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We study a dynamical system which describes the overlap of resonances in a global integrable context and we
present a new topological scenario for the reconnection of three resonance island chains in the presence of two
robust tori. These tori induce this new scenario and they play the role of transport barriers which are relevant
for plasma confinement in Tokamaks.
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1. INTRODUCTION

Isochronous resonances [1] constitute the most appropri-
ate prototype to investigate the overlap of resonances. In
generic dynamical systems the resonances come associated
with chaos and when we say in overlap, we are usually
saying in interactions of resonances immerse in a chaotic
sea. The resonances are identified, in the phase space of
the systems, through the visualization of separatrices which
delimitate libration motion from the one of rotation. The sep-
aratrices are also denoted by islands and when they are far
from each other, their neighborhoods are similar to the pen-
dulum dynamics. As some control parameter is varied, the
separatrices split and each resonance experiences the pres-
ence of the other and the resonance overlap occurs. This
interaction, sometimes is also called by reconnection [2], oc-
curs when the splitting of the separatrices are sufficiently
close in such way that there are not any tori in the region
of interaction between the separatrices. This scenario is well
reported by Chirikov [3] but it does not allow us to visual-
ize and understand the details of the overlap of resonances.
In a complementary context, it was developed an integrable
Hamiltonian scenario, with resonances of same order, where
the overlap can occur without any interference of chaos [1].
The necessary condition to occur this configuration is to
introduce a non-twist term in the non-perturbed system in
order to allow the occurrence of, at least, two resonances
but without breaking down the integrability of the system.
These are the isochronous resonances. The non-twist con-
dition for Hamiltonian flux [4,5] is naturally manifested in
the rotation number or in the safety factor in the context of
plasma physics [6]. The safety factor, in this case, presents a
nonmonotonic profile which can trigger multiple instability
modes [7]. For discrete systems, there are also some corre-
lated studies on non-twist maps, associated with the idea of
the isochronous resonances [8-11]. But the resulting topo-
logical configuration after the resonances overlapping can
vary depending on the quantity of resonances which partici-
pate on the reconnection process, even though some patterns
frequently appear. Besides the quantity of resonances, we in-
troduce another agent which can interfere in the topological
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rearrangement, it is the called robust torus [12]. This kind
of torus survives intact to the effects of generic perturbations
and it constitutes an efficient transport barrier [13]. In this
sense we would like to present in this work a new scenario for
the overlap of resonances when three isochronous resonances
and two robust tori interact and participate in this process.
The paper is organized as follows, in section 2 we present the
strategy that we will follow to construct a Hamiltonian which
foresees these dynamical constituents. The Hamiltonian is
generated from the expansion of the Birkhoff-Gustavson nor-
mal form in the action-angle variables [14,15]. In section 3,
we particularize the obtained Hamiltonian for our purposes
keeping only the relevant terms in this expansion. In sec-
tion 4 we show the numerical results and finally in section 5
we present the final remarks and conclusions.

2. REVIEWING THE RESONANT NORMAL FORM

In order to introduce to the readers the Hamiltonian func-
tion which we have used to develop our studies, we will
present a brief review of the formalism of the Birkhoff-
Gustavson’s Normal Form-BGNF around a stable fixed point
for a generic autonomous system with two degree of free-
dom, which can be found in more details in [16]. The
Hamiltonian is initially described in terms of the momentum-
position variables (pk,qk, for k = 1 or 2).

The linear neighborhood of an elliptic fixed point is well
approximated by harmonic oscillators while the nonlineari-
ties are all included in a generic sum containing terms from
third order in the (pk,qk) variables. We start from the follow-
ing Hamiltonian governing the dynamics of a particle,

H(−→q ,−→p ) = ω1

(
p2

1 +q2
1

2

)
+ω2

(
p2

2 +q2
2

2

)
+

+
∞

∑
−→α +

−→
β =3

k−→α,
−→
β qα1

1 .qα2
2 .pβ1

1 .pβ2
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where k−→α,
−→
β is a parameter which can depend on α andβ.

We say that a resonance exists in the origin of the 4-d phase
space if there is a commensurability condition between the
frequencies of the type ω1

ω2
= s

r , where s
r is a rational number.

We perform a canonical transformation (CT) changing the
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variables (−→p ,−→q ) to the complex ones
(−→a ,
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)
through,

−→a =
1√
2

(−→q + i−→p ) ,
−→
a∗ =

1√
2

(−→q − i−→p ) (2)

or alternatively,
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In this new set of variables the Hamiltonian is described

by,

H(−→a ,−→a∗) = ω1 (a1.a∗1)+ω2 (a2.a∗2)+
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According to Birkhoff’s theorem [14] it is possible, in
general, to eliminate high order terms from the series given
above through successive time-independent CT, in such way
we get the expression,

H(−→a ,−→a∗) =

{
ω1 (a1.a1∗)+ω2 (a2.a2∗)+b4,0 (a1.a1∗)2 +b2,2 (a1.a1∗)(a2.a2∗)+ ......
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(5)

where the coefficients bi, j represent the dependence of the
frequencies on the oscillation amplitudes and the expression
in curly brackets is of finite order and totally integrable. In
general we are not able to extend this order to infinite but
only to a finite order what means to make an approximation
to the real motion, by neglecting terms in the summation.
These terms, collectively, may be considered as perturbations
since they are not reducible to an integrable form. But this
truncating gives a good approximation to describe the motion
near a stable equilibrium point. This truncate Hamiltonian is
called Birkhoff’s Normal Form (BNF).

A formal way to try to extend the BNF up the order(−→a .
−→
a∗

)N
is to apply a CT
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)
→
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)
using the

generating function,
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From this expression we immediately obtain the series
for a1,a2,Z∗

1 ,Z∗
2 . Reversing these last two series we get

a∗1,a
∗
2and substituting these results in the two first series we

obtain
(−→a ,

−→
a∗

)
explicitly in terms of

(−→
Z ,

−→
Z∗

)
.

Only the quadratic term ω1 (a1.a1∗)+ ω2 (a2.a2∗), in eq.
(5), gives a contribution of order N beside the linear approx-
imation

(−→a =
−→
Z ,

−→
a∗ =

−→
Z∗

)
. In all other terms we have

to use this linear approximation to keep the series starting
from N. After some algebraic manipulations we rewrite the
Hamiltonian given in eq. (5) by,

H(−→a ,−→a∗) =

{
ω1 (a1.a1∗)+ω2 (a2.a2∗)+b4,0 (a1.a1∗)2 +b2,2 (a1.a1∗)(a2.a2∗)+ ......
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(7)

Looking at the equation (7) we see that the case α1 = β1
and α2 = β2 gives a trivial contribution to the BNF, so a
natural choice for S−→α ,

−→
β is given by,

S−→α ,
−→
β =

k−→α ,
−→
β

ω1 (β1 −α1)+ω2 (β2 −α2)
(8)

When the frequencies ratio is irrational and α1 �= β1 and
α2 �= β2, the expression (8) eliminates all terms in the sum-
mation of equation (7) and the BNF can be obtained for any
order representing a global integrable system. On the other
hand if the frequencies ratio is rational, the expression (8)
diverges defining a resonance. So, exist many terms hidden
in the summation of equation (7) which can not be elimi-
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nated and in this case the equation (8) is called Birkhoof-
Gustavson’s Normal Form (BGNF), or simply Resonant Nor-
mal Form.

The construction of the desired Hamiltonian which in-
cludes resonance structures and other invariant tori in a
global integrable context imposes the choice of a single term,

or a pair of conjugate complex terms. So, one way to choose
an appropriate resonant term is when the sum (−→α +

−→
β )

is minimum, this is, based on the degree of the BNF we
take one resonant term of superior degree. Therefore we
put(−→α +

−→
β ) = (r + s). Then eq. (7) is giving by,
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(9)

where HOT means higher order terms, from (r + s+1)th or-
der. The equation (9) is a particular case of the BGNF.

The dynamics can be easily described in terms of the
action-angle variables

(−→
I ,−→ϕ

)
(we point out that ϕ is a

scalar, the arrow represents the two variables ϕ1,ϕ2) which
are given by the transformation,
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in such way that,

−→a .
−→
a∗ =

−→
I =

−→
p2 +

−→
q2

2
(11)

consequently the momenta and positions are related with(−→
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)
by,

−→q =
√

2
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√
2
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I sin(ϕ) (12)

and the Hamiltonian, eq. (9), becomes,

H(
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1 +b6,0I3
1

+ ......+b0,N−1 I(N−1)/2
2 +

+ α (Ir
1Is

2)
1/2 cos (rϕ1 − sϕ2) (13)

where α is a control parameter or the perturbation parameter
which was introduced only now to do not cause confusion.
The effect of the added term is to generate a resonance of
order s : r.

Finally, we make the linear CT
(−→

I ,−→ϕ
)
→

(−→
J ,

−→
θ

)
,

I1 = rJ1 I2 = J2 − sJ1
θ1 = rϕ1 − sϕ2 θ2 = ϕ2

(14)

whose effect is to focus a single island of the resonance
chain.

If we choose ω1
ω2

=
( s

r

)− λ with λ a small constant we
displace the resonance from the origin to a resonant torus.
Initially we have put λ = 0 in order to identify and add the
resonant terms in eq. (9) and eq. (13), now we study the

simplest approximation which is valid near λ = 0, making
λ �= 0. The Hamiltonian, eq. (13), reads as,

H(
−→
J ,

−→
θ ) =

=
{

ω2 (J2 − rλJ1)+b4,0 (rJ1)
2 +b6,0 (rJ1)

3 + .........
}

+

+ α(rJ1)
r/2 .(J2 − sJ1)

s/2 cos(θ1) (15)

Since H(
−→
J ,

−→
θ ) does not depend on θ2 then its canoni-

cal conjugate variable J2 is a global constant of motion, so
the system is integrable because it has two degrees of free-
dom and the total energy and J2 are constants. The non-
integrability and consequently the chaotic orbits will appear
only when another perturbation depending explicitly on θ2 is
turned on.

From the Hamilton equations of motion,

•
θ1 =

∂H
∂J1

,
•
J1 =− ∂H

∂θ1
,

•
θ2 =

∂H
∂J2

,
•
J2 =− ∂H

∂θ2
(16)

we can study the dynamics in the phase space (J1,θ1) by inte-
grating numerically these differential equations and using the
technique of the Poincare’s section. The term in curly brack-
ets in equation (15), the BNF, is also called non-perturbed
Hamiltonian H0 and from equation (16) it is defined the res-
onance condition as,

•
θ1,0 =

∂ H0

∂ J1
= 0 (17)

This equation shows us where will occur the resonance due
to the introduction of the resonant term. If H0 is at least a
cubic polynomial, then equation (17) results also in a poly-
nomial whose lower order is two, what means that a single
resonant term in the BGNF introduces more than one reso-
nance chain in the phase space. These resonances are called
isochronous resonances because all of them have the same
order s : r. This is a very important point because we can
theoretically introduces as much as resonance chains that we
desire to develop the study. Since the distances among these
resonances are controlled by the resonance condition, equa-
tion (17), and the widths of the separatrices are controlled
by the perturbation parameter, α in equation (15), these res-
onances can interact and to overlap themselves. This process
is called overlap, or reconnection, of integrable resonances.
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On the other hand if we introduce other terms in the per-
turbation of equation (15), all only θ1-dependent, they can be
grouped in such way that a common pre-factor can be put in
evidence playing a very interesting role in the dynamics. For
instance, if this pre-factor is a polynomial with real roots,
it means that the perturbation will be algebraically zero in
these roots even when it is turned on. This gives origin to
tori which survive intact to the effects of the perturbations in
some particular regions of the phase space. These tori are
called Robust Tori.

Due to this versatility and to the many possible configura-
tions of Hamiltonians, the Birkhoff-Gustavson Normal Form
is interpreted as a toy model.

3. THE HAMILTONIAN DYNAMICS WITH ROBUST
TORI AND ISOCHRONOUS RESONANCES

Since the essential points for obtaining the Hamiltonian
of a particular system are presented we will use this mecha-
nism in order to generate the Hamiltonian of our study, which
will present three resonance chains, two robust tori and a
new scenario of overlap of resonances, generated by three
θ1-dependent perturbations.

We will adapt the Hamiltonians given in equation (9), (13)
and (15) for our purposes by adjusting the coefficients and
the quantity of terms. So, equation (9) becomes,

H =
{(

a2.a∗2 +
a1.a∗1

4

)
− a

2
(a1.a∗1 − c)2 +

1
4
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a4
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1 a2
)− (2bc)
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1 a1a2

)
+b

(
a6

1a∗2
1 a∗2 +a∗6

1 a2
1a2

)}
(18)

where a,b,c and α are adjustable parameters. From the
CT presented in equation (10) the Hamiltonian above is de-

scribed by,

H =
(
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I1

4

)
− a

2
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1
4

(I1 − c)4 +α I
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1
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or simply,

H =
(

I2 +
I1

4

)
− a

2
(I1 − c)2 +

1
4

(I1 − c)4 +

+ α I2
1 I

1/2
2 cos(4ϕ1 −ϕ2)

[
b(I1 − c)2 −a
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(20)

The CT given in equation (14) produces then the following
Hamiltonian,

H =
{

J2 − a
2

(4J1 − c)2 +
1
4

(4J1 − c)4
}

+

+ α
{[

b(4J1 − c)2 −a
]
(4J1)

2 (J2 − J1)
1/2 cos(θ1)

}
(21)

According with the discussion of the previous section,
the resonance condition uses the unperturbed Hamiltonian
given in the first curly bracket, of equation (21), so that three
isochronous resonance chains can appear when a periodic θ1-
perturbation is turned on. The positions of these resonance
chains are labeled by (J1)+,(J1)mand(J1)−. Then the local-
izations of the three resonance chains are,

(J1)+ =
c+

√
a

4
, (J1)m =

c
4

, (J1)− =
c−√

a
4

(22)

In the second curly bracket there is the desired pertur-
bation with a pre-factor, in the square bracket, which is a
quadratic polynomial in the J1 action. Depending on the
values of a,b,c, the pre-factor will present two real roots,
which we call (J1)R+ and (J1)R−, and over these values of
J1, the perturbations are algebraically null even for any non-
null value of α. Hence, two robust tori will be present in the
phase space in the following positions,

(J1)R+ =
c+

√
a/b

4
, (J1)R− =

c−√
a/b

4
(23)

We observe from these equations that the parameter b
changes the position of the robust tori, while the positions
of the resonances are not affected by it. This characteristic
makes the parameter b as a relevant one in order to realize the
interaction between the robust tori with the resonance struc-
tures.

Since the system is globally integrable, because θ2 is a
cyclic variable, J2 may play the role of a reduced Hamil-
tonian J2 = J2 (J1,θ1,Energy = constant) with θ2 doing the
role of canonical time. In this case the equations of motion
read as,
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•
J1 = −

(
∂H/∂θ1

∂H/∂J2

)
,

•
θ1 =

(
∂H/∂J1

∂H/∂J2

)
,

•
J2 =

(
∂H/∂θ2

∂H/∂J2

)
,

•
θ2 =

(
∂H/∂J2

∂H/∂J2

)
= 1 (24)

The phase space of this integrable system can be exploited
through the numerical integration of this set of equations.
Using the reduced Hamiltonian, each initial condition on the
phase space corresponds to a torus with a specific J2 and a
global constant energy. We point out that to break down the
integrability of the system it is sufficient to introduce any per-
turbation which depend explicitly on θ2. In the next section
we present the numerical calculations for different geometri-
cal configurations.

4. RECONNECTION INVOLVING INTEGRABLE
RESONANCES

In order to investigate the effect of the robust tori on the
overlap of the resonances, we have fixed the set of parame-
ters of the Hamiltonian presented in equation (21) and we let
α and b as adjustable parameters for developing our study.
We have chosen a = 4.0, c = 16.0, Enenrgy = 100.0 and
three values for b to investigate the dynamics, b = 0.17 which
corresponds to two external robust tori and far from the three
resonance chains, b = 0.70 where the robust tori continue ex-
ternal but now very close to the resonance chains and b = 2.0
where the robust tori are intercalated between the resonance
chains. The parameter α controls the amplitude of the pertur-
bations what implies in increasing or decreasing the widths
of the separatrices, or the islands, in such way that the separa-
trix of a chain can attain another one of other chain and start
the overlap of resonances. We emphasize that this kind of
overlap of integrable resonances does not create any chaotic
layer in the neighborhood of a separatrix, as described by
Chirikov, but a topological rearrangement involving invari-
ant tori will emerge. This reconnection process in the pres-
ence of robust tori is new and different of what is usually
discussed in the literature. The separatrix can also interact
with a robust torus, depending on the parameter b, and gen-
erate a very rich geometrical structure.
Case b = 0.17, the robust tori are external to the chains and
far from them. The next four figures illustrate the dynamics,

For α = 1.0 · 10−4, figure 1a, we observe three non-
interacting resonance chains. The range of θ1 was amplified
up 4π to guide the eyes. For α = 2.0 ·10−4, figure 1b, the sep-
aratrices of the two superior chains are practically in contact
and a global reconnection will start. For α = 8.0 ·10−4, fig-
ure 1c, the three chains have already overlapped themselves,
now the system presents a very interesting dynamical sce-
nario. The manifold which emanated from the hyperbolic
fixed point of the upper separatrix now it does a loop in-
volving the elliptic fixed point of the intermediate separa-
trix. On the other hand, the manifold which emanated from
the intermediate separatrix now it does two loops, like an
eight, involving the elliptic fixed points of both, the upper
and the lower separatrices. This eight-like loop is contoured
by the manifold which emanates from the lower separatrix.

This is the topological rearrangement after the reconnection
of the three integrable resonances without the influence of
the robust tori for moderate perturbation. For α = 2.0 ·10−3,
figure 1d, an inverse supercritical pitchfork bifurcation has
occurred involving the three fixed points of the eight-like
loop, the two elliptic fixed points coalesce with the hyper-
bolic fixed point resulting in a single elliptic fixed point and
libration tori. The final geometrical configuration in this case
presents only two resonance island chains, while the third
one has disappeared after the reconnection process and the
cited bifurcation.
Case b = 0.70, the robust tori are external to the chains but
close from them. The next five figures illustrate the dynam-
ics,

For α = 2.0 ·10−4, figure 2a, the three chains are not inter-
acting yet and the two robust tori are very close to the exter-
nal separatrices. For α = 4.0 ·10−4, figure 2b, the amplitudes
of the islands are sufficiently large for the occurrence of the
reconnection process but with a quite different topology. It is
visible that the robust tori limit the growing of the resonance
islands, the librations near the robust tori are flattened. As the
overlap process starts we see the stretching of the islands but
the robust tori imposes a limitation to this stretching. The hy-
perbolic fixed point from the upper separatrix interacts with
the robust torus and a subcritical pitchfork bifurcation oc-
curs, generating two others hyperbolic and one elliptic fixed
points, defining a small island. This elliptic fixed point will
remain in θ1 ≈ π forever while the two hyperbolic ones will
‘walk’ along the robust tori as the amplitude of the associated
island increases. The manifolds of the hyperbolic fixed point
of the intermediate chain again make an eight-like loop in-
volving the elliptic fixed points of the external separatrices.
The manifold which emanates from the inferior hyperbolic
fixed point, initially, makes a loop involving the elliptic fixed
point of the intermediate chain and it arrives at the hyperbolic
fixed point which has born over the upper robust torus. In a
next moment, for α = 8.0 · 10−4, figure 2c, the hyperbolic
fixed point of the lower separatrix also interacts with the ro-
bust torus and a similar bifurcation occurs over it. Another
bifurcation has occurred eliminating the eight-like loop. For
α = 2.0 ·10−3, figure 2d, we observe the final configuration
with one more island chain, besides what there was in the ini-
tial configuration, the phase space now presents four island
chains. The robust tori also play the role of separatrix in this
configuration. This topological rearrangement corresponds
to a new scenario for the overlap of resonances. In figure 2e
we see the bifurcation diagram with the original hyperbolic
fixed point identified by H1 and the others, which have born
after the bifurcation, identified by E1, H2 and H3.
Case b = 2.0, the robust tori are intercalated between the
chains. The next five figures illustrate the dynamics,

In figure 3a, for α = 1.0 · 10−4, the external resonance
chains are very close of the robust tori but they are not in-
teracting yet. For α = 2.0 · 10−4, figure 3b, we observe that



Brazilian Journal of Physics, vol. 39, no. 3, September, 2009 611

FIG. 1: Case b = 0.17, without Robust Tori. (a) Three non-interacting isochronous resonances; (b) Three near interacting isochronous res-
onances; (c) Three isochronous resonances after reconnection; (d) Three isochronous resonances after reconnection and after a bifurcation.

the interaction between the separatrices with the robust tori
has already started, the libration tori are also flattened due to
the presence of the robust tori and a similar subcritical pitch-
fork bifurcation occurred from the contact of the hyperbolic
fixed point, identified by H1 in figure 3a, with the superior
robust torus. Two hyperbolic and one elliptic fixed points
have emerged introducing a new small island below the up-
per robust torus. It is important to emphasize that from the
beginning of the interaction between the island chains with
some robust torus, this torus becomes also separatrices of the
islands over it. For α = 3.0 ·10−4, figure 3c, other analogous
bifurcation occurred over the lower robust torus and another
island was introduced in the region of the intermediate res-
onance chain. Even though the amplitudes of the external
separatrices have been stretched, the intermediate separatrix
is completely limited by both robust tori. Still in the interme-
diate region, we see that both new islands are enlarged and
each one is going towards the other. For α = 4.0 ·10−4, figure
3d, the elliptic fixed points of these new islands have bifur-
cated with the hyperbolic fixed point at θ1 = 2π through an
inverse supercritical pitchfork bifurcation and the final con-

figuration is the same as the one presented in figure 2d. Even
though the figures 2d and 3d are totally similar, the processes
for which these configurations have been obtained were dif-
ferent. In figure 3e we follow the behavior of the fixed points
involved in the bifurcation process on the upper robust torus,
where we observe that the elliptic one, E1, remains at θ1 = 2π
while the two hyperbolic H2 and H3 spread up a maximum
limit. The presence of the robust tori during the reconnection
of the islands also produces the new scenario for the overlap
of resonances.

5. FINAL REMARKS AND CONCLUSION

In this work we have developed a Hamiltonian through
the expansion of the Resonant Normal Form around a stable
fixed point in order to study the overlap of integrable reso-
nances. According to Chririkov’s criterion, a resonance is-
land chain can experience the presence of another resonance
when the distance between them is of the same order than
the sum of the semi-width of the corresponding separatri-
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FIG. 2: Case b = 0.70, with two robust tori. (a) three isochronous resonances; (b) three isochronous resonances interacting with both robust
tori; (c) three isochronous resonances and a bifurcation at θ1 = 2π; (d) it is a new topological configuration; (e) spatial representation for
the bifurcation involving the fixed points identified in figure 2c.

ces. But before the exact contact between the islands it oc-
curs the splitting of the separatrix and the region between
the near-islands is filled by homoclinic chaos. Hence the
Chirikov’s sense for the overlap of resonances is in a non-
integrable context and usually resonance is associated with
chaos. Then the single way to study overlap of resonances
in an integrable Hamiltonian context is to have a non-twist
condition, or a non-monotonic rotation number, for the non-
perturbed Hamiltonian and to turn on a periodic perturba-
tion. This technique will produce naturally many, or at least
two, isochronous resonance island chains in such way the
overlapping process can be observed in a global integrable
system. In our case in this work, we introduced three reso-
nance chains controlled by the same perturbation parameter.
We have chosen a set of three θ1-perturbations which have a
common algebraic form with a quadratic pre-factor in the J1
action. The real roots of this pre-factor define the values of
the positions of the robust tori where the perturbation set is
algebraically null. So, the system we have studied has three
isochronous resonances, two robust tori, a non-monotonic
rotation number and a periodic integrable perturbation. The
obtained patterns for the overlap of resonances when the ro-
bust tori participate of the reconnection process are totally
new for our knowledge. When the robust tori are distant from
the resonances region the obtained pattern is not usual but it
is expected in some sense. The relevance of this study for the
field of non-linear dynamics comes from the richness of the
dynamics of this toy model and certainly from the results
obtained with the Hamiltonian developed above. But our
interest is also to give a contribution to the field of plasma
physics because this concept of robust tori can be adapted in
the Hamiltonian approaches used to confine plasma in Toka-

maks since the control of chaotic magnetic fields in Toka-
maks is a very important question [17]. It is also well known
that there is much instability inside the plasma chamber and
many efforts are carried to prolong the time of plasma con-
finement. The integrable approach that we have presented
here does not fit the actual chaotic scenario involving the
lines of fields but it is possible to prepare an experimental set
up which is well represented by a Hamiltonian with a vanish-
ing perturbation on robust tori. Even that these robust tori do
not survive intact to the effects of the several modes of per-
turbation, they certainly will constitute a powerful stickiness
which will improve the plasma confinement.

The Hamiltonian function typically used in plasma con-
finement approaches, in Tokamaks, has the form [18, 20],

H(J,θ) =
{

J2

2
−α

J3

3

}
+κcos(m0θ)

∞

∑
k=−∞

δ
(

t − 2π
Nr

k
)

where the curly brackets corresponds to the unperturbed non-
twist Hamiltonian foreseeing two isochronous island chains.
The other term, corresponds to a periodic perturbation act-
ing discretely in time (the sum of kicks) with a constant pre-
factor κ, which does not introduce any robust tori. Hence,
having in mind this Hamiltonian and our proposal to investi-
gate the effect of robust tori on the reconnection process we
have done the following: i) we introduced one more island
chain by increasing the order of the polynomial unperturbed
Hamiltonian; ii) we treated the pre-factor κ as a truncated se-
ries and we kept terms up the second order in the action J1,
what introduces two robust tori. For the purpose of plasma
confinement it would be sufficient to take only the first or-
der term. Finally, we consider the periodic perturbation as
a continuous function. With these considerations and the
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FIG. 3: Case b = 2.0, with two intercalated robust tori. (a) three isochronous resonances; (b) three interacting isochronous resonances. The
pattern of this interaction is different of the one observed in the set of figures 2; (c) a new reconnection pattern has occurred at θ1 = 2π; (d)
a bifurcation is observed for θ1 = 2π; (e) spatial representation for the bifurcation involving the fixed points identified in figure 3c.

technique of the BGNF we get the Hamiltonian expressed
in equation (21), which is directly related with the typical
Hamiltonian used by the plasma Physicists.

Besides this technique of robust tori, the resonance struc-
tures that we have presented for the reconnection process will
allow an understanding a little better of how some structures
are destroyed and how some stickiness can be generated in-
side the plasma chamber [18]. We also point out that even
though there are non-twist maps which approach the plasma
dynamics in Tokamaks [19,20] they do not carry any robust
tori. So, the inclusion of robust tori in the non-twist maps
can improve the theoretical understanding of plasma con-
finement and simultaneously to suggest some new experi-

mental setup [21]. This question will be present in a further
work. As a final comment we would like to emphasize that
the reconnection patterns obtained, from the resonant normal
form, are quite general and this technique can be applied in
any field of science.
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