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Relationship between viscosity and conductivity for tokamak plasmas
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The relation between parallel viscosity and the parallel conductivity for tokamak plasma has been derived
by combining Ideal MHD equilibrium equations with the concept of universal profiles. It is obtained that the
parallel viscosity Π‖ and parallel conductivity σ‖ in a tokamak are related by Π‖ σ‖

−1 = γ (U−U0)I/R, where
U is the loop voltage, U0 is attributed to polarization, I is the toroidal current and R is the major radius of
the machine. The coefficient γ depends on para- or diamagnetism and on toroidal effects and exhibits a weak
dependence on the minor radius.
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1. INTRODUCTION

As early as 1980, Coppi [1] pointed out that the electron tem-
perature profiles in tokamaks tend to conserve their shape in re-
sponse to an external action on the plasma. This effect, which
was called “the profile consistency”, was confirmed in many
devices. Experimental observations and theoretical models
supporting the idea that electron temperature and/or the pres-
sure and/or density and/or current density in tokamaks pref-
erentially assume certain privileged profile shapes have been
reported for more than two decades [1− 8]. The existence of
universal current profiles in tokamaks [2− 3,9] and combin-
ing of Ideal MHD equilibrium equations with the concept of
universal profiles has attracted interest among various authors.
They have proposed the current density of a diffuse system
(0≤ r ≤+∞) by the formula

jz(r) =
jz0

(1+µr2)2 , (1)

where µ = π jz0/I; I = 2π
R

∞

0 r jzdr is the toroidal current .
This result was derived by minimizing the plasma energy un-
der the condition that the toroidal current I is kept fixed.

By combining the Ideal MHD equilibrium equations with
the concept of universal profiles, it is shown by [8] that the
electron density ne(r) and temperature Te(r) in a tokamak are
related by neTe

−1/2 = α(U−U0)I/R where U is the loop volt-
age, U0 is attributed to polarization, I is the toroidal current
and R is the major radius of the machine. The coefficient α

depends on para- or diamagnetism and on toroidal effects and
exhibits a weak dependence on the minor radius. The above
formula is in good agreement with ohmic and co-injection ex-
periments performed in TEXTOR [10].

The aim of this paper is to develop a simple theory based
relation between parallel viscosity and the parallel conductiv-
ity for tokamak plasma by combining Ideal MHD equilibrium
equations with the concept of universal profiles. It is obtained
that the parallel viscosity Π‖ and parallel conductivity σ‖ in
a tokamak are related by Π‖ σ‖

−1 = γ (U −U0)I/R, where
U is the loop voltage, U0 is attributed to polarization, I is the
toroidal current and R is the major radius of the machine. The
coefficient γ depends on para- or diamagnetism and on toroidal
effects and exhibits a weak dependence on the minor radius.

2. RELATION BETWEEN VISCOSITY AND
CONDUCTIVITY

Assuming cylindrical geometry with B = êθBθ + êzBz and
j = êθ jθ + êz jz we express Ampere’s law and pressure balance
as follows:

jθ =− c
4π

∂Bz

∂r
, jz =

c
4π

1
r

∂

∂r
rBθ, (2)

∂p
∂r

=
1
c

( jθBz− jzBθ). (3)

The current flowing in the z-direction through a section of
radius r is given by

Iz(r) = 2π

Z r

0
r1 jz(r1)dr1. (4)

Substituting Eqs. (2) into Eq. (3) we obtain

∂

∂r

(
p+

B2
z

8π

)
+

1
4π

Bθ

r
∂

∂r
rBθ = 0. (5)

Multiplying Eq. (5) by r2 and integrating by parts over the
plasma section we get

2π

Z a

0
rp(r)dr =

I2
z (a)
2c2 −

(
2π

Z a

0
r

B2
z (r)
8π

dr−πa2 B2
z (a)
8π

)
.

(6)
However, we can write Eq. (6) as follows:

2π

Z a

0
r

(
p(r)− Iz(a)

2c2 jz(r)+
B2

z (r)−B2
z (a)

8π

)
dr = 0 (7)

and make the ansatz that the universal profiles nullify the inte-
grand of Eq. (7) so that

p(r) =
Iz(a)
2c2 jz(r)−

B2
z (r)−B2

z (a)
8π

. (8)
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Eq. (8) is in fact an additional relation to the basic MHD
equations (2) and (3) holding between the profiles. The radial
derivative of Eq. (8) gives

∂

∂r

(
p+

B2
z

8π

)
=

Iz(a)
2c2

d jz
dr

. (9)

On the other hand, by using Eqs. (4) and (2) the MHD equa-
tion (5) can be expressed as

∂

∂r

(
p+

B2
z

8π

)
=− 2 jzIz(a)

rc2 . (10)

Combining Eqs. (9) and (10) we arrive at the following in-
tegrodifferential equation governing the current profile:

r
d jz
dr

+
4Iz(r)
Iz(a)

jz = 0, Iz(r)≡ 2π

Z r

0
r1 jz(r1)dr1. (11)

It is easy to verify that the solution of Eq. (11) is

jz(r) =
jz0

{1+[π jz0/Iz(a)]r2}2 , (12)

which has the same form as Eq. (1). Note, however, that solu-
tion (12) can satisfy only approximately the integral equation

Z r

0
r jz(r)dr = Iz(a), (13)

because the system is now finite (a 6= +∞). This leads to the
condition πa2 jz0 � Iz(a) which is necessary for Eq. (12) to be
applicable in actual systems. The current profiles in this case
must be rather peaked in the center.

Let us introduce p = 2neTe, jz = σ‖Ez and parallel viscosity
is related to the pressure anisotropy, Π‖ = 2

3 (p‖− p⊥) from
Eq. (8) and obtain

Π‖

(
1+

B2
z (r)−B2

z (a)
12πΠ‖

)
=

σ‖
3c2 Iz(a)Ez, (14)

where Ez = (U −U0)/2π(R + r) is the induced electric field
which drives the toroidal current I = Iz(a). Here U represents

the loop voltage, U0 could be attributed experimentally, and
R is the major radius of the tokamak. Absorbing further the
quantity

(
1+

B2
z (r)−B2

z (a)
12πΠ‖

)(
1+

r
R

)
(15)

in the coefficient γ we finally get

Π‖σ
−1
‖ = γ(U−U0)I/R, (16)

where γ depends on para- or diamagnetism and on toroidal ef-
fects.

Over the entire range of Ohmic discharges investigated on
TCV tokamak [11], it is observed that the < σ >≈< p >.
These intriguing observations, although not central to the sub-
jects developed in this article, is reminiscent of reports on elec-
tron temperature or pressure “profile consistency” [12− 13]
reported from several experiments [1,11− 13]. The relation-
ship seen experimentally are consistent with Kadomtsev’s [3]
and Biskamp’s [2] predictions based on the idea of plasma
self-organization to a state of minimum energy. The relation
< σ >≈< j >≈< p > has been shown to follow from the
plasma equilibrium force balance [4]. It is important to note
that the parallel viscosity which provides a finit contribution to
plasma compressibility, is related to the pressure anisotropy.

3. CONCLUSION

By combining the Ideal MHD equilibrium equations with
the concept of universal profiles, it is shown that the paral-
lel viscosity Π‖ and parallel conductivity σ‖ in a tokamak are
related by Π‖ σ‖

−1 = γ (U−U0)I/R, where U is the loop volt-
age, U0 is attributed to polarization, I is the toroidal current
and R is the major radius of the machine. The coefficient γ

depends on para- or diamagnetism and on toroidal effects and
exhibits a weak dependence on the minor radius.This obtained
relation may be of interest for practical applications because
parallel viscosity provides a finit contribution to plasma com-
pressibility.
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