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The spin dynamics of molecular magnets beyond Kubo’s linear response theory
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The description of quantum dynamics of nanomagnets is a central issue in most applications proposed for
those systems. In this paper, we put forward a modified perturbation approach to study the spin dynamics of a
molecular magnet in the presence of time-dependent magnetic fields.The non-perturbed Hamiltonian H0, which
defines the interaction picture, may be time-dependent proviso it can be diagonalized at all times by the same
basis of states. We probe the method using a simple model Hamiltonian, that contains the important anisotropy
terms relevant for Fe8 molecular clusters, and solve as an example the case with the smallest non trivial spin
value (S=1). Our modified perturbation approach converges rapidly to the exact solution, goes beyond the Kubo
linear response theory, and is well defined even at resonance. Temperature effects in the spin dynamics are taken
into account in the context of the density matrix.
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1. INTRODUCTION

Molecular nanomagnets with high-spin and high
anisotropy exhibit extraordinary effects, namely the pro-
nounced magnetic hysteresis and the quantization of the
magnetic moment[1, 2]. Promising applications of such
magnets for current and future technologies include infor-
mation storage, construction of nanomagnetic Maser-like
devices[3], and quantum computation. The name Single-
Molecule Magnets (SMM) has been coined to mean that
individual molecules in a crystal act as individual mag-
nets and the interaction between two distinct molecules
are negligible, in general. They can be prepared in long-
lived excited quantum states by simply applying a magnetic
field[4], and exhibit a stepwise magnetic hysteresis in a time-
dependent magnetic field. Quantum relaxation of spin states
at low temperatures is very sluggish, and has been inten-
sively studied within the framework of the Landau-Zener-
Stückelberg(LZS) theory[5–8]. At low temperature, quan-
tum tunneling is of primary importance for the magnetic re-
laxation process. In the adiabatic regime, the LZS theory pre-
dicts an exponentially small tunneling probability between
states which are near a level crossing. However, a reliable
account of the general dynamics, beyond the LZS approach,
is highly desirable to include interesting physical phenom-
ena with time-dependent fields[8]. In addition, real-time dy-
namics is of prime importance to perform quantum com-
putation, to understand the time evolution and decoherence
effects of quantum bits [9]. Quantum mechanically exact,
if possible, as well as accurate approximate solutions are
welcomed within this framework[10]. They are superior to
numerical computations, since they allow to grasp qualita-
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tively the basic physics involved in a given problem. Time-
dependent Hamiltonians constitute a distinguished class of
problems, usually solved through the time-dependent per-
turbation theory in the context of the interaction picture (or
Dirac version of quantum mechanics)[11]. The basic as-
sumption in the usual interaction picture, is the possibility to
separate a given Hamiltonian H , into a non-perturbed time-
independent part H0 and a time-dependent perturbation V (t),
which is assumed to be ‘small’. We note that representative
examples of such problems, precisely include spin dynam-
ics of molecular magnets in the presence of time-dependent
fields[1]. The usual low-order time-dependent perturbation
theory has several shortcomings: to lowest order, the theory
is limited to short intervals of time; and, at resonances, the
theory breaks down no matter how small the perturbation.

In this paper we will apply a modified version of the in-
teraction picture, already used in a previous manuscript[3],
to study the spin dynamics of a molecular magnet under the
influence of a time-dependent magnetic field. We show that
out approach allows one to go beyond the usual Kubo linear
response theory. Temperature effects are taken into account
through the density matrix formalism.

The content of this paper can be described as follows: in
the next Section we briefly discuss the mathematical frame-
work of the modified interaction picture. In Section III the
simplest form of a SMM Hamiltonian is presented. In Sec-
tion IV we consider a more realistic approach and tempera-
ture is introduced. Finally, in the last Section a few remarks
and conclusions are added.

2. THEORETICAL FRAMEWORK

We start with a mathematical description the modified ver-
sion of the interaction picture, in which we split the Hamil-
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tonian H into two time-dependent parts H0 and V (t):

H = H0(t)+V (t) . (1)

The non-perturbed Hamiltonian H0 is time dependent and
conditioned to be diagonalized at all times by the same basis
of states in the Hilbert space, i.e.,

[H0(t),H0(t ′)] = 0 , ∀(t, t ′) . (2)

This term includes contributions from time dependent fields
which cannot be considered as small. By contrast, the time-
dependent perturbation V (t), in general not diagonal in the
basis of H0, i.e.,

[H0(t),V (t)] �= 0 , ∀t ,

but assumed to give s̀mall’ contributions. The Schrödinger
equation can be solved within the scheme of this modified
interaction picture assuming the unitary transformation be-
low

U0 = exp
(
− i

�

∫ t

0
dt ′H0(t ′)

)
, (3)

which transforms states and operators as follows:

|ψ〉I = U†
0 |ψ〉 ,

ΩI = U†
0 ΩU0,

where the subscript I stands for ‘interaction picture’, and
kets and operators without any subscript are understood to
be in the Shrödinger picture. An observable OI obeys a
Heisenberg-like equation of motion with H0(t)

dOI

dt
=

1
i�

[OI ,H0] ,

while the wave function |ψI〉 and the density matrix ρI evolve
in time according to Schrödinger-like equations with HI :

HI |ψ〉I = i�
∂
∂t
|ψ〉I , (4)

∂ρI

∂t
=

i
�
[ρI ,HI ] , (5)

where HI is defined by the expression below

HI = U†
0 V (t)U0 = exp

(
i
�

∫ t

0
dt ′H0(t ′)

)
V (t)exp

(
− i

�

∫ t

0
dt ′H0(t ′)

)
. (6)

The temporal evolution of a given initial ket-state |Ψ0〉 will
be given by the unitary evolution operator UI in this modified
interaction picture. The latter can be written in the form of a
Dyson series[11]:

UI(t,0) = 1− i
�

∫ t

0
dt1HI(t1)+

+
(−i

�

)2 ∫ t

0
dt1HI(t1)

∫ t1

0
dt2HI(t2)+ ... ,

(7)

with |Ψ(t)〉I = UI(t,0)|Ψ0〉. Following, in the next Section
we discuss the usual Hamiltonian used to describe a molec-
ular magnet.

3. THE MOLECULAR MAGNET HAMILTONIAN

One of the Hamiltonians used to model the spin system of
molecular magnets, like the Fe8 molecular cluster [12–14],
is given by :

H = −DS2
z +E(S2

+ +S2
−)−µS ·B(t) , (8)

where D is the uniaxial anisotropy constant, E the anisotropy
constant in the transverse plane, which may be small, and
(Sz, S±) are the spin operators with units such that � = 1
(S± = Sx ± iSy). The last term in (8) gives the coupling
of the magnetic moment with a time dependent magnetic
field B(t). If we could set E = 0, in the absence of an

external field B, the ground state would be doubly degen-
erate, corresponding to the states with maximum parallel
(m = S) and anti-parallel (m = −S) projections of the mag-
netic moment along the quantization axis. The action of E
admixes these states with other states of the spectrum, in the
sequence (|S〉 , |S−2〉 , |S−4〉 , ... |−S +4〉 , |−S +2〉 , |−S〉) ,
with a small coupling between |−S〉 and |S〉, the larger the
value of S the weaker the coupling. For large anisotropy, i.e.
E/D << 1, the spin up (m > 0) and the spin down (m < 0)
orientations of the molecular magnetic moment are separated
by an effective energy barrier, which is responsible for the
slow magnetic relaxation. At low temperatures, the sluggish
relaxation effects are due to tunneling through the barrier.

For the sake of simplicity we consider the simplest non-
trivial case of spin 1 molecules (S = 1), under the influence
of a time-varying magnetic field with component along the
quantization axis, taken to be along the z-direction. The op-
erator Sz is diagonal in the basis of states {|+1〉, |0〉, |−1〉},

Sz =

⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ ,

and for times t < 0, i.e., before the applied magnetic field
B(t) is turned on, we have the following Hamiltonian:

H< = −DS2
z +E(S2

+ +S2
−) . (9)

We denote by (|s〉, |0〉, |a〉) the basis which diagonalize H<,
where |0〉 = |m = 0〉, and (|s〉, |a〉) correspond to the tunnel-
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ing states:

|s〉 =
1√
2
(|+1〉+ |−1〉) , (10)

|a〉 =
1√
2
(|+1〉− |−1〉) . (11)

Calling ∆ = 2E the tunneling splitting, the corresponding
eigenvalues of the energy are Es =−D+∆, E0 = 0, and Ea =
−D−∆. Notice that in this basis, ordered as (|s〉, |0〉, |a〉), the
Sz operator is non-diagonal. In the next Section we will dis-
cuss the influence of temperature on the spin dynamics of a
S = 1 molecular magnet.

4. SPIN DYNAMICS BEYOND KUBO’S LINEAR
RESPONSE THEORY

In the following, we introduce temperature and study the
evolution of the density matrix ρ, when the system is per-
turbed by an oscillatory magnetic field whose polarization is
near the z-axis:

H< = −DS2
z +E(S2

+ +S2
−) , t < 0, (12)

H = H< −µB0(t)Sz − 1√
2

µ(b(t)S+ +b∗(t)S−) , t ≥ 0,

(13)

ρ0 =
e−βH<

Tr(e−βH<)
(14)

being β = 1/(kBT ), and |B0(t)| > |b(t)|. For S = 1, the den-
sity matrix can be written in closed form as follows:

ρ0 =

⎛
⎝ γ 0 η

0 (1−2γ) 0
η 0 γ

⎞
⎠ , (15)

where we are using the basis of Sz. Quantities in (15) are
given by:

γ =
eβD cosh(2βE)

2eβD cosh(2βE)+1
, (16)

η = − eβD sinh(2βE)
2eβD cosh(2βE)+1

. (17)

For times t ≥ 0 we break the Hamiltonian as follows:

H0 = −DS2
z −µB0(t)Sz , (18)

V (t) = E(S2
+ +S2

−)− 1√
2

µ(b(t)S+ +b∗(t)S−) . (19)

Writing U0 = exp
(−i

∫ t
0 dt ′H0(t ′)

)
, the perturbation in the

interaction picture UI = 1− i
∫ t

0 dt ′U†
0 V (t ′)U0 is given by

UI = 1− i

⎛
⎝ 0 I J

I∗ 0 K
J∗ K∗ 0

⎞
⎠ (20)

to first order approximation, with the definitions

I = −µ
∫ t

0
dt ′b(t)exp

(−iDt ′
)

exp
(
−iµ

∫ t ′

0
dt ′′B0(t ′′)

)
,

(21)

J = 2E
∫ t

0
dt ′ exp

(
−2iµ

∫ t ′

0
dt ′′B0(t ′′)

)
, (22)

K = −µ
∫ t

0
dt ′b(t)exp

(
iDt ′

)
exp

(
−iµ

∫ t ′

0
dt ′′B0(t ′′)

)
.

(23)

Observe in (21), (22), and (23), that corrections are linear in
(E,b(t)), while contributions from B0(t) are considered to
all orders.

The exact quantum Liouville equation (5) yields a set of
coupled differential equations for the 5 independent compo-
nents ρmn of the matrix ρ, which are solved exactly by nu-
merical methods. Concerning our approximate scheme, the
evolution of the density matrix is evaluated by the expres-
sion:

ρ(t) = UIρ0U†
I , (24)

and since the approximate operator UI from (20) is not uni-
tary, we renormalize the density matrix at all times. The av-
erage of the spin projection operator along the z-axis is given
simply by 〈Sz〉 = Tr [ρ(t)Sz], which is written in closed form
as follows:

〈Sz〉 =
4η Im(J)+(1−2γ)(|I|2 −|K|2)

1+2η Re(IK)+(1− γ)(|I|2 + |K|2)+2γ|J|2 (25)

We illustrate the calculation with an example for sinusoidal
applied fields of the form B0(t) = B0 sin(ω0t) and b(t) =
b eiωt . In Fig. 1, we compare the exact numeric solution
with equation (25), for the following values of parameters:
E/D = 0.0075, kBT/D = 0.01, with ω0/D = 0.05, ω/D = 1,
and µB0/D = 1, µb/D = 0.005. Notice the good agreement
between exact and approximate results. Even oscillations at
long times, are accurately described by our modified pertur-
bation scheme. Next, we compare with the usual Kubo linear
response theory, where H< (see relation (12)) is considered
as the unperturbed Hamiltonian. The calculation is standard
and yields

〈Sz(t)〉Kubo = −4µη
∫ t

0
dt ′ B0(t ′) sin

[
4E

(
t − t ′

)]
. (26)

Note, that in first order, 〈Sz(t)〉Kubo is linear in B0(t ′) and
does not depend on the transverse component b(t). On the
other hand, contributions of higher order in E are included,
as expected from the choice of the unperturbed Hamiltonian.
Relation (26) can be written in closed form, for an oscillating
field of the form

B0(t) =

⎧⎨
⎩

Bo sin(ω0t) , for t ≥ 0,

0, for t < 0,

yielding

〈Sz(t)〉Kubo =−4η µBo

[
ω0 sin(4Et)−4E sin(ω0t)

ω2
0 −16E2

]
. (27)
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FIG. 1: Dynamics of the thermal average of the spin operator Sz, calculated by exact numeric methods (dash-dotted line) and through
the modified interaction picture, after (25)(solid line). Values of parameters are E/D = 0.0075, kBT/D = 0.01, ω0/D = 0.05, ω/D = 1,
µB0/D = 1, and µb/D = 0.005. For explanation of the different symbols, see the text.

FIG. 2: Dynamics of the thermal average of the spin operator Sz in the resonant case, ω0 = 4E, calculated by exact numeric methods (dashed
line) and through the modified interaction picture, after (25)(solid line). Values of parameters are E/D = 0.0075, kBT/D = 0.01, ω0 = 4E,
ω/D = 1, µB0/D = 1, and µb/D = 0.015. For explanation of the different symbols, see the text.

Kubo’s formula has several shortcomings: in addition of not
including the contribution of the transverse applied field in
first order, the resonant denominator in (27) may produce
divergent responses. By contrast, a calculation of the time
response for the resonant case, ω0 = 4E using the modified
version of perturbation theory gives a very satisfactory result.
The resonant behavior is illustrated in Fig. 2, where we com-
pare the exact numerical solution with equation (25) using
B0(t) = B0 sin(ω0t), b(t) = b eiωt and the following param-
eter values: E/D = 0.0075, kBT/D = 0.01, with ω0 = 4E,
ω/D = 1, and µB0/D = 1, µb/D = 0.015. Away from the
resonant condition, both perturbation schemes coincide, if in
relation (25) we neglect contributions of b(t) and get the lin-
ear term in B0(t). In turn, relation (27) has to be expanded

linearly in E, for small times. The result is

〈Sz〉 ≈ −16η µBoE
(

ω0t − sin(ω0t)
ω2

0

)
. (28)

5. CONCLUSION

In summary, in this manuscript we have demonstrated
the possibility to go beyond the Kubo linear response the-
ory through the use of a modified version of the interac-
tion picture, suitable for problems in which a non-perturbed
time-dependent Hamiltonian H0(t) can be diagonalized at
all times by the same basis. In such a case, the results of
our perturbation method agree very well with the exact so-
lution, even to first order and for very long times. The spin
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dynamics of molecular magnets was studied using the den-
sity matrix formalism to obtain the evolution of the magne-
tization. This is an important parameter, which can be mea-
sured experimentally. If large magnetic molecules are used
to store quantum information, one has to keep track of the
time-evolution of the states initially prepared. In this paper,
we have probed our method to study the quantum dynamics
of a simple molecular magnet of spin S = 1. Calculations for
high-spin molecular magnets are in progress.
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