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Aspects of nonrelativistic quantum gravity
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A nonrelativistic approach to quantum gravity is studied. At least for weak gravitational fields it should
be a valid approximation. Such an approach can be used to point out problems and prospects inherent in
a more exact theory of quantum gravity, yet to be discovered. Nonrelativistic quantum gravity, e.g., shows
promise for prohibiting black holes altogether (which would eliminate singularities and also solve the black
hole information paradox), gives gravitational radiation even in the spherically symmetric case, and supports
non-locality (quantum entanglement). Its predictions should also be testable at length scales well above the
“Planck scale”, by high-precision experiments feasible with existing technology.
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The greatest fundamental challenge facing physics has for
many years been to reconcile gravity with quantum physics.
There have been numerous attempts to do so, but so far
there is no established and experimentally/observationally
tested theory of “quantum gravity”, the two main con-
tenders presently being string theory [1] and loop quantum
gravity [2], with “outsiders” like twistor theory [3], non-
commutative geometry [4], etc.

The motivations for studying nonrelativistic quantum
gravity, apart from the simple and well-defined mathematics,
are:

1) Quantum theory is supposed to be universal, i.e., it
should be valid on all length scales and for all objects, as
there in principle exists no size/charge/mass-limit to its ap-
plicability. In atomic physics the practical restriction comes
about because there is a limit to arbitrarily large atomic nu-
clei as, i) the Coulomb force between protons is repulsive,
eventually overpowering the strong nuclear force trying to
hold the nucleus together, ii) the additional weak force makes
neutron-rich nuclei decay before they grow too large. Also,
the electric charge comes in both positive and negative, and
as a result a big lump of matter is almost always electrically
neutral1. Neither of these limitations are present in “pure”
quantum gravity.

2) For weak gravitational fields the nonrelativistic theory
should be sufficient. The weak-field newtonian limit is even
used for determining the constant κ in Einstein’s field equa-
tions of general relativity Gµν = κTµν. The nonrelativistic
limit is also almost always sufficient for practical purposes in
non-quantum gravity, except for a handful of extreme cases
(notably black holes and the very early universe), although
high-precision experiments in, e.g., the solar system can and
do show deviations from the nonrelativistic theory, always in
favor of general relativity [5].

3) Even for strong gravitational fields the newtonian
picture gives the same prediction as general relativity for
the Schwarzschild radius of a spherically symmetric, non-
rotating black hole, and correct order of magnitude results
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1 The same also applies for e.g. the strong force, as the three different color

charges (“red”, “green”, “blue”) always combine to produce color-neutral
hadrons and bulk matter.

for neutron stars and cosmology. This could make it possible
to deduce at least qualitative results about strongly coupled
quantum gravity, as the nonrelativistic viewpoint should give
reliable first order quantum gravitational results.

On the other hand would any “absurd” results obtained
from nonrelativistic quantum gravity, deviating from obser-
vations, implicate either that:

A) General relativity cannot be quantized2. An unsuccess-
ful special case (the weak field limit) would disprove the gen-
eral case, whereas the opposite is not true.

or
B) Quantum mechanics fails at “macroscopic” distances

and for macroscopic objects. This would mean that we in
gravity have a unique opportunity to understand the “mea-
surement problem” in quantum mechanics, as proposed by
e.g. Károlyházy [7] and Penrose [8]. In that case we can use
gravity to probe the transition between quantum → classi-
cal behavior in detail, i.e. get experimental facts on where,
how and when the inherently undecided quantum world of
superpositions turns into the familiar objective classical ev-
eryday world around us. Fundamental quantum gravity and
the quantum mechanical measurement problem may well be
intertwined and might need to be resolved simultaneously in
a successful approach.

In nonrelativistic quantum gravity, at least as long as the
system can be approximately treated as a 2-body problem, it
is possible to use the mathematical identity between the elec-
trostatic Coulomb force in the hydrogen atom, and Newton’s
static gravitational force under the substitution Ze2/4πε0→
GmM. For weak electromagnetic fields, as in the hydrogen
atom, the electrodynamic corrections to the static Coulomb
field are very small, making the approximation excellent.
The same applies to gravity, dynamical effects from general
relativity are negligible for weak gravitational fields. A grav-
itationally bound 2-body system should then exhibit the same
type of “spectrum” as a hydrogen atom, but emitted in (un-
observable) graviton form instead of photons.

For a free-falling 2-body system, e.g. in a satellite exper-
iment enclosed in a spherical vessel, it should in principle

2 This is an automatic consequence of “emergent” gravity, e.g. Sakharov’s
theory [6], where gravity is a non-fundamental interaction and rather a
macroscopic consequence of other forces and fields.
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be possible to measure the excitation energies for a suitable
system. An analogous result has seemingly already been ac-
complished for neutrons in the gravitational field of the earth
[9], although there are some quantum gravity ambiguities as
noted below.

The gravitational “Bohr-radius”, b0, the innermost radius
of circular orbits in the old semi-classical Bohr-model and
also the distance r for which the probability density of the
Schrödinger equation ground-state peaks, is

b0 =
h2

4π2Gm2M
=

~2

Gm2M
, (1)

and the quantum-gravitational energy levels

En(grav) =−2π2G2m3M2

h2
1
n2 =−G2m3M2

2~2
1
n2 =−Eg

1
n2 ,

(2)
where Eg = G2m3M2/2~2 is the energy required to totally
free the mass m from M in analogy to the Hydrogen case,
whereas the expectation value for the separation is

〈r〉grav ' n2b0 =
n2~2

Gm2M
. (3)

All analytical solutions to the Schrödinger equation, the hy-
drogen wave-functions, carry over to the gravitational case
with the simple substitution a0→ b0.

ψnlm = R(r)Θ(θ)Φ(φ) = NnlmRnlYlm, (4)

where Nnlm is the normalization constant, Rnl the radial
wavefunction, and Ylm, the spherical harmonics, contain the
angular part of the wavefunction.

We notice (e.g. through b0) that, e.g., the planets in the
solar system must be in very highly excited quantum gravi-
tational states. In that sense they are analogous to electrons
in “Rydberg atoms” in atomic physics [10].

For excited states with l 6= 0, and very large n and l, the
expectation value of the distance is

〈r〉 ' 1
2
(3n2− l2)b0, (5)

however as that is for an ensemble (average over many mea-
surements), for a single state it is in principle more appro-
priate to use the most probable radial distance (“radius” of
orbital)

r̃ = n2b0, (6)

as a measure for the expected separation. However, for n
large and l = lmax = n−1 the two coincide so that 〈r〉= r̃

It is easy to show that for, e.g., Kepler’s law to apply, l
must be very close to n:

The period of revolution can be written

T =
2πmr̃2

L
=

2πmr̃2

l~
, (7)

and assuming maximality for the angular momentum, l ' n,
gives

T ' 2πmr̃2

n~
. (8)

Solving the most probable distance, Eq. (6), for n gives

n =
m
√

GMr̃
~

, (9)

so that

T ' 2πr̃3/2
√

GM
, (10)

which is Kepler’s law. So, the conclusion is that all the plan-
ets in the solar system are in maximally allowed angular mo-
mentum states quantum mechanically. Even though the max-
imality of L and Lz are automatic in the classical description,
it is far from obvious why the same should result from the
more fundamental quantum treatment, as noted below.

For states with l = lmax = n− 1 and m = ±l: i) There
is only one peak, at r = r̃, for the radial probability den-
sity, and the “spread” (variance) in the r-direction is given
by3 ∆r =

√
〈r2〉−〈r〉2 ' n3/2b0/2, ii) The angular θ-part of

the wavefunction for maximal m-quantum number |m| = l,
is ∝ sinl

θ. The probability density thus goes as sin2lθ in the
θ-direction, meaning that only θ = π/2 is nonvanishing for
large l. The azimuthal (φ) part of the angular wavefunction
Ylm is purely imaginary, making it drop out of the probabil-
ity density, so that all values of φ are equally likely. (This
φ-symmetry is a consequence of conservation of angular mo-
mentum in a central potential.) The total planetary probabil-
ity density is thus “doughnut” (torus-like) shaped, narrowly
peaking around the classical trajectory.

From a quantum gravity standpoint, the system could be in
any and all of the degenerate states, and usually at the same
time, so typical for quantum mechanical superposition. Even
for given energy and angular momentum there is no reason
for objects to be in any particular eigenstate at all of the 2l+1
allowed, and certainly not exclusively m = ±l. The radial
probability distribution in general has n− l maxima. Thus,
only for l = lmax = n− 1 has it got a unique, highly peaked
maximum. The degeneracy for a given n is n2. Whenever
l < lmax, the radial wavefunction is highly oscillatory in r as
it has n− l nodes. The same goes for the angular distribution
as there in general are l−m nodes in the θ-direction. For
a general RnlYlm objects could be “all over the place”, and
in simultaneous, co-existing superposed states with different
quantum numbers. Consequently, nonrelativistic quantum
gravity cannot solve the quantum mechanical measurement
problem, possibly because it lacks the non-linear terms con-
jectured to be needed [8].

To get the innermost allowed physical orbit for any “test-
particle”, m, we must impose the physical restriction that the
binding energy cannot exceed the test particle mass-energy

3 The hydrogen wavefunctions for the gravitational case give 〈r2〉= [5n2 +
1−3l(l +1)]n2b2

0/2 and 〈r〉= [3n2− l(l +1)]b0/2 .
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(as the energy of the total system otherwise could not be con-
served), thus

Eg(max) = mc2. (11)

As Eg can be written

Eg =
GmM
2b0

, (12)

we get

b0(min) =
GM
2c2 =

RS

4
, (13)

where RS = 2GM/c2 is the Schwarzschild radius. It is amus-
ing to see how close b0(min) is to RS and one cannot help
speculate that a more complete theory of quantum grav-
ity could ensure that r > RS always, and thus forbid black
holes altogether4. In addition, all non-gravitational radiation
mechanisms during collapse have here been neglected. The
object M must be put together somehow, but if rmin > RS it
can never accrete enough matter to become a black hole, as
the infalling mass (energy) instead will be radiated away in
its totality (in gravitons), making a black hole state impossi-
ble [11]. This would, in an unexpected way, resolve the black
hole information loss paradox. Even though r = RS repre-
sents no real singularity, as it can be removed by a coordinate
transformation, anything moving inside r < RS will, accord-
ing to classical general relativity, in a (short) finite proper
time reach the true singularity at r = 0. If quantum gravity
could ensure that r > RS always, gravity would be singularity
free.

Let us briefly look at radiative transitions. From the
dipole approximation in atomic physics an elementary quan-
tum (photon) transition requires ∆l = ±1. A quadrupole
(graviton) approximation in quantum gravity instead requires
∆l =±2. So, a typical elementary energy transfer in a highly
excited, gravitationally bound 2-body quantum gravitational
system is

∆E =−Eg(n−2− (n−2)−2)'
4Eg

n3 . (14)

We also see that the gravitational force is not really con-
servative, even in the static newtonian approximation. The
changes in kinetic and potential energies do not exactly bal-
ance, ∆K 6= ∆U , the difference being carried away by gravi-
tons in steps of ∆l = 2. Also, in the quantum gravity case
there is gravitational radiation even in the spherically sym-
metric case, which is forbidden in classical general relativity.

We are now equipped to return to the experiment with neu-
trons in the gravitational field of the earth [9], claiming to
have seen, for the first time, quantum gravitational states in
the potential well formed by the approximately linear gravi-
tational potential near the earth surface and a horizontal neu-
tron mirror. An adjustable vertical gap between the mirror

4 For the hydrogen atom the corresponding value is a0(min)' 1.4×10−15

m, or one-half the “classical electron radius”, whereas RS ' 10−53 m, so
that a0(min)� RS. But we implicitly already knew that. The Coulomb
force does not turn atoms into black holes.

and a parallel neutron absorber above was found to be non-
transparent for traversing neutrons for separations less than
∼ 15µm (essentially due to the fact that the neutron ground
state wavefunction then overlaps the absorber). As the neu-
tron in such a well, from solving the Schrödinger equation,
has a ground state wavefunction peaking at ∼ 10µm, with a
corresponding energy of ' 1.4×10−12 eV, the experimental
result is interpreted to implicitly having verified, for the first
time, a gravitational quantum state.

If we instead analyze the experiment in the framework
of the present article, the same experimental setup gives
b0 ' 9.5×10−30 m, Eg ' 2.2×1035 eV. Close to the earth’s
surface, r̃' R⊕ ' 6.4×106 m, the radius of the earth, giving
n ' 8.2× 1017, resulting in a typical energy for an elemen-
tary quantum gravity transition ∆E ' 4Eg/n3 ' 1.6×10−18

eV. For a cavity of ∆r̃ = 15µm, and n� ∆n� 1, one gets
∆E = Egb0∆r̃/r̃2 ' 0.7× 10−12 eV = 0.7 peV, to be com-
pared to the value 1.4 peV as quoted in [9]. Even though
the present treatment gives a similar value for the required
energy, it need not be the result of a single quantum grav-
ity state as calculated in [9], but rather ≤ 106 gravitons can
be emitted/absorbed. From the treatment in this article it is
thus not self-evident to see why the experimental apparatus
[9] should be non-transparent to neutrons for vertical separa-
tions ∆h < 15µm.

Thus, the difference regarding quantized energy levels for
an experiment with neutrons “falling”5 under the influence
of earth’s gravity with mirror (as in [9]) or without (above)
shows that nonrelativistic quantum gravity is dependent on
global boundary conditions, where the boundary in princi-
ple can lie arbitrarily far away. This comes as no surprise,
as the Schrödinger equation models the gravitational inter-
action as instantaneous, contrasted with the case in general
relativity where the behavior in free-fall only depends on the
local properties of mass-energy and the resulting spacetime
curvature (out of which the mirror is not part due to its in-
herently non-gravitational interaction with the neutron) and
causal connection as the gravitational interaction propagates
with the speed of light. However, as several experiments on
entangled quantum states, starting with Clauser/Freedman
[12] and Aspect et al. [13], seem to be compatible with
a non-local connection between quantum objects [14], this
property of the Schrödinger equation need not be a serious
drawback for a theory of quantum gravity.

5 In fact, a bound quantum gravitational object does not fall at all as it is
described by a stationary wavefunction, or a superposition of such.
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