numbers {n}. As a consequence
of this theorem, the vector state of the quantum system ac-
quires an extra phase besides the dynamical phase. This ex-
tra phase is actually named geometric phase. Before the im-
portant work by MV Berry in 1984[2] with cyclic adiabatic
hamiltonian, this extra phase was realized to be dependent on
the choice of the basis of instantaneous eigenstates of energy.
This extra phase was considered non-physical since it could
be absorbed in the choice of the states in the instantaneous
basis.[3].

In Ref. [2], MV Berry showed that the adiabatic phase
acquired by the instantaneous eigenstates of energy, after a
closed evolution in the classical parameter space, is physi-
cal due to its independence to the chosen basis to describe
the state vector at each instant. Since the publication of the
Ref. [2], the study of Berry’s phase has followed very in-
teresting and broad directions. More recently, the geometric
phases have been proposed as a prototype for a quantum bit
(qubit)[4–7]. In 1988 Samuel and Bhandari[8] generalized
the geometric phase to noncyclic evolution. Many others in-
teresting papers appear to discuss those physical phases in
noncyclic evolution in the classical parameter space[9–11].
Experimental verification to the presence of those noncyclic
geometric phases have been realized[12].

The interference effect is a keystone in the linearity of the
Quantum Mechanics. In the present letter we address to the
question of the effect of the adiabatic evolution on the phases
in quantum systems leaves a physical trace in measurable
quantities associated to the noncyclic evolution of states de-
scribed by a superposition of instantaneous eigenstates of en-
ergy. The same question was proposed in the nice Ref. [9],
but differently from them we do not look for a physical non-
cyclic geometric phase.
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Let us consider a time-dependent hamiltonian H(t) that
evolves adiabatically. Following Ref. [2], we leave
open the possibility that this time dependence comes from
a set of classical parameters that we call ~R(t) (~R(t) ≡
(X1(t),X2(t), · · · ,Xm(t))), but we also include the possibility
that the hamiltonian can have an explicit time dependence.
As a matter of simplification, we assume that the spectrum of
eigenvalues of H(t) is non-degenerate.

Let {|ϕ j; t〉, j = 1,2, · · ·} be an instantaneous basis of or-
thonormalized eigenstates of the energy

H(t)|ϕ j; t〉= E j(t)|ϕ j; t〉, (1)

where 〈ϕl ; t|ϕ j; t〉= δl j and l, j = 1,2, · · · .
We assume that the initial vector state is a superposition of

M eigenstates of energy at t = 0,

|ψ(0)〉=
M

∑
j=1

a j |ϕ j;0〉, (2)

with M > 1 and ∑
M
j=1 |a j|2 = 1.

Applying the Adiabatic Theorem[1, 3] to the Schrödinger
eq. of the adiabatic evolution of the initial vector state (2), it
gives,

|ψ(t)〉=
M

∑
j=1

a j eiγ j(t) e−
it
~ 〈E j(t)〉 |ϕ j; t〉, (3a)

where 〈E j(t)〉 is the average energy during the interval of time
t,

〈E j(t)〉 ≡
1
t

∫ t

0
dt ′E j(t ′) (3b)

and γ j(t) ∈ R is the adiabatic phase,

γ j(t) = i
∫ t

0
dt ′ 〈ϕ j; t ′|

(
d

dt ′
|ϕ j; t ′〉

)
. (3c)

It is well known that the adiabatic phase (3c) is non-physical.
An obvious physical quantity to calculate from the vector

state (3a) is the density of probability to find the particle at



Brazilian Journal of Physics, vol. 40, no. 2, June, 2010 181

position~x at any instant t,

|ψ(~x, t)|2 =
M

∑
j=1
|a j|2|ϕ j(~x; t)|2

+
M

∑
j,l=1
j 6=l

a j a∗l ei[γ j(t)−γl(t)] e−
it
~ [〈E j(t)〉−〈El(t)〉] ϕ j(~x; t)ϕ∗l (~x; t),

(4)

where ψ(~x, t) = (~x|ψ(t)〉 and ϕ j(~x; t) = (~x|ϕ j; t〉.
The interference phenomenon comes from the terms on the

second sum on the r.h.s. of eq.(4). Each interference term
depends only on the difference of adiabatic phases (3c).

Let {|Φ j; t〉, j = 1,2, · · ·} be another basis of instantaneous
eigenstates of energy,

|Φ j; t〉= eiα j(t) |ϕ j; t〉, j = 1,2, · · · (5)

and α j(t) ∈ R and its time-dependence comes through ~R(t)
and/or an explicit time dependence. The initial state (2) is
rewritten in this basis as

|ψ(0)〉=
M

∑
j=1

ã j|Φ j;0〉. (6a)

Therefore

ã j = a j e−iα j(0). (6b)

Written in the new basis, |ψ(t)〉 becomes

|ψ(t)〉=
M

∑
j=1

ã j eiγ̃ j(t) e−
it
~ 〈E j(t)〉 |Φ j; t〉, (7)

where the relation between the adiabatic phases γ j(t) and
γ̃ j(t) is

γ̃ j(t) = γ j(t)−α j(t)+α j(0), j = 1,2, · · · ,M. (8)

The density of probability written in the new basis is,

|ψ(~x, t)|2 =
M

∑
j=1
|ã j|2|Φ j(~x; t)|2

+
M

∑
j,l=1
j 6=l

ã j ã∗l ei[γ̃ j(t)−γ̃l(t)] e−
it
~ [〈E j(t)〉−〈El(t)〉] Φ j(~x; t)Φ∗l (~x; t).

(9)

From the eqs. (5), (6b) and (8), we obtain

ã j ã∗l ei[γ̃ j(t)−γ̃l(t)] Φ j(~x; t)Φ∗l (~x; t)

= a j a∗l ei[γ j(t)−γl(t)] ϕ j(~x; t)ϕ∗l (~x; t), (10)

l, j = 1,2, · · · ,M. In eq.(10) we include the terms l = j. Re-
sult (10) tells us that each term in the two sums on the r.h.s. of
eq.(4) is independent of the basis of the instantaneous eigen-
vectors of energy that we use to do the calculation.

Certainly, the result (10) can be recast in terms of a ge-
ometric phase along a closed path, showing that the phase
difference γ j(t)− γl(t) is gauge invariant at any instant t[13].
However, our main point is calling attention to the fact that
in order to obtain the correct result for |ψ(t)|2 one has to take
into account the non-physical adiabatical phase (3a), that is
non-physical, when we use a basis of instantaneous eigen-
states of energy that are not paralell transported.

To generalize the conclusions derived from result (10) we
consider O to be an hermitian operator associated to a physi-
cal quantity. The time-evolution of the average of this opera-
tor in the initial state (2) is

o(t) = 〈ψ(t)|O|ψ(t)〉=
M

∑
j=1
|a j|2 〈ϕ j; t|O|ϕ j; t〉

+
M

∑
j,l=1
j 6=l

a j a∗l ei[γ j(t)−γl(t)] e−
it
~ [〈E j(t)〉−〈El(t)〉]〈ϕ j; t|O|ϕl ; t〉.

(11)

Following the same steps as we did to proof that the terms
that contribute to the density probability is basis-independent,
we show that the same is true for each term in the two sums
on the r.h.s. of eq.(11).

Therefore if we use a basis of instantaneous eigenstates of
energy, that is not of parallel transported states, to describe the
adiabatic evolution of a vector state that initially is in a super-
position of eigenstates of energy at t = 0, the non-physical
adiabatic phases (3a) have to be taken into account to give the
correct interference terms when we calculate physical quanti-
ties.

To exemplify the importance to take into account the adi-
abatic phases (3c) to obtain the correct result in physical
quantities, we consider the soluble model of the spin-1/2
in the presence of an external classical magnetic field. This
field precesses around a z-direction with constant angular fre-
quency ω0. This model was discussed by Berry in Ref. [2]
and by Garcı́a de Polavieja and Sjöqvist in Ref.[9]. Being a
soluble model we can verify the result obtained in the adia-
batic regime by applying the adiabatic approximation directly
in the exact result[14].

The hamiltonian of a spin-1/2 in the presence of an exter-
nal classical magnetic field ~B(t) is[14]

H(t) =
µ~
2

~B(t) ·~σ, (12a)

where

~B(t) = (Bsin(θ)cos(ω0t),Bsin(θ)sin(ω0t),Bcos(θ)),
(12b)

with B≡ |~B| and θ is the angle between the external magnetic
field and the z-direction. The σi, i ∈ {x,y,z} are the Pauli
matrices, µ = gµB, where µB is the Bohr magneton and g is
the Landé’s factor.

In Ref.[14] we obtain the two eigenvectors of hamiltonian
(12a) and their respective eigenvalues,
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|φ1; t〉=−sin(
θ

2
)| ↑〉+ cos(

θ

2
)eiω0t | ↓〉 ⇒ E1 =−µ~B

2
, (13a)

|φ2; t〉= cos(
θ

2
)| ↑〉+ sin(

θ

2
)eiω0t | ↓〉 ⇒ E2 =

µ~B
2

. (13b)

We denote the eigenvector of σz with eigenvalue +1 (-1) to
be | ↑〉 (| ↓〉).

We choose the initial vector state of the spin-1/2 system to
be,

|ψ(0)〉= a1|φ1;0〉+a2|φ2;0〉 (14)

and |a1|2 + |a2|2 = 1. For simplicity we take a1 and a2 ∈ R.

From eq.(3a), the adiabatic evolution of the previous initial
state is

|ψ(t)〉= eiγ1(t) e−
itE1
~
[
a1|φ1; t〉+a2 eiα[γ2(t)−γ1(t)] e−

it
~ [E2−E1] |φ2; t〉

]
. (15)

The previous equation is similar to eq.(46) of Ref.[9].
From a direct calculation of phase (3c), we obtain: γ1(t) =

− (1+cos(θ))ω0t
2 and γ2(t) =− (1−cos(θ))ω0t

2 .
In eq.(15) we include the tracer α to verify if the difference

of adiabatic phases contribute to physical quantities. At the
end of the calculation we take α = 1.

The expectation value of the operator sz in the state |ψ(t)〉
is

〈ψ(t)|sz|ψ(t)〉= ~
2

cos(θ)[a2
2−a2

1]

−4a1a2~sin(θ)cos[(µB−αω0 cos(θ))t]. (16)

From what we discussed in the first part of this letter, re-
sult (16) is physical. We verify that the adiabatic phases (3c)
contribute to the second term on the r.h.s. of expression (16)
with a phase that increases in time up to reach the difference
of Berry’s phases when the t = 2π

ω0
.

In Ref. [14] we have the exact dynamics of the initial vec-
tor (14). Using the exact time dependence of the |ψ(t)〉 we
calculate the expectation value of the operator sz and imple-
ment in it the adiabatic approximation. This approximated
result coincides with expression (16) with α = 1.

In conclusion, we show that although the adiabatic phase
(3c) is non-physical, the phase differences do contribute to
physical quantities during the adiabatic evolution of a non-

cyclic quantum system if the vector state is a superposition of
instantaneous eigenstates of energy.

The result of each interference term on the r.h.s. of eq.(11)
is independent of a particular choice of basis of the instanta-
neous energy eigenstates. In order to verify the consequences
of an adiabatic variation of the hamiltonian on the motion of
the quantum system driven by it, we do not need to define a
noncyclic geometric phase, as it has been done in the litera-
ture.

In order to show the importance of the contribution of this
phase difference of adiabatic nature, we calculate the ex-
pectation value of the operator sz of a spin-1/2 model cou-
pled to an external magnetic field that precesses around a
fixed direction. We verify that the adiabatic approximation
of 〈ψ(t)|sz|ψ(t)〉, derived from its exact expression, only co-
incides with the calculation of the adiabatic evolution of this
operator if the difference of the adiabatic phases (3c) is in-
cluded in the dynamics of the instantaneous eigenstates (13a)
and (13b).
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