
Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 99

Optimal paths for minimizing lost available work during heat transfer processes with a generalized
heat transfer law
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A common of finite-time heat transfer processes between high- and low-temperature sides with a generalized
heat transfer law [q ∝ (∆(T n))m] are studied in this paper. The optimal heating and cooling configurations
for minimizing lost available work are derived for the fixed initial and final temperatures of the working fluid
of the system (low-temperature side). Optimal paths are compared with the common strategies of constant
heat flux, constant source (reservoir) temperature and the minimum entropy generation operation by numerical
examples. The condition corresponding to the minimum lost available work strategy is that corresponding to a
constant rate of lost available work, not only valid for Newton’s heat transfer law [q ∝ ∆T ] but also valid for the
generalized convective heat transfer law [q ∝ (∆T )m]. The obtained results are more general and can provide
some theoretical guidelines for the designs and operations of practical heat exchangers.
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1. INTRODUCTION

Since the mid 1970s, finite-time thermodynamics [1-10]
has been applied to optimize the performance of various ther-
modynamic systems and processes. Heat exchanger is used in
modern industry widely. With optimizing the performance of
the heat exchanger, the energy utilization efficiency could be
improved and the total volume and weight of the heat transfer
equipment could be reduced, so the heat exchanger is always
one of the main research subjects in finite time thermodynam-
ics. Bejan [11] first analyzed the least combined entropy pro-
duction induced by the heat transfer and the fluid viscosity as
the objective function to optimize the geometry of heat trans-
fer tubes and to find optimum parameters for heat exchangers.
Lineskin and Tsirlin [12], Andresen and Gordon [13] showed
that the counter-flow heat exchanger could represent the op-
timal solution for minimizing entropy generation, in which
heat transfer between high- and low-temperature sides obeyed
Newton’s heat transfer law [q ∝ (∆T )]. Badescu [14] further
showed that the counter-flow heat exchanger could also rep-
resent the optimal solution for minimizing lost available work.
In general, heat transfer is not necessarily Newton’s heat trans-
fer law and also obeys other laws. Heat transfer laws not only
have significant influences on the performance of the given
thermodynamic process [15-19], but also have influences on
the optimal configurations of thermodynamic process for the
given optimization objectives [20-23]. Nummedal and Kjel-
strup [24] considered the reciprocal temperature difference
∆(1/T ) as the driving force for heat transfer in irreversible
thermodynamics (i.e. the linear phenomenological heat trans-
fer law [q ∝ ∆(T−1)]), and optimized the heat transfer pro-
cess for minimizing entropy generation. The results show that
the reciprocal temperature difference ∆(1/T ) is a constant, i.e.
the principle of equipartition of forces (EoF). Based on Ref.
[24], Johannessen et al. [25] further considered that the heat
transfer coefficient is related to the local temperature changes,
and showed that the local entropy generation rate is constant,
i.e. equipartition of entropy production (EoEP). For a common
class of finite-time heat transfer processes between high- and
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low-temperature sides with generalized radiative heat transfer
law [q ∝ ∆(T n)], Andresen and Gordon [26] derived optimal
heating and cooling strategies for minimizing entropy genera-
tion. Optimal paths are compared with the common strategies
of constant heat flux and constant source (reservoir) tempera-
ture operation. For a system of uniform temperature in contact
with a thermal bath, in which heat transfer between high- and
low-temperature sides obeys generalized radiative heat transfer
law, Badescu [27] derived optimal heating and cooling strate-
gies for minimizing lost available work. Optimal paths are also
compared with the conventional strategies of constant heat-
flux, constant source (reservoir) temperature operation and the
optimal strategies for minimizing entropy generation. Chen
et al. [28] and Li et al. [29,30] investigated the optimal
performances of irreversible Carnot heat engine, refrigerator
and endoreversible Carnot heat pump with a generalized heat
transfer law [q ∝ (∆(T n))m], which included the results with
Newton’s heat transfer law, the linear phenomenological heat
transfer law, the radiative heat transfer law [q ∝ ∆(T 4)], the
Dulong-Petit heat transfer law [q ∝ (∆T )1.25][31], the general-
ized convective transfer law [q ∝ (∆T )m] and the generalized
radiative transfer law. One of aims of finite time thermody-
namics is to pursue generalized rules and results. This paper
will extend the previous work [12,13,14,26,27] by using the
generalized heat transfer law [q ∝ (∆T n)m], in the heat trans-
fer processes between high- and low-temperature sides, to find
the optimal heating or cooling strategies for minimizing lost
available work. The obtained results are more general and can
provide some theoretical guidelines for the designs of practical
exchangers.

2. HEAT TRANSFER PROCESS MODEL

The heat transfer process model to be considered in this
paper is illustrated in Fig. 1. The following assumptions are
made for this model. The only non-negligible thermal resis-
tance is at the heat transfer interface between system and ex-
ternal reservoir, where there is a known thermal conductance
k. The practical control variable is the reservoir temperature
T1(t)and the fixed duration of the heat transfer process is τ.
Both the initial temperature T2(0) and the final temperature
T2(τ) of the system are given. For specificity and clarity of
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FIG. 1: Schematic of one-node thermal model for a system exchang-
ing heat with a variable-temperature reservoir

presentation, only the case T1(t) > T2(t) is explicitly consid-
ered here (i.e., the system is heated). System cooling involves
a change of sign for the heat flux q. Consider that the heat
transfer between the system and the reservoir follows a gener-
alized law, including generalized convective heat transfer law
and generalized radiative heat transfer law, [q ∝ (∆T n)m][28-
30]. Then

q = k(T n
1 −T n

2 )m (1)

As the existence of heat resistance, the entropy generation rate
associated with the heat flux q is denoted Ṡ and is given by:

Ṡ = q(1/T2−1/T1) (2)

The total entropy generation for the duration τ of the heat trans-
fer process is:

S = k
Z

τ

0
(T n

1 −T n
2 )m(T−1

2 −T−1
1 )dt (3)

According to Ref. [27], the lost available work rate is given
by:

Ẇl = T1Ṡ = k (T n
1 −T n

2 )m (
T1T−1

2 −1
)

(4)

The total lost available work Wl is obtained by integrating Eq.
(4) during the heating process:

Wl = k
Z

τ

0
(T n

1 −T n
2 )m(T1T−1

2 −1)dt (5)

In terms of the first law of thermodynamics, the change of sys-
tem temperature T2(t) is governed by

q = k(T n
1 −T n

2 )m = CṪ2 (6)

where C is the heat capacity of the working fluid in the system
and Ṫ2 = dT2/dt.

3. OPTIMAL CONFIGURATION

In a fixed timeτ, the system must be heated from a known
initial temperature T2(0) to a known final temperature T2(τ).
Our problem now is to determine the optimal configuration of
the reservoir temperature T1(t) for minimizing lost available
work subjected to the constraint of Eq. (6). Apparently, it
is an optimal control problem. Correspondingly, the modified
Lagrangian L with a time-dependent Lagrange multiplier λ(t)
is given by:

L = k(T n
1 −T n

2 )m(T1T−1
2 −1)−λ(t)[k(T n

1 −T n
2 )m−CṪ2] (7)

The independent variables are T1, T2 , and Ṫ2 (and in prin-
ciple Ṫ1, which does not appear in L). The Euler-Lagrange
equations to determine the optimal strategy are then

∂L
∂T2
− d

dt (
∂L
∂Ṫ2

) = 0, ∂L
∂T1

= 0 (8)

Substituting Eq. (7) into Eq. (8) yields:

λ̇ = (T 1−n
1 T n−2

2 −T1T−2
2 )Ṫ2 (9)

λ = (mn+1)T1/(mnT2)− (T2/T1)n−1/(mn)−1 (10)

Differentiating Eq. (10) with respect to time t yields:

λ̇ = [(1+
1

mn
)

1
T2

+
(n−1)T n−1

2
mnT n

1
]Ṫ1

−[(1+
1

mn
)

T1

T 2
2

+
(n−1)

mn
T n−2

2

T n−1
1

]Ṫ2 (11)

Eliminating λ̇ by using Eqs. (9) and (11) yields:

dT1

dT2
=

(mn+n−1)T 1−n
1 T n−1

2 +T1T−1
2

mn+1+(n−1)T−n
1 T n

2
(12)

The detailed analytical expressions of the optimal paths
will be shown here in dimensionless form. This will make the
approach more flexible, increases the generality of the results
and allows easy implementation. The following dimensionless
variables and constants are defined:

ω = t/τ, z = T2(t)/T2(0), u = T1(t)/T2(t)
y = zu = T1(t)/T2(0) z f = T2(τ)/T2(0), A = kτ[T2(0)]mn−1/C

(13)

where z is the dimensionless system temperature, u is the ra-
tio of the reservoir temperature to the system temperature, y is
the dimensionless reservoir temperature, z f is the final dimen-
sionless system temperature. A is a special constant, which
depends on the parameters k, τ, T2(0), m and n. The following
relationships exist for the independent and dependent dimen-
sionless variables:

0≤ ω≤ 1, 0≤ z≤ z f , z≤ u≤ y (14)

By using the notion Eq. (13), one can define the dimension-
less entropy generation rate ˜̇S and the entropy generation S̃,
respectively:

˜̇S =
Ṡ

k [T2(0)]mn−1 =
zmn−1

u
(un−1)m (u−1) (15)

S̃ =
S̃

k [T2(0)]mn−1
τ

=
Z 1

0

zmn−1

u
(un−1)m (u−1)dω

(16)



Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 101

Here, Eqs. (2) and (3) are used. Similarly, the dimensionless
rate of lost available work ˜̇Wl and the dimensionless lost avail-
able work W̃l are defined, respectively:

˜̇Wl =
Ẇl

k [T2(0)]mn = zmn (un−1)m (u−1) (17)

W̃l =
Wl

k [T2(0)]mn
τ

=
Z 1

0
zmn (un−1)m (u−1)dω (18)

Here, Eqs. (4), (5) and (13) are used. By using the notation
Eq. (13), the new forms of Eqs. (6) and (12) are, respectively,

dz
/

dω = Azmn (un−1)m (19)
(mn+1)un +(n−1)

u(un−1)
du =−mn

dz
z

(20)

Eq. (19) gives through integration:

zmn (un−1)m+1−CW un−1 = 0 (21)

where CW is an integration constant, which is determined by
T2(0) and z f . From Eqs. (20) and (21) one obtains:

du
dω

=
−mnAC(mn−1)/(mn)

W u(mn2−n+1)
/
(mn)(un−1)(m+1)/(mn)

(mn+1)un +n−1
(22)

The optimal heating paths are obtained by solving Eqs. (21)
and (22). Inputs are the values of m, n, A and z f .

4. DISCUSSIONS

4.1. Effects of heat transfer laws

When m = 1, the heat transfer law becomes the generalized
radiative heat transfer law, Eqs. (21) and (22) become

zn (un−1)2−CW un−1 = 0 (23)

du
dω

=
−nAC(n−1)/n

W u(n2−n+1)
/

n(un−1)2/n

(n+1)un +n−1
(24)

They are the same results as those obtained in Ref. [27]. If
n = 1 further, Equations (23) and (24) are the results of the
heat transfer process with Newton’s heat transfer law [14, 27].
If n = −1 further, Equations (23) and (24) are the results of
the heat transfer process with the linear phenomenological heat
transfer law [27]. If n = 4 further, Equations (23) and (24) are
the results of the heat transfer process with the radiative heat
transfer law [27].

When n = 1, the heat transfer law becomes the generalized
convective heat transfer law. Eqs. (21) and (22) take the form

zm (u−1)m+1 = CW (25)

du
dω

=
−mAC(m−1)/m

W (u−1)(m+1)/m

m+1
(26)

If m = 1 further, Equations (25) and (26) are the results of the
heat transfer process with Newton’s heat transfer law [14, 27].
If m = 1.25 further, Equations (14) and (15) are the results of

the heat transfer process with the Dulong-Petit heat transfer
law, which become:

z(ω) =
[
1+(z5/9

f −1)ω
]9/5

(27)

u(ω) = 1+

[
4A

9(z5/9
f −1)

]9/20 [
4Aω

9
+

4A

9(z5/9
f −1)

]−5/4
(28)

Substituting Eqs. (27) and (28) into Eqs. (17) and (18) yields:

˜̇Wl =
[
9(z5/9

f −1)
/

(4A)
]9/5

, W̃l =
[
9(z5/9

f −1)
/

(4A)
]9/5

(29)
From Eq. (29), it can be concluded that the condition corre-
sponding to the minimum lost available work strategy with the
Dulong-Petit heat transfer law is that corresponding to a con-
stant rate of lost available work.

When m = 1.25 and n = 4, the heat transfer law becomes a
complex heat transfer law q ∝ (∆(T 4))1.25. There is no analyti-
cal solution for this case, so a numerical approach is necessary.

Salamon et al. [32] proved that for any linear finite-time
process, the strategy that minimizes entropy generation was
the one that corresponds to a constant rate of entropy gener-
ation. Andresen and Gordon [26] further showed that only
for the specific cases of Newton’s and linear phenomenolog-
ical transfer laws was the observation of Salamon et al valid.
Meanwhile, they proved that for general non-linear problems,
a constant rate of entropy generation was not the optimal strat-
egy. Badescu [27] showed that the optimum rate of lost avail-
able work is constant over time in the case of the minimum lost
available work strategy with Newton’s heat transfer law.

When n = 1, Eq. (17) becomes

˜̇Wl = zm (u−1)m+1 (30)

Evidently, the right side of Eq. (30) is the same as the
left side of Eq. (25). Hence, the condition corresponding to
the minimum lost available work strategy is that correspond-
ing to a constant rate of lost available work, not only valid for
Newton’s heat transfer law but also valid for the generalized
convective heat transfer law, in which the conclusions in Refs.
[14, 27] are included.

4.2. Other heating and cooling strategies

Besides the optimal strategy for minimizing lost available
work, there are other cases, such as the optimal strategies for
minimizing entropy generation, the strategies of constant heat
flux and constant reservoir temperature operation and so on.

4.2.1. Optimal strategies for minimizing entropy generation

According to Ref. [33], the optimal strategies for minimiz-
ing entropy generation are:

yn−CSy(n+1)/(m+1)− zn = 0 (31)

dy
dω

=
nCm

S Aym(n+1)/(m+1)(yn−CSy(n+1)/(m+1))(n−1)/n

nyn−1−CS(n+1)y(n−m)/(m+1)/(m+1)
(32)
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where CS is an integration constant, which is determined by
T2(0) and z f .

4.2.2. Constant reservoir temperature operation

When y = const, the unknown y is determined by the fol-
lowing implicit equation:Z z f

1
1/(yn− zn)mdz = A (33)

Once y is found from Eq. (33), z(ω) is obtained by substituting
y into the following equation:Z z(w)

1

1
(yn− zn)m dz = Aω (34)

Finally, The value of u(ω) is obtained by u(ω) = y/z(ω).
When m = 1 and n is equal to 1, −1, and 4, respectively, the
results with Newton’s, the linear phenomenological and radia-
tive heat transfer laws are obtained in Refs. [26, 27]. When
m = 1.25 and n = 1, the result with the Dulong-Petit heat trans-
fer law is obtained. In this case, Eqs. (33) and (34) become

(y− z f )−1/4− (y−1)−1/4 = A
/

4 (35)

z(ω) = y−
[
Aω

/
4+(y−1)−1/4

]−4
(36)

When m = 1.25 and n = 4, the result with the complex heat
transfer law [q ∝ (∆(T 4))1.25] is obtained. In this case, Eqs.
(33) and (34) become

z f

(y4− z4
f )1/4 −

1
(y4−1)1/4 −Ay4 = 0 (37)

z(ω)
(y4− z(ω)4)1/4 −

1
(y4−1)1/4 −Ay4

ω = 0 (38)

4.2.3. Constant heat flux operation

When q = const, from Eqs. (1) and (13), one can obtain

z(ω) = 1+(z f −1)ω (39)

u(ω) =

{
1+

{
z f −1

A [1+(z f −1)ω]mn

}1/m
}1/n

(40)

When m = 1 and n is equal to 1, −1, and 4, respectively,
the results with Newton’s, the linear phenomenological and ra-
diative heat transfer laws are obtained in Refs. [26, 27]. When
m = 1.25 and n = 1, the result with the Dulong-Petit heat trans-
fer law is obtained. In this case, Eq. (40) becomes

u(ω) = 1+
[
(z f −1)

/
A
]4/5 [1+(z f −1)ω] (41)

When m = 1.25 and n = 4, the result with the complex
heat transfer law [q ∝ (∆(T 4))1.25] is obtained. In this case,
Eq. (40) becomes

u(ω) =

1+

{
z f −1

A [1+(z f −1)ω]5

}4/5


1/4

(42)

 

FIG. 2: Dependence of the dimensionless system temperature z(ω)
on the dimensionless time ω in case of the Dulong-Petit heat transfer
law

5. NUMERICAL EXAMPLES

For the convenience of analysis, Wl = mindenotes the
optimal strategy for minimizing lost available work, S =
mindenotes the optimal strategy for minimizing entropy gener-
ation, q = const denotes the strategy of constant heat flux oper-
ation, and T1 = const denotes the strategy of constant reservoir
temperature operation.

5.1. Numerical example for the Dulong-Petit heat transfer law

In this case, A = 2.5 and z f = 2 are set. Fig. 2 shows de-
pendence of the dimensionless system temperature z(ω) on the
dimensionless time ω in case of the Dulong-Petit heat transfer
law. The most abrupt variation of z(ω) at the starting time cor-
responds to the strategy of T1 = const. It is associated with
the highest rate of entropy generation. The other three strate-
gies show an almost linear increase of system temperature over
time. Fig. 3 shows dependence of the ratio of the reservoir
temperature to the system temperature u(ω) on the dimension-
less time ω in case of the Dulong-Petit heat transfer law. The
strategies of S = min and Wl = minshow a slight function u(ω)
decreasing over time. Both the final reservoir temperature and
the final system temperature for the strategies of q = const are
equal to those for the strategies of Wl = min, but the initial
reservoir temperature for the strategies of q = const is larger
than that for the strategies of Wl = min, i.e. the temperature dif-
ference between the reservoir and the system for the strategies
of q = const is larger than that for the strategies of Wl = min.
Hence the entropy generation for the strategies of q = const
is larger than that for the strategies of Wl = min. The temper-
ature difference between the reservoir and the system for the
strategies of T1 = const during the heat transfer processes is the
largest among various strategies, so the strategies of T1 = const
leads to the largest entropy generation [26, 27, 33].

Fig. 4 shows dependence of the dimensionless rate of lost
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FIG. 3: Dependence of the ratio of the reservoir temperature to the
system temperature u(ω) on the dimensionless time ω in case of the
Dulong-Petit heat transfer law

 

FIG. 4: Dependence of the dimensionless rate of lost available work
˜̇Wl on the dimensionless time ω in case of the Dulong-Petit heat trans-

fer law

available work ˜̇Wl on the dimensionless time ω in case of the
Dulong-Petit heat transfer law. From Fig. 4, it can be seen
that the profiles of ˜̇Wl for various heating strategies are differ-
ent. The strategy of q = const shows a function ˜̇Wl decreasing
over time, while the strategy of S = min shows a function ˜̇Wl
increasing over time. The strategy of T1 = const shows a fast
function ˜̇Wl decreasing at the beginning of the heat transfer
process, but ˜̇Wl varies little at the end of the heat transfer pro-
cess. Also from Fig. 4, the rate of lost available work ˜̇Wl for
the strategy of Wl = min is constant in the case of the Dulong-
Petit heat transfer law, which is the same as the result with
Newton’s heat transfer law [27]. As is discussed in section
4.1, both Newton’s and the Dulong-Petit heat transfer laws be-
long to special cases of the generalized convective heat transfer
law, so the condition corresponding to the minimum lost avail-

 

FIG. 5: Dependence of the dimensionless lost available work W̃l on
the dimensionless system final temperature z f in case of the Dulong-
Petit heat transfer law

able work strategy is that corresponding to a constant rate of
lost available work, not only valid for Newton’s heat transfer
law but also valid for the Dulong-Petit heat transfer law. Fig.
5 shows dependence of the dimensionless lost available work
W̃l on the dimensionless system final temperature z f in case of
the Dulong-Petit heat transfer law. The strategies of Wl = min,
S = min and q = const show similar results of the lost avail-
able work W̃l , i.e. all of the values of W̃l increases with the
increase of z f . Also from Fig. 5, it can be seen that keeping
a constant reservoir temperature is the worst strategy as far as
the lost available work is concerned.

5.2. Numerical example for the heat transfer law
q ∝ (∆(T 4))1.25

In this case, A = 0.02 and z f = 2 are set. Fig. 6 shows
dependence of the dimensionless system temperature z(ω) on
the dimensionless time ω in case of the heat transfer law
q ∝ (∆(T 4))1.25. The highest dimensionless system temper-
ature z(ω) during the whole heat transfer process corresponds
to the strategy of T1 = const, the dimensionless system temper-
ature z(ω) for the strategy of q = const lies between that for the
strategy of T1 = const and that for the strategy of S = min, the
lowest dimensionless system temperature z(ω) corresponds to
the strategy of Wl = min. Fig. 7 shows dependence of the
ratio of the reservoir temperature to the system temperature
u(ω) on the dimensionless time ω in case of the heat transfer
law q ∝ (∆(T 4))1.25. At the beginning of heat transfer pro-
cess, the temperature ratio u(ω) for the strategy of Wl = min
is larger than that for the other strategies, while at the end of
heat transfer process, the temperature ratio u(ω) for the strat-
egy of Wl = min is smaller than those for the other strategies.
Also from Fig. 7, the variation of the reservoir temperature for
the strategy of S = min is very similar to that for the strategy
of Wl = min. Fig. 8 shows dependence of the dimensionless
rate of lost available work ˜̇Wl on the dimensionless time ω in
case of the heat transfer law q ∝ (∆(T 4))1.25. Compared to the
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FIG. 6: Dependence of the dimensionless system temperature z(ω)
on the dimensionless time ω in case of the heat transfer law q ∝

(∆(T 4))1.25

 

FIG. 7: Dependence of the ratio of the reservoir temperature to the
system temperature u(ω) on the dimensionless time ω in case of the
heat transfer law q ∝ (∆(T 4))1.25

results with the Dulong-Petit heat transfer law, the differences
of the time variations of ˜̇Wl among the strategies of q = const,
S = min and T1 = const are smaller. The strategy of Wl = min
shows a slow and almost linear time variation of ˜̇Wl , i.e. at
the beginning of heat transfer process, the rate of lost available
work ˜̇Wl for the strategy of Wl = min is smaller than those for
the other strategies, while at the end of heat transfer process,
the rate of lost available work ˜̇Wl for the strategy of Wl = min
is larger than those for the other strategies.

 

FIG. 8: Dependence of the dimensionless rate of lost available work
˜̇Wl on the dimensionless time ω in case of the heat transfer law q ∝

(∆(T 4))1.25

5.3. Performance comparisons for special heat transfer laws

According to Ref. [27], the parameters in Newton’s, the
linear phenomenological and radiative heat transfer laws are
used. A = 10 and z f = 2 are set for Newton’s heat transfer law.
A = −10 and z f = 2are set for the linear phenomenological
heat transfer law, A = 2.5andz f = 2 are set for the Dulong-Petit
heat transfer law, A = 0.025 and z f = 2 are set for the radiative
heat transfer law, and A = 0.02 and z f = 2 are set for the heat
transfer law q ∝ (∆(T 4))1.25. Fig. 9 shows dependence of the
dimensionless system temperature z(ω) on the dimensionless
time ω in case of the minimum lost available work with the
special heat transfer laws. The results show that differences
between the optimal variation of the system temperature with
Newton’s heat transfer law and that with the Dulong-Petit heat
transfer law are so small that could be negligible. The time
variation of the dimensionless system temperature z(ω) with
the Dulong-Petit heat transfer law is very similar to that with
Newton’s heat transfer law, while the time variation of the di-
mensionless system temperature z(ω) with the radiative heat
transfer law is very similar to that with the heat transfer law
q ∝ (∆(T 4))1.25. It’s evident that the heat transfer laws have
effects on the optimal configuration of the system temperature.
Fig. 10 shows dependence of the dimensionless reservoir tem-
perature y(ω) on the dimensionless time ω in case of the min-
imum lost available work with the special heat transfer laws.
From Fig. 10, the optimal configuration of the system tem-
perature for Newton’s heat transfer law are almost the same as
that for the Dulong-Petit heat transfer law, but the optimal con-
figurations of the reservoir temperature for them are different.
The reservoir temperature for the Dulong-Petit heat transfer
law over the time is smaller than that for Newton’s heat trans-
fer law. The variation of the optimal reservoir temperature
for Newton’s heat transfer law is very similar to that for the
Dulong-Petit heat transfer law, while the variation of the opti-
mal reservoir temperature for the radiative heat transfer law is
very similar to that for the heat transfer law q ∝ (∆(T 4))1.25.
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FIG. 9: Dependence of the dimensionless system temperature z(ω)
on the dimensionless time ω in case of the minimum lost available
work with the special heat transfer laws

 

FIG. 10: Dependence of the dimensionless reservoir temperature
y(ω) on the dimensionless time ω in case of the minimum lost avail-
able work with the special heat transfer laws

Besides, the variation of the optimal reservoir temperature for
the linear phenomenological heat transfer law is different from
those for the other heat transfer laws. This shows that the heat
transfer laws also have effects on the optimal configuration of
the reservoir temperature.

6. CONCLUSION

A common of finite-time heat transfer processes between
high- and low-temperature sides with a generalized heat trans-

fer law q ∝ (∆(T n))m is studied in this paper. The optimal heat-
ing and cooling configurations for minimizing lost available
work are derived for the fixed initial and final temperatures of
the low-temperature side working fluid of the system, the ob-
tained results are general, including those results with special
heat transfer laws. A more general conclusion is formed: the
condition corresponding to the minimum lost available work
strategy is that corresponding to a constant rate of lost available
work, not only valid for Newton’s heat transfer law but also
valid for generalized convective heat transfer law q ∝ (∆T )m,
in which the results in Refs. [14, 27] are included. Numerical
examples for minimizing lost available work with the Dulong-
Petit heat transfer law and the heat transfer law q ∝ (∆(T 4))1.25

are provided, and the results are also compared with optimal
strategy for minimizing entropy generation, and the common
strategies of constant heat flux and constant reservoir temper-
ature operation. Numerical calculations show that the constant
reservoir temperature strategy leads to the largest lost available
work, the strategies of minimum entropy generation and con-
stant heat flux produce less lost available work. Performance
comparisons for special heat transfer laws are also provided,
and the results show that the heat transfer laws have effects
on the optimal time path of heat transfer processes. As has
been stated in Refs. [14, 27], optimizing the thermodynamic
systems for minimizing lost available work is different from
that for minimizing entropy generation when choosing differ-
ent reference states. Certainly, the two methods are equivalent
when the universe environment is chosen to be the reference
state. Choosing between the two optimum criteria (i.e. mini-
mum entropy generation and minimum lost available work) de-
pends on the particular implementation of the heating/cooling
process. The method based on the entropy generation mini-
mization could be used, for example, in the case of a chemical
factory that delivers various products and secondary utilities
as flows of heat and power. The entropy generation should be
seen in this case as a common measure for the cost of produc-
tion of all these outputs of different nature, allowing an overall
optimization. The method based on lost available work mini-
mization could be used for example during the design of some
power plants or in those cases where the main interest is in de-
livering a maximum output power. The obtained results in this
paper are general and can provide some theoretical guidelines
for the designs of practical heat exchangers.
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