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In this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Net-
works, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for
building a smaller network with high classification performance. We aim to assess the utility of the method
based on statistical mechanics for the estimation of transparent coating material on security papers and choles-
terol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall
performance in terms of classification success and at the size of network compared to other efficient backprop-
agation learning methods.
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1. INTRODUCTION

Neural networks are very sophisticated modeling tech-
niques capable of modeling extremely complex functions.
Nowadays, they are being successfully applied across a wide
range of problem domains, in areas such as finance, medicine,
engineering, geology and physics [1–3]. Indeed, anywhere
that there are problems of prediction or classification, neural
networks are being introduced. Therefore, Artificial Neural
Networks (ANNs) are well suited for both pattern recogni-
tion, classification or clustering and quantitative modeling.

One example of quantitative modeling application is the
classification of transparent coating material on papers.
Coated paper finds its application in a vast variety of in-
dustrial needs. The role of coating consists in the creation
of smooth surface for good print ability and high surface
gloss. Artificial Neural Networks have been applied to solve
this type of classification problem. Specifically ANNs to the
quantitative analysis of paper coatings using infrared spectra
have been reported before and proved to be reliable and effec-
tive analysis tools [4]. Kohonen self-organizing networks [4]
are one of the most prominent tools for unsupervised learning
and Feed-forward neural networks with learning algorithms
mainly grown from error backpropagation [5] are extremely
useful for building complex relationships between inputs and
outputs sets of parameters. The experience in applying arti-
ficial neural networks in these types of problems is very ex-
tensive. However, neural network error surfaces are charac-
terized by a number of unhelpful features, such as local min-
ima, flat-spots and plateaus, saddle-points, and long narrow
ravines making the efficient training of the ANNs difficult
sometimes. Many training algorithms have been proposed so
far to improve neural network performance [6–8].

A variety of approaches inspired from the unconstrained
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optimisation theory have also been applied, in order to use
second derivative related information to accelerate the learn-
ing process [9, 10]. Nevertheless, it is not certain that the ex-
tra computational cost these methods require leads to speed-
ups of the minimisation process for non-convex functions
when far from a minimiser [11]. This problem can be over-
come through the use of global optimisation. However, the
drawback of this class of methods is that they are very com-
putationally expensive. Statistical mechanical methods have
also been successfully applied to the study of neural network
models of associative memory [12]. Another class of efficient
training algorithms is the conjugate gradient learning based
schemes. These methods have a second-order convergence
property without complex calculation of the Hessian matrix.

In this work, emphasis will be given on the construction
and training of feed-forward neural networks using gradient
based algorithms by applying a nonextensive formula [2, 13–
15] in the error expression. We compare this class of methods
with gradient descent error minimization based algorithms,
which are widely used with success in such classification
problems. We also present experimental results from two
problems in spectroscopy. We use feedforward neural net-
works to estimate transparent coating material on security pa-
pers and serum cholesterol levels in blood. In both problems
we apply an evolving stochastic learning algorithm for neural
networks based on the theory of Tsallis statistical mechan-
ics [14, 16]. Our approach combines a quick and computa-
tionally cheap local search method with a global search tech-
nique inspired in the generalized entropy of nonextensive sta-
tistical mechanics, and replaces the usual Boltzmann–Gibbs
factor used in simulated annealing by the q - exponential
function[13, 14]. This global search technique possess strong
convergence properties, and, at least in principle, are straight-
forward to implement and apply. The experimental study ver-
ifies that the synergy of techniques from nonextensive statis-
tics provides neural learning schemes with small size struc-
ture and high classification performance. In particular, results
show that the prediction of coat weights is possible with an
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error in the order of 10−3 while cholesterol prediction is a
much more difficult problem. However, in both cases, the er-
ror can be minimized by applying a nonextensive formula in
the error function. We also show that this method can reduce
the ANN’s architecture for the construction of more suitable
mathematical models and at the same time we can achieve a
noteworthy overall classification performance.

The organization of the paper is as follows. In Section 2
we explain some of the aspects of Nonextesive Statistical Me-
chanics applied in Neural Networks. Section 3 gives the char-
acteristics of the proposed nonextensive method and explains
some aspects of the training algorithms that are important for
the problem at hand. Next section describes the available data
and experimental methods followed by the results and discus-
sion. Finally, we draw the conclusions and suggestions for
future investigations.

2. NONEXTENSIVE STATISTICAL MECHANICS

Statistical mechanics set out to explain the behavior of
macroscopic systems by studying the statistical properties of
their microscopic constituents [17].

Nowadays the idea of nonextensivity has been used in
many applications. Nonextensive statistical mechanics [14]
have successfully been applied in physics (astrophysics, as-
tronomy, cosmology, nonlinear dynamics etc) [18, 19], chem-
istry [3], biology [20], human sciences [21], economics [22],
computer sciences [2, 23, 24], and others [25].

Nonextensive statistical mechanics are based on Tsallis en-
tropy. Tsallis statistics are currently considered useful in de-
scribing the thermostatistical properties of nonextensive sys-
tems; it is based on the generalized entropic form [14]:

Sq ≡ k
1−∑

W
i=1 pq

i
q−1

(q ∈ℜ), (1)

where W is the total number of microscopic configurations,
whose probabilities are {pi}, and k is a conventional positive
constant. When q = 1 it reproduces the Boltzmann-Gibbs
(BG) entropic form SBG = −k ∑

W
i=1 pi ln pi. The nonexten-

sive entropy Sq achieves its extreme value at the equiprob-
ability pi = 1/W,∀i, and this value equals Sq = kW 1−q−1

1−q
(S1 = SBG = k lnW ) [14, 25]. The Tsallis entropy is nonaddi-
tive in such a way that, for statistical independent systems A
and B, the entropy satisfies the following property:
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It is subadditive for q > 1, superadditive for q < 1, and, for
q = 1, it recovers the BG entropy, which is additive [25]. The
Boltzmann factor is generalized into a power-law. The math-
ematical basis for Tsallis statistics includes q-generalized ex-
pressions for the logarithm and the exponential functions,
which are the q-logarithm and the q-exponential functions.
The q-exponential function, which reduces to exp(x) in the
limit q→ 1, is defined as follows

ex
q≡ [1+(1−q)x]

1
(1−q) =

1

[1− (q−1)x]
1

(q−1)
(ex

1 = ex) . (3)

We remind that extremizing entropy Sq under appropriate
constraints we obtain a probability distribution, which is pro-
portional to q-exponential function.

In the following sections we discuss how we could obtain
successful results by applying the nonextensive entropy in
training feedforward neural networks. The next section in-
troduces an adaptive search strategy that aims to alleviate the
problem of occasional convergence to local minima in super-
vised training, achieving high classification performance in
coat weight estimation and cholesterol problems via a simple
structure of feedforward neural network.

3. THE PROPOSED MODEL

In this work we focus on gradient descent based algorithms
for supervised learning of neural networks. The most pop-
ular training algorithm of this category is the batch Back-
Propagation (BP) [26]. It is a first order method that min-
imizes the error function by updating the weights using the
steepest descent method [9]:

w(t +1) = w(t)−η5E (w(t)) (4)

where E is the batch error measure defined as the Sum
of Squared differences Error function (SSE) over the entire
training set, and t indicates iterations (time). The ∇(E) is the
gradient vector, which is computed by applying the chain rule
on the layers of the FNN[26]. The parameter η is a heuristic,
called learning rate. The proper value of η depends on the
shape of the error function. The learning rate values help to
avoid convergence to a saddle point or a maximum. In order
to secure the convergence of the BP training algorithm and
avoid oscillations in a steep direction of the error surface, a
small learning rate is chosen (0 < η < 1).

Our approach adapts the weights using only information
from the sign of a gradient vector, which is calculated on a
perturbed error function, and uses adaptive steps along each
weight directions. The perturbations are generated from a
noise sources that replaces the usual Boltzmann–Gibbs fac-
tor used in annealing schedules by the q–exponential function
of the generalised entropy of nonextensive statistical mechan-
ics [14, 27].

Following the above discussion and inspired by [13], in our
method, noise is generated according to a schedule that can be
expressed as:

Q(T,k) = e−T (ln2)·k
q = [1− (1−q)T (ln2) · k]

1
1−q , (5)

where T is the temperature; k indicates iterations. Noise is
not applied proportionally to the size of each weight; instead,
a form of weight decay is used, which is considered beneficial
for achieving a robust neural network that generalizes well.
Thus, noise is introduced by formulating the perturbed error
function:

Ẽ(wk) = E(wk)+µ ·
n

∑
i=1

(wk
i )

2

[1+(wk
i )

2]
·Q(T,k), (6)

where E(w) is the batch error function, ∑i w2
i /(1+w2

i ) is the
weight decay bias term which can decay small weights more
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rapidly than large weights, and µ is a parameter that regulates
the influence of the combined weight decay/noise effect. This
form of weight decay modifies the error landscape so that
smaller weights are favored at the beginning of the training
but as learning progresses the magnitude of the weight decay
is reduced to favor the growth of large weights. Thus, as the
error landscape is modified during training, the search method
is allowed to explore regions of the error surface that were
previously unavailable. Minimization of (6) requires calcu-
lating the gradient of the error function with respect to each
weight

g̃i(wk) = gi(wk)+ µ́ · wk
i

[1+(wk
i )

2]
2 ·Q(T,k), (7)

where µ́ > 0 .
The proposed Hybrid Training Scheme (HTS) applies a

sign–based weight adjustment, on the perturbed error func-
tion (Eq. 6) using the gradient term of Eq. (7). The direction
of the weights are changed by the following procedure:

wk+1 = wk−diag{ηk
1, . . . ,η

k
i , . . . ,η

k
n}sign

(
g̃i(wk)

)
, (8)

where k indicates iterations; diag{η1, . . . ,ηn} defines the
n× n diagonal matrix with elements η1, . . . ,ηn, and ηk

i (i =
1,2, . . . ,n) are the k-th iteration stepsizes that receive small
positive real values, also called learning rates as their role is
to control the amount of weight adjustments and thus directly
to affect the rate of the learning process. The sign

(
g̃i(wk)

)
denotes the column vector of the signs of the components of
g̃i(wk); g̃(w)> =

(
g̃1(w), . . . , g̃n(w)

)
defines the transpose of

the gradient ∇E(w) of the sum-of-squared-differences error
function E at w; if the sign of the gradient of the perturbed
error function (7) has remained the same then ηk

i is calculated
by the following equation:

i f
(

g̃i(wk−1) · g̃i(wk) > 0
)

then

η
k
i = min

(
η

k−1
i ·η+,∆max

)
(9)

where 0 < η− < 1 < η+, ∆max is the stepsize upper bound.
When the gradient is zero then the update value is multiplied
by the learning rate ηk

i which remains the same.
Finally, if only the sign of the gradient has changed, then

the following rule is used:

i f
(

g̃i(wk−1) · g̃i(wk) < 0
)

then

η
k
i = max

(
η

k−1
i ·η−,∆min

)
(10)

The Adaptive Hybrid Training Scheme (AHTS) works by
adapting the learning rates following a rational similar to HTS
algorithm by applying a cooling temperature procedure. This
defines the relationship between T and q values. The applica-
tion of cooling helps to regulate the training algorithm, mak-
ing it more deterministic. This new Adaptive Hybrid train-
ing Scheme-AHTS behaves in a more stochastic way, during
the initial stages, and then becomes more deterministic as the
number of iterations increases. Thus, when we are close to

the minimizer, the algorithm hopefully will avoid oscillations
and converge faster. The cooling procedure is described by
the next equation:

T = T0 · [
2q−1−1

(1+ k)q−1−1
],q > 1 (11)

where T0 is the initial temperature, T is the current tempera-
ture, k is the number of iterations, and q is the Tsallis entropic
index.

The challenge is to cool the temperature as quick as we
can, but still having the ability to converge to global minimum
with high probability.

We have followed the recommendations of [2] in setting
the parameters: (i) the increase factor is set to η+ = 1.2 ; (ii)
the decrease factor is set to η− = 0.5 ; (iii) the initial stepsize
for all i is set to η0 = 0.1; (iv) the maximum allowed stepsize,
which is used in order to prevent the weights from becoming
too large, is ∆max = 50; (v) the minimum allowed stepsize
∆min = 10−6.

4. EXPERIMENTAL PROCEDURES

Two data sets were used for this study, both from the area
of spectroscopy. In the first case, spectra were collected with
a novel Fourier transform Michelson interferometer [28] and
operating in the near-infrared (NIR) range. The paper sam-
ples provided for these experiments were security papers with
added coating to improve printing and aesthetic quality of
documents. Five sheets were supplied with coat weights of
3.3, 4.2, 5.2, 6.2 and 6.9 g/m2 respectively. Each paper sam-
ple was supplied as an A4-sized sheet, which was subdivided
into six equally sized samples, i.e., from each of the original
five sheets, six smaller samples were obtained, each having
approximate dimensions of 10.5×9.87 cm. The six samples
from each sheet were numbered 1 to 6. Thus, the interfer-
ograms from different parts of a particular sample could be
compared directly.

Spectral information was collected as 3000 (100 from each
of 5x6=30 samples) double-sided interferograms with 1024
points. The interferograms were phase compensated and
were, therefore, symmetrical about the centreburst. Conse-
quently, it was possible to discard half of the data without in-
curring any loss of information and the dimensionality of the
feature space was reduced from 1024 to 512. The first 256
points of the mean interferograms from each coated paper are
shown in Fig. 1.

The 3000 interferograms from the coated sides of the pa-
per samples were divided into training, X, validation, Z, and
testing, Y, sets with dimensionality 512×1800, 512×600 and
512×600, respectively (60 % for training, 20 % for valida-
tion and 20 % for testing). A series of experiments was un-
dertaken to train multi-layer perceptron (MLP) neural net-
works [29] of various sizes. As can be seen in Fig. 1, there
is little variation and hence discriminating information con-
tent in the interferograms beyond the 20th data point from the
centreburst. In addition, the autocorrelation sequence of the
average interferogram was calculated and it was observed that
it drops significantly after the first 16 lags. Thus, the number
of inputs, i.e., data points presented to the network was incre-
mented from 1 to 20, and for each increment, an MLP was
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FIG. 1: Plot of the mean interferograms from each coated paper
obtained from the Michelson prototype instrument. The first 256
points to the right of the centreburst are shown.

simulated in Matlab with one hidden layer, whose size was
systematically varied between 1 and 30 nodes. Experiments
showed that further increase of the number of hidden nodes
did not improve the generalization due to overfitting. For hid-
den layer nodes, hyperbolic tangent transfer functions were
used, whereas logistic functions were used for output layer
nodes. Ten trials were attempted for each network and the
MSE of prediction with the number of epochs required for
convergence were recorded. The criterion for stopping train-
ing was an MSE≤ 10−5 or an increment of the validation error
for a specified number of iterations.

The second data set used was from a medical applica-
tion [30] and contained a total of 264 patients for which mea-
surements of 21 wavelengths of the spectrum has been col-
lected. For the same patients we also have measurements of
HDL, LDL, and VLDL cholesterol levels, based on serum
separation. The first step was to perform a principal com-
ponent analysis and retain those principal components which
account for 99.9% of the variation in the data. There is sig-
nificant redundancy in the data set, since the principal com-
ponent analysis has reduced the size of the input vectors from
21 to 4. The next step is to divide the data up into training,
validation and test subsets. We will take 25% of the data for
the validation set, 25% for the test set and 50% for the train-
ing set. We pick the sets as equally spaced points throughout
the original data.

A similar procedure as described above for the paper data
was used, but this time the number of inputs to the net-
work was fixed to 4 principal components, and an MLP was
simulated in Matlab with one hidden layer, whose size was
systematically varied between 1 and 30 nodes. For hidden
layer nodes, hyperbolic tangent transfer functions were used,
whereas linear transfer functions were used for output layer
nodes. Ten trials were attempted for each network and the
stopping criterion was the same as above.

We compared our proposed model to different gradient de-
scent algorithms which use constant or adaptive learning rates
as these methods show improved learning speed and good
convergence behavior [8]. More specifically, we first applied
the batch gradient descent training algorithm (TRAINGD).
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FIG. 1: Plot of the mean interferograms from each coated paper ob-
tained from the Michelson prototype instrument. The first 256 points
to the right of the centreburst are shown

addition, the autocorrelation sequence of the average interfer-
ogram was calculated and it was observed that it drops signif-
icantly after the first 16 lags. Thus, the number of inputs, i.e.,
data points presented to the network was incremented from 1
to 20, and for each increment, an MLP was simulated in Mat-
lab with one hidden layer, whose size was systematically var-
ied between 1 and 30 nodes. Experiments showed that further
increase of the number of hidden nodes did not improve the
generalization due to overfitting. For hidden layer nodes, hy-
perbolic tangent transfer functions were used, whereas logistic
functions were used for output layer nodes. Ten trials were at-
tempted for each network and the MSE of prediction with the
number of epochs required for convergence were recorded.
The criterion for stopping training was an MSE≤ 10−5 or an
increment of the validation error for a specified number of it-
erations.

The second data set used was from a medical applica-
tion [30] and contained a total of 264 patients for which mea-
surements of 21 wavelengths of the spectrum have been col-
lected. For the same patients we also have measurements of
HDL, LDL, and VLDL cholesterol levels, based on serum
separation. The first step was to perform a pricipal component
analysis and retain those principal components which account
for 99.9% of the variation in the data. There significant redun-
dancy in the data set, since the principal component analysis
has reduced the size of the input vectors from 21 to 4. The
next step is to divide the data up into training, validation and
test subsets. We will take 25% of the data for the validation
set, 25% for the test set and 50% for the training set. We pick
the sets as equally spaced points throughout the original data.

A similar procedure as described above for the paper data
was used, but this time the number of inputs to the net-
work was fixed to 4 principal components, and an MLP was
simulated in Matlab with one hidden layer, whose size was
systematically varied between 1 and 30 nodes. For hidden
layer nodes, hyperbolic tangent transfer functions were used,
whereas linear transfer functions were used for output layer
nodes. Ten trials were attempted for each network and the
stopping criterion was the same as above.
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FIG. 2: Mean MSE of networks with 1 to 30 nodes for 1 < q < 2

We compared our proposed model to different gradient de-
scent algorithms which use constant or adaptive learning rates
as these methods show improved learning speed and good
convergence behavior [8]. More specifically, we first applied
the batch gradient descent training algorithm (TRAINGD).
Next we investigated the performance of the gradient de-
scent algorithm with momentum (TRAINGDM). We also
applied gradient descent with adaptive learning rate with
(TRAINGDX) or without momentum (TRAINGDA). Nev-
ertheless, by applying all these algorithms there is no guar-
antee that the network error will monotonically decrease at
each iteration and that the weight sequence will converge to a
minimizer of the sum-of-squared-differences error function E.
Therefore, as shown in the next section, the proposed nonex-
tensive training schemes provide evidence that there is signifi-
cantly improvement in the overall classification performance.

5. RESULTS AND DISCUSSION

To find the optimal values of q, a series of runs were per-
formed using the cholesterol data as input and changing the
network’s structure. For each 0 < q < 5, the mean MSE
of all networks (from 1 to 30 neurons) was recorded and it
was found that there is an optimal area between q = 1.2 and
q = 1.3. Figure 2 shows the results of the tests around that area
in logarithmic scale. The minimum value of MSE is 0.3141
and is achieved for q = 1.3. It is also shown that the error for
q between 1.15 and 1.5 is lower than the error obtained with
q = 1.

As mentioned in the previous section, in the case of choles-
terol data the number of inputs was kept constant and the num-
ber of nodes was varied from 1 to 30. Using the optimal value
of q calculated above (q = 1.3) the lowest prediction error was
found to be 0.22 and it was obtained with a network with 25
nodes. A summary of the results can be seen in Table I. The
first column shows the network structure that gave the mini-
mum error and the last column shows the mean MSE recorded
for reduced size networks with a maximum of 15 neurons.
The error is relative high but this is considered to be a diffi-
cult classification problem. Putting the entire data set through
the network (training, validation and test) and performing a

FIG. 2: Mean MSE of networks with 1 to 30 nodes for 1 < q < 2.

Next we investigated the performance of the gradient de-
scent algorithm with momentum (TRAINGDM). We also
applied gradient descent with adaptive learning rate with
(TRAINGDX) or without momentum (TRAINGDA). Nev-
ertheless, by applying all these algorithms there is no guar-
antee that the network error will monotonically decrease at
each iteration and that the weight sequence will converge to a
minimizer of the sum-of-squared-differences error function
E. Therefore, as shown in the next section, the proposed
nonextensive training schemes provide evidence that there is
significantly improvement in the overall classification perfor-
mance.

5. RESULTS AND DISCUSSION

To find the optimal values of q, a series of runs were per-
formed using the cholesterol data as input and changing the
network’s structure. For each 0 < q < 5, the mean MSE
of all networks (from 1 to 30 neurons) was recorded and it
was found that there is an optimal area between q = 1.2 and
q = 1.3. Figure 2 shows the results of the tests around that
area in logarithmic scale. The minimum value of MSE is
0.3141 and is achieved for q = 1.3. It is also shown that
the error for q between 1.15 and 1.5 is lower than the error
obtained with q = 1.

As mentioned in the previous section, in the case of choles-
terol data the number of inputs was kept constant and the
number of nodes was varied from 1 to 30. Using the optimal
value of q calculated above (q = 1.3) the lowest prediction
error was found to be 0.22 and it was obtained with a net-
work with 25 nodes. A summary of the results can be seen
in Table I. The first column shows the network structure that
gave the minimum error and the last column shows the mean
MSE recorded for reduced size networks with a maximum of
15 neurons. The error is relatively high but this is consid-
ered to be a difficult classification problem. Putting the entire
data set through the network (training, validation and test)
and performing a linear regression between the network out-
puts and the corresponding targets we can get a better idea of
the network response. The results are shown in Figs. 3 and 4.
Fig. 3 shows the results obtained with the network structure
that gave the smallest prediction error trained with the HTS.
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TABLE I: Optimal topologies and MSE for MLP networks trained
with spectral components of blood samples.

Training Best Best Mean (%) Improvement
Method Topology MSE MSE MSE of AHTS
AHTS 4-25-3 0.220 0.349 –
HTS 4-27-3 0.245 (+) 0.352 (–) 0.85%
GD 4-23-3 0.343 (+) 0.507 (+) 31.2%

GDX 4-30-3 0.292 (+) 0.422 (+) 17.3%
GDM 4-13-3 0.337 (+) 0.529 (+) 34.0%
GDA 4-13-3 0.323 (+) 0.421 (+) 17.1%

TABLE II: Optimal topologies and MSE for MLP networks trained
with spectral components of coated paper data.

Training Best Best Mean (%) Improvement
Method Topology MSE MSE MSE of AHTS
AHTS 2-24-1 3.1×10−3 4.2×10−3 –
HTS 17-15-1 3.1×10−3 (=) 5×10−3 (+) 16%
GD 7-23-1 4×10−3 (+) 7.6×10−3 (+) 44.7%

GDX 7-24-1 3.7×10−3 (+) 6.9×10−3 (+) 39.1%
GDM 18-24-1 4×10−3 (+) 8.7×10−3 (+) 51.7%
GDA 6-19-1 4×10−3 (+) 7.3×10−3 (+) 42.5%

Fig. 4 shows the linear regression applied to network outputs
when trained with all the schemes in test. The network struc-
tures are shown in the first column of Table I. We see that
the Hybrid Training Schemes give not only the lowest error
but also perform better than the gradient descent algorithms
tested for smaller sizes of networks.

Similar results were obtained using paper data as inputs.
In this case, the error was significantly reduced compared to
the network outputs with the blood samples because this is
naturally an easier problem. The lowest prediction error was
found to be 3.1×10−3 and it was obtained with a 2-24-1 net-
work structure. Output results can be seen in Table II.

We have evaluated the performance of the new methods
and compared them with the class of the gradient descent al-
gorithms. The statistical significance of the results has been
analyzed using the Wilcoxon test [31]. This is a nonparamet-
ric method that is considered an alternative to the paired ttest.
All statements in the tables reported below refer to a signifi-
cance level of 0.05. Statistically significant cases are marked
with (+), while (-) shows the cases that do not satisfy the sig-
nificance level.

Going through the experimental results with the choles-
terol data, we can conclude that the first two outputs seem to
track the targets reasonably well, and the R-values are almost
0.9. The third output (VLDL levels) is not so well modeled.
Improved results may be obtained with Bayesian regulariza-
tion instead of early stopping for our training technique. Of
course there is also the possibility that VLDL levels cannot

be accurately computed based on the given spectral compo-
nents. Nevertheless, HTS and AHTS gave the best overall
mean squared error and looking at the slopes of the regres-
sion lines of Fig. 4 we can say that they best modelled output
1, and only TRAINGDX gave slightly better results for out-
puts 2 and 3.

In any case, different data pre-processing strategies could
be applied to improve network performance. Both the con-
struction requirements of ANN models with correct predic-
tion ability and the poor agreement between the number of
spectral points and the number of spectra in small data sets
require to find different strategies for the reduction of the size
of the input vector. In this paper, though, we have focused on
training schemes and tried to relieve the benefits of nonexten-
sive statistical mechanics when applied to feedforward neural
networks.

6. CONCLUSIONS

The main goal of this study was to test the performance
of ANNs with nonextensive learning methods. It has been
observed that they can be used as an efficient tool to esti-
mate coat weights on security papers and blood cholesterol
levels. Preliminary numerical results using supervised learn-
ing schemes through Nonextensive Statistical Analysis, show
improved performance in terms of prediction error and net-
work structure compared to the best previous attempts. This is
mainly because of the use of more stochastic neural schemes.
In particular, the use of Adaptive Hybrid Training Scheme im-
proved the network performance by as much as 34% for the
classification of blood cholesterol levels and 51% for coat-
ing weight estimation. To obtain these results a series of ex-
periments was performed to identify the optimal values of q.
These experiments also showed that the error was reduced
for q 6= 1 compared with that obtained for q = 1. During the
study, emphasis was given on the performance of smaller net-
work architecture, thus reducing the computation cost. Train-
ing with nonextensive statistical mechanics proved to be par-
ticularly beneficial with reduced size networks. Future work
will focus on exploring the use of the new method not only in
spectroscopy but also in other classes of problems, possibly
in combination with more efficient dimensionality reduction
techniques. We also need to further investigate the perfor-
mance of the new method in a restarting mode and the critical
role of the temperature in the whole process.

Acknowledgments

The contributions and assistance provided by Ralph J.
Houston is greatly appreciated. We also thank Arjo Wiggins
Ltd for providing their paper samples. The partial financial
support from the University of Patras, EPSRC and Faperj is
gratefully acknowledged.

[1] A. D. Anastasiadis, G. D. Magoulas, and M. N. Vrahatis,
Journal of Computational and Applied Mathematics 191, 166

(2006).



Brazilian Journal of Physics, vol. 39, no. 2A, August, 2009 493

FIG. 3: Linear regression for outputs 1, 2 and 3 of an MLP network with 4 inputs and 27 hidden nodes trained with cholesterol data and the
Hybrid Training Scheme. The regression R-values are shown on top left.

FIG. 4: Linear regression for outputs 1, 2 and 3 of MLP networks with optimal topologies (as shown in Table I) trained with cholesterol data
and various learning algorithms. The slope values for each algorithm is shown on top left.

[2] A. D. Anastasiadis and G. D. Magoulas, The European Physi-
cal Journal B 50, 277 (2006).

[3] M. Boyukata, Y. Kocyigit, and Z. B. Guvenc, Brazilian Journal
of Physics 36, 730 (2006).

[4] L. Dolmatova, C. Ruckebusch, N. Dupuy, J.-P. Huvenne, and
P. Legrand, Chemometrics and Intelligent Laboratory Systems
36, 125 (1997).

[5] B. Schölkopf, C. Burges, and A. Smola, Advances in Ker-
nel Methods-Support Vector Learning (MIT Press, Cambridge,
MA, 1999).

[6] A. D. Anastasiadis, G. D. Magoulas, and M. N. Vrahatis, Pat-
tern Recognition Letters 26, 1926 (2005).

[7] A. D. Anastasiadis, G. D. Magoulas, and M. N. Vrahatis, Neu-
rocomputing 64, 253 (2005).

[8] G. D. Magoulas and M. N. Vrahatis, Neural, Parallel and Sci-
entific Computations 8, 147 (2000).

[9] R. Battiti, Neural Computation 4, 141 (1992).
[10] P. P. Van der Smagt, Neural Networks 7, 1 (1994).
[11] J. Nocedal, Acta Numerica 1, 199 (1992).
[12] G. Gyorgyi, Physics Reports 342, 263 (2001).
[13] C. Tsallis and D. A. Stariolo, Physica A 233, 395 (1996).
[14] C. Tsallis, Statistical Physics 52, 479 (1988).
[15] A. D. Anastasiadis and G. D. Magoulas, Physica A 344, 372

(2004).
[16] C. Tsallis, Brazilian Journal of Physics 29, 1 (1999).

[17] C. Tsallis, Physica D 193, 3 (2004).
[18] H. Shibata, Physica A: Statistical Mechanics and its Applica-

tions 317, 391 (2003).
[19] W. H. Siekman, Chaos, Solitons and Fractals 16, 119 (2003).
[20] U. H. E. Hansmanna and Y. Okamotob, Brazilian Journal of

Physics 29, 187 (1999).
[21] A. C. Tsallis, C. Tsallis, A. C. N. Magalhaes, and F. A. Tamarit,

Complexus 1, 181 (2003).
[22] S. M. D. Queirós, L. G. Moyano, J. de Souza, and C. Tsallis,

The European Physical Journal B 55, 161 (2007).
[23] J. E. Straub and I. Andricioaei, Brazilian Journal of Physics 29,

179 (1999).
[24] M. P. de Albuquerque, I. A. Esquef, A. R. G. Mello, and M. P.

de Albuquerque, Pattern Recognition Letters 25, 1059 (2004).
[25] M. Gell-Mann and C. Tsallis, Nonextensive Entropy–

Interdisciplinary Applications (Oxford University Press,
2004).

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, in Parallel
Distributed Processing:Explorations in the Microstructure of
Cognition 1, edited by D. E. Rumelhart and J. L. McClelland
(MIT Press, 1986), pp. 318–362.

[27] C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A: Statis-
tical Mechanics and its Applications 261, 534 (1998).

[28] D. Kalamatianos, P. Wellstead, J. Edmunds, and P. Liatsis, Re-
view of Scientific Instruments 77 (2006).



494 Dimitrios Kalamatianos et al.

[29] C. Bishop, Neural Networks for Pattern Recognition (Claren-
don Press, Oxford, UK, 1995).

[30] N. Purdie, E. A. Lucas, and M. B. Talley, Clinical Chemistry
38, 1645 (1992).

[31] S. G. and W. Cochran, Statistical Methods (Iowa State Univer-
sity Press, 1989).


