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Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck
equation based on the Sharma-Taneja-Mittal entropy
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In the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a fam-
ily of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional.
This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and sub-
diffusive mechanisms arise contemporarily and competitively. We classify the Lie symmetries and derive the
corresponding group-invariant solutions for the physically meaningful Uhlenbeck-Ornstein process. For the
purely diffusive process we show that any localized state asymptotically approaches a bell shape well fitted
by a generalized Gaussian which is, in general, a quasi-self-similar solution for this class of purely diffusive
equations.
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1. INTRODUCTION

One of the most important phenomenological equations of
non equilibrium statistical mechanics is the Fokker-Planck
equation. Its linear version is considered appropriate for
the description of a wide variety of physical phenomena
characterized by short-range interactions and/or short-time
memories, typically associated with normal diffusion. This
equation, intimately related with the Boltzmann-Gibbs
entropy, rules the time evolution of the density probability
distribution in the presence of an external force field toward
the stationary state corresponding to the exponential Gibbs
distribution [1].
Differently, nonlinear Fokker-Planck equations (NFPE)
emerge in presence of anomalous diffusion, generally
associated to non-Gaussian distributions like power-law or
stretched exponential [2, 3], typically observed in complex
systems with long-range interactions, memory effects per-
sisting in time and, more in general, systems governed by a
non ergodic dynamics dominated by fractal and hierarchical
structures in the phase space.

Anomalous diffusion characterizes several phenomenolo-
gies like surface growth [4], transport of fluid in porous me-
dia [5], diffusion in plasmas [6], subrecoil laser cooling [7],
diffusion of micelles dissolved in salted water [8], two dimen-
sional rotating flow [9], anomalous diffusion at liquid sur-
faces [10] and others (see, for instance, [11] and reference
therein).
It is now clear that these equations are strictly related to gen-
eralized entropies [12]. In this respect, recent attempts to ex-
tend the usual concepts of thermostatistics and kinetic the-
ory to complex systems with non-Boltzmannian distributions
have dealt wich the introduction of several entropic forms like
the q-entropy [13], the κ-entropy [14] and the quantum-group
entropy [15], among the others [16, 17].
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We observe that several of the above entropies are special
cases of a two-parameter family originally introduced by
Shrama, Taneja and Mittal (STM-entropy) [18, 19] and re-
cently reconsidered on a physical background in [20].

The purpose of the present work is to derive a NFPE in
the picture of a generalized statistical mechanics based on the
STM-entropy and to study its classical Lie symmetries and
the related group invariant solutions (GIS) [21, 22].
This NFPE is characterized by the related non decreasing
Lyapunov functional that, at equilibrium, coincides with
the generalized free energy of the system. In fact, as
known, Fokker-Planck equations describe dissipative phe-
nomena where temperature is fixed instead of energy. There-
fore, these equations are more properly associated with the
canonical assemble and the appropriate thermodynamical po-
tential is the free energy. In this respect, Lyapunov function-
als related to some NFPE were derived and discussed in a
relatively general context in [23–25].

Based on the monotonic behavior of the Lyapunov func-
tional, one can show that any initial localized state, which
evolves according to the corresponding NFPE, converges to
a stationary solution that minimizes the Lyapunov functional.
In addition, for the Uhlenbeck-Ornstein process, this station-
ary solution is nothing but a generalized Gaussian which max-
imizes the corresponding constrained entropic form [26, 27].
Remarkably, the NFPE we are introducing is characterized
by a nonlinear diffusive term with two different power factors
which make this equation more difficult to study as compared
to the NFPE for poroses media (known as porous medium
equation) which has only a single power factor dependency
[25]. Another different NFPE with a double power diffusion
coefficient has also been investigated in [12].

The paper is organized as follows. In section 2 we give
a review of the STM-entropy while the associated NFPE is
derived in section 3. In section 4 we classify the classical Lie
symmetries and derive the corresponding GIS. In section 5
we briefly study the related purely diffusive equation, whilst
section 6 contains a summary of our results.
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2. SHARMA-TENEJA-MITTAL ENTROPY

The STM entropy has been originally introduced in [18,
19] as a generalization of the following functional composi-
tion equation

∫
f (x, y)dxdy =

∫
f (x)dx+

∫
f (y)dy , (1)

in the most general composition equation
∫

f (x, y)dxdy =
∫

ya dy
∫

f (x)dx+
∫

xb dx
∫

f (y)dy ,

(2)
for a 6= 0 and b 6= 0, constants parameters.

Whereas the most general solution of Eq. (1) [28] is pro-
vided by the well-known Boltzmann-Gibbs (BG) entropy1

SBG[p] =−
∫

p(x) ln
(

p(x)
)

dx , (3)

the unique solution of Eq. (2), whenever a 6= b, introduces the
STM entropy in the form

SSTM[p] =−
∫ p(x)a− p(x)b

a−b
dx , (4)

for a density distribution function p(x).
More recently, in [20], the same entropic form has been

derived starting from the following ansatz

S[p] =−
∫

p(x)Λ
(

p(x)
)

dx , (5)

where Λ(x) plays the role of a generalized logarithm and for
Λ(x) = ln(x), Eq. (5) reproduces the BG entropy (3).

By requiring that the equilibrium distribution, maximizing
the entropic form (5) under suitable constraints, can be writ-
ten by means of the generalized exponential E(x), the inverse
function of Λ(x): Λ(E(x)) = E(Λ(x)) = x, one derives the
following functional-differential equation

d
dx

[xΛ(x)] = λΛ
( x

α

)
. (6)

By solving this equation, with the boundary conditions
Λ(1) = 0 and (d/dx)Λ(x)

∣∣∣
x=1

= 1, we obtain the two-
parameter deformed logarithm

Λ(x)≡ ln{κ,r}(x) = xr xκ− x−κ

2κ
, (7)

which reduces to the standard logarithm in the (κ, r) →
(0, 0) limit. It satisfies the relation ln{κ,r}(x) = ln{−κ,r}(x) =
− ln{κ,−r}(1/x) which, for r = 0, reproduces the well known
propriety of the standard logarithm: ln(x) =− ln(1/x).

1 In this paper, without sake of generality, we use unities with the Boltzmann
constant k = 1.

The two constants α and λ, appearing in Eq. (6), are given
by

α =
(

1+ r−κ
1+ r +κ

)1/2κ
, (8)

λ =
(1+ r−κ)(r+κ)/2κ

(1+ r +κ)(r−κ)/2κ , (9)

and are related each to other in ln{κ,r} (1/α) = 1/λ.
Using the solution (7) in the ansatz (5) we obtain the fol-

lowing two-parameter deformed entropy

Sκ,r [p] = −
∫

p(x) ln{κ,r}(p(x))dx ,

= −
∫ p(x)1+r+κ− p(x)1+r−κ

2κ
dx , (10)

which has the same form as Eq. (4) with a = 1 + r + κ and
b = 1 + r− κ. From Eq. (10), it is clear that the STM-
entropy mimics the BG entropy, which is recovered in the
(κ, r)→ (0, 0) limit, through the replacement of the standard
logarithm with its generalized version (7).

In the following we require, as natural conditions, that the
generalized exponential E(x) ≡ exp{κ,r}(x) be a strictly in-
creasing and convex function. Moreover, we require that the
equilibrium distribution, obtained by maximizing the con-
strained entropic form (10), has finite momenta of the nth-
order, with n ≥ 0 (n = 0 is the normalization). This implies
the convergence of the following integrals

∞∫

0

xn exp{κ,r}(−x)dx , and
∞∫

0

xn exp{κ,−r}(−x)dx .

(11)

In this way, the deformation parameters κ and r are restricted
to the two dimensional region IR2 ⊃ R = {−|κ| ≤ r ≤ |κ|, if
0≤ |κ|< 1/[2(n+1)] and |κ|−1/(n+1)≤ r ≤ 1/(n+1)−
|κ|, if 1/[2(n + 1)] ≤ |κ| < 1/(n + 1)} depicted in figure 1
(remark that the convergence of the nth-momentum implies
the convergence of any mth-momentum with m < n).
For any (κ, r) ∈ R , ln{κ,r}(x) is a continuous, monotonic, in-
creasing, concave and normalizable function for x∈ IR+, with
ln{κ,r}(IR

+) ⊆ IR. Consequently, the STM-entropy results to
be positive definite, continuous, symmetric, expandible, deci-
sive, maximal, concave and Lesche stable [20].

The equilibrium distribution related to the entropy (10),
constrained by the zeroth-momentum σ0 =

∫
p(x)dx ≡ 1

and the nth-momentum σn =
∫

xn p(x)dx, can be obtained
through the following variational problem

δ
δp(x)

[
Sκ,r [p]− γ

∫
p(x)dx−β

∫
xn p(x)dx

]
= 0 , (12)

and assumes the expression

p(x) = α exp{κ,r}

(
−1

λ
(γ+βxn)

)
, (13)

where γ and β are the Lagrange multipliers associated to the
constraints σ0 and σn, respectively.
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FIG. 1: Parameter space (κ, r) for the logarithm (7). The shaded
zones corresponds to the regions of convergence of the integrals (11),
for n = 0, 1, 2, 3. The four lines, dashed, solid and dotted, dash-
dotted, represent the loci of points of the logarithms belong to the
q-entropy, κ-entropy, quantum-group entropy and the dual quantum-
group entropy, respectively, as discussed in the text.

where γ and β are the Lagrange multipliers associated to the
constraints σ0 and σn, respectively.

We conclude by recalling that several generalized entropies,
someone currently used in the study of anomalous statistical
systems, belong to the STM family. In figure 1, we depicted
the loci of points representing some of these one-parameter
entropies: the q-entropy

S2−q [p] =−
∫ p(x)2−q− p(x)

q−1
dx , (14)

for r =±|κ|, with q = 1∓2 |κ| [13], the κ-entropy

Sκ [p] =−
∫ p(x)1+κ− p(x)1−κ

2κ
dx , (15)

for r = 0 [14], the quantum group-entropy

SqA
[p] =−

∫ p(x)q−1
A − p(x)qA

qA−q−1
A

dx , (16)

for r =
√

1+κ2−1 > 0, with qA =
√

1+κ2 + |κ| [15] and its
dual form

S∗qA
[p] =−

∫ p(x)2−q−1
A − p(x)2−qA

qA−q−1
A

dx , (17)

for r = 1−
√

1+κ2 < 0, with qA =
√

1+κ2−|κ| [29].
The thermostatistics theory based on the STM-entropy fulfills
the Legendre structure [29]. The main proprieties of a statis-
tical system described by this entropy, in the microcanonical
formalism, has been investigated in [30]. Finally, in [31], the
entropy Sκ,r [p] has been derived from a generalized version of
the Shannon-Khinchin axioms and the corresponding unique-
ness theorem.

3. NONLINEAR FOKKER-PLANCK EQUATION

Following standard methods [11, 24, 32] a NFPE related to
the STM-entropy (STM-NFPE) can be obtained starting from
the continuity equation

∂ρ
∂ t

+
∂ j
∂v

= 0 , (18)

for a normalized density distribution ρ ≡ ρ(v, t) describing a
conservative particle system in the velocity space, where the
nonlinear current j ≡ j(v, t), given by

j =−ρ
∂

∂v

(
δ

δρ
Lκ,r[ρ]

)
, (19)

is related to the density field through the thermodynamic force
∂(δLκ,r[ρ]/δρ)/∂v. We introduce the functional Lκ,r[ρ] ac-
cording to

Lκ,r[ρ]≡U [ρ]−DSκ,r[ρ] , (20)

where U [ρ] is the mean energy of the system

U [ρ] =
∫ 1

2
v2 ρ(v, t)dv , (21)

and D is a constant diffusion coefficient.
Within these settings, the nonlinear current becomes

j =−vρ−Dλρ
∂

∂v
log{κ,r}

(ρ
α

)
, (22)

so that, the STM-NFPE can be written explicitly in

∂ρ
∂ t

− ∂
∂v

(
vρ
)

− D
∂2

∂v2

[
ρ1+r

( r +κ
2κ

ρκ− r−κ
2κ

ρ−κ
)]

= 0 ,

(23)

which will be the subject of our investigations.
It is worthy to note that this equation embodyes two well-
known special cases: the linear Fokker-Planck equation

∂ρ
∂ t
− ∂

∂v

(
vρ
)
−D

∂2 ρ
∂v2 = 0 , (24)

when r = κ = 0 and the q-NFPE

∂ρ
∂ t
− ∂

∂v

(
vρ
)
−D

∂2

∂v2 ρ2−q = 0 , (25)

when r =±|κ|= (1−q)/2.
Remark that the particle current (22) is the sum of two con-
tributes: j = jdrift + jdiff. A linear drift term jdrift ∝ vρ, which
describe the standard Uhlenbeck-Ornstein process and a non-
linear diffusive term

jdiff ∝
∂

∂v

[
(r +κ)ρ1+r+κ− (r−κ)ρ1+r−κ

]
, (26)

FIG. 1: Parameter space (κ, r) for the logarithm (7). The shaded
zones corresponds to the regions of convergence of the integrals
(11), for n = 0, 1, 2, 3. The four lines: dashed, solid, dotted and,
dash-dotted represent the loci of points of the logarithms belong-
ing to the q-entropy, κ-entropy, quantum-group entropy and the dual
quantum-group entropy, respectively, as discussed in the text.

We conclude by recalling that several generalized en-
tropies, which have been currently used in the study of
anomalous statistical systems, belong to the STM family. In
figure 1, we depicted the loci of points representing some of
these one-parameter entropies: the q-entropy

S2−q [p] =−
∫ p(x)2−q− p(x)

q−1
dx , (14)

for r =±|κ|, with q = 1∓2 |κ| [13], the κ-entropy

Sκ [p] =−
∫ p(x)1+κ− p(x)1−κ

2κ
dx , (15)

for r = 0 [14], the quantum group-entropy

SqA
[p] =−

∫ p(x)q−1
A − p(x)qA

qA−q−1
A

dx , (16)

for r =
√

1+κ2−1 > 0, with qA =
√

1+κ2 + |κ| [15] and its
dual form

S∗qA
[p] =−

∫ p(x)2−q−1
A − p(x)2−qA

qA−q−1
A

dx , (17)

for r = 1−
√

1+κ2 < 0, with qA =
√

1+κ2−|κ| [29].
The thermostatistics theory based on the STM-entropy ful-

fills the Legendre structure [29]. The main proprieties of
a statistical system described by this entropy, in the micro-
canonical formalism, has been investigated in [30]. Finally, in
[31], the entropy Sκ,r [p] has been derived from a generalized
version of the Shannon-Khinchin axioms and the correspond-
ing uniqueness theorem.

3. NONLINEAR FOKKER-PLANCK EQUATION

Following standard methods [11, 24, 32] a NFPE related to
the STM-entropy (STM-NFPE) can be obtained starting from

the continuity equation

∂ρ
∂ t

+
∂ j
∂v

= 0 , (18)

for a normalized density distribution ρ ≡ ρ(v, t) describing a
conservative particle system in the velocity space, where the
nonlinear current j ≡ j(v, t), given by

j =−ρ
∂

∂v

(
δ

δρ
Lκ,r[ρ]

)
, (19)

is related to the density field through the thermodynamic
force ∂(δLκ,r[ρ]/δρ)/∂v. We introduce the functional
Lκ,r[ρ] according to

Lκ,r[ρ]≡U [ρ]−DSκ,r[ρ] , (20)

where U [ρ] is the mean energy of the system

U [ρ] =
∫ 1

2
v2 ρ(v, t)dv , (21)

and D is a constant diffusion coefficient.
Within these settings, the nonlinear current becomes

j =−vρ−Dλρ
∂

∂v
log{κ,r}

(ρ
α

)
, (22)

so that the STM-NFPE can be explicitly written in

∂ρ
∂ t
− ∂

∂v

(
vρ
)

− D
∂2

∂v2

[
ρ1+r

( r +κ
2κ

ρκ− r−κ
2κ

ρ−κ
)]

= 0 ,

(23)

which will be the subject of our investigations.
It is worthy to note that this equation embodies two well-

known special cases: the linear Fokker-Planck equation

∂ρ
∂ t
− ∂

∂v

(
vρ
)
−D

∂2 ρ
∂v2 = 0 , (24)

when r = κ = 0 and the q-NFPE

∂ρ
∂ t
− ∂

∂v

(
vρ
)
−D

∂2

∂v2 ρ2−q = 0 , (25)

when r =±|κ|= (1−q)/2.
Remark that the particle current (22) is the sum of two

contributes: j = jdrift + jdiff. A linear drift term jdrift ∝ vρ,
which describes the standard Uhlenbeck-Ornstein process
and a nonlinear diffusive term

jdiff ∝
∂

∂v

[
(r +κ)ρ1+r+κ− (r−κ)ρ1+r−κ

]
, (26)

given by the sum of two different power terms of ρ (whenever
r 6=±|κ|). This kind of nonlinearity is substantially different
from the one appearing in Eq. (25) formed by just a single
power term of ρ.

As known, in the jdrift → 0 limit (purely diffusive case),
Eq. (25) describes super-diffusive or sub-diffusive processes
depending on the value of q < 1 or q > 1, respectively.
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Let us now consider a linear combination of two q-NFPE (25)
with two power indexes q1 and q2, respectively, according to

(r +κ)

[
∂ρ
∂ t
− ∂

∂v

(
vρ+D

∂
∂v

ρ2−q1

)]

− (r−κ)

[
∂ρ
∂ t
− ∂

∂v

(
vρ+D

∂
∂v

ρ2−q2

)]
= 0 .

(27)

Clearly, this equation coincides with Eq. (23) when q1 =
1− r− κ and q2 = 1− r + κ. On the other hand, from fig-
ure 1, we can see that the index q1 = 1− r− κ < 1 and the
index q2 = 1− r + κ > 1. This means that STM-NFPE can
be obtained as a linear combination of two different q-NFPE:
the one describing a super-diffusive process and the other de-
scribing a sub-diffusive process. In other words, the STM-
NFPE describes kinetic processes occurring in anomalous
media where both super-diffusive and sub-diffusive mecha-
nisms arise contemporarily and competitively.

The stationary state reached by the system described by the
STM-NFPE can be obtained by imposing the condition of the
current-free j = 0. In this way, from Eq. (22), we obtain

1
2

v2 +Dλ ln{κ,r}

(
ρst

α

)
=−Dγ , (28)

where Dγ is the integration constant and

ρst = α exp{κ,r}

(
−1

λ

(
γ+

v2

2D

))
, (29)

which is a generalized Gaussian.
This solution is nothing but the optimizing maximal en-

tropy distribution obtainable from the variational problem
(12), with n = 2, if we identify the Lagrange multiplier
β = 1/D.

Finally, let us inspect on the physical meaning of the func-
tional Lκ,r [ρ] used to derive the STM-NFPE. Firstly, we ob-
serve that at equilibrium, with β = 1/D, the functional (20)
coincides with the generalized free energy of the system, i.e.
Fκ,r [ρeq]≡ Lκ,r [ρeq] [30].
Differently, out of equilibrium, it can be shown that Eq. (20)
is a not increasing function which reaches its minimum when
the system reaches the stationary state ρst(v). In fact, from
Eqs. (18) and (19), we have

d
d t

Lκ,r [ρ] =
∫ ∂ρ

∂ t
δ

δρ

(
Lκ,r [ρ]

)
dv

= −
∫ ∂ j

∂v
δ

δρ

(
Lκ,r [ρ]

)
dv

=
∫

j
∂
∂v

[
δ

δρ

(
Lκ,r [ρ]

)]
dv

= −
∫ j2

ρ
dv≤ 0 ,

where equality holds at equilibrium, when j vanishes.
According to [33], we can identify the quantity Lκ,r [ρ]

with the Lyapunov functional of the system under inspec-
tion, which uniquely characterizes the Fokker-Planck equa-
tion (23).

4. LIE SYMMETRIES AND RELATED GROUP
INVARIANT SOLUTIONS

A way to obtain special solutions of a PDE is based on
the determination of its Lie symmetries. Here we explore the
classical Lie symmetries of the STM-NFPE where the gen-
erators χ(v, t, ρ) are functions of the independent variables v
and t and of the dependent variable ρ. More general sym-
metries, with generators depending also on the derivative of
the field ρ, can also exist, although we do not explore this
situation here.

4.1. Lie symmetries

The determination of the Lie symmetries can be accom-
plished by following well-known techniques described in
standard textbooks [21, 22, 34] which we remind for the de-
tails. For the sake of clarity, it is useful to consider the three
cases represented by the Eqs. (23), (24) and (25) separately.

a) Linear FP equation.

Firstly, we consider the linear Fokker-Planck equation (24)
which has been widely studied in the past [35]. Its maximal
symmetry group is composed by the following seven opera-
tors

χ1 =
∂
∂ t

,

χ2 = e−t ∂
∂v

,

χ3 = et
(

∂
∂v
− 1

D
vρ

∂
∂ρ

)
,

χ4 = e−2 t
(

v
∂

∂v
− ∂

∂ t
−ρ

∂
∂ρ

)
, (30)

χ5 = e2 t
(

v
∂

∂v
+

∂
∂ t
− 1

D
v2 ρ

∂
∂ρ

)
,

χ6 = ρ
∂

∂ρ
,

χ7 = η
∂

∂ρ
,

where η is another solution of Eq. (24). The firsts two
operators generate time and velocity translations, χ3 gener-
ates dilations whilst χ4 and χ5 generate more complicated
transformations involving both dilations and translations in
velocity and time. Finally, the last two generators reflect the
linearity of Eq. (24) in the sense that if ρ and η are solutions,
then the same is also true for k ρ+η, with k a constant.

b) q-NFPE.

The maximal symmetry group of equation (25) is formed by
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the following four operators

χ1 =
∂
∂ t

,

χ2 = e−t ∂
∂v

,

χ̃3 =
1−q

2
v

∂
∂v

+ρ
∂

∂ρ
. (31)

χ̃4 = e(q−3) t
(

v
∂

∂v
− ∂

∂ t
−ρ

∂
∂ρ

)
.

The first two generators are identical to those of the linear
case and produce time and velocity translations whilst the last
two generators have a q-dependence and produce dilations.

c) STM-NFPE.

The maximal symmetry group of Eq. (23) reduces to the fol-
lowing two operators

χ1 =
∂
∂ t

,

χ2 = e−t ∂
∂v

, (32)

which generate time and velocity translations. Any other
symmetry is destroyed by the particular expression of the
nonlinearity of the diffusive term.

4.2. Group-invariant solutions

Having classifiied the classical Lie symmetries, we derive
now several physically meaningful solutions characterized by
their invariance under some of the above symmetries trans-
formations.

Let us begin by considering the GIS related to the gener-
ators χ1 and χ2 which are common to the whole family of
STM-NFPE. Trivially, the invariant solution under the action
of the generator χ1 corresponds to the stationary state (29)
considered in the previous section. Also trivial is the invariant
solution related to the generator χ2, which produces a time-
dependent space translation. It is merely a constant. More
significative GIS can be obtained starting from a linear com-
bination of χ1 and χ2, with generator

χ =
1
u

∂
∂ t

+ e−t ∂
∂v

, (33)

where u is a constant. The invariant corresponding to this
symmetry is

ξ = v+
1
u

e−t , (34)

which is the coordinate of a time-depending moving frame.
Rewriting Eq. (23) in the ξ variable we obtain the following
ordinary differential equation

D
d2

d ξ2

(
r +κ
2κ

η(ξ)1+r+κ− r−κ
2κ

η(ξ)1+r−κ
)

+ξ
d

d ξ
η(ξ)+η(ξ) = 0 , (35)

where η(ξ)≡ ρ(v, t). Its solution, given by

η(ξ) = α exp{κ,r}

(
−1

λ

(
γ+

ξ2

2D

))
, (36)

is a generalized Gaussian that translates in the v-space, by
preserving its shape in time. In fact, we can easily verify that
the variance (∆v)2 = 〈v2〉−〈v〉2 is conserved in time.

Moreover, this solution describes an isoentropic process
with dSκ,r [ρ]/d t = 0. Notwithstanding, the Lyapunov func-
tion decreases in time since the system dissipates energy dur-
ing the evolution toward the equilibrium

d
d t

Lκ,r [ρ] =−e−t

u2 ≤ 0 , (37)

where equality holds at t→ ∞.
Let us now consider the two symmetries generated by the

operators χ̃3 and χ̃4 which are typical of the q-NFPE.
Quite interesting, the first of these transformation introduces
the following scaling

ρ(v, t)→ eε ρ
(
e

q−1
2 ε v, t

)
, (38)

which, in the q → 1 limit, reduces to the scaling ρ → cρ,
holding for the linear equations.
Unfortunately, the related GIS

ρ(v, t) ∝ v
2

1−q f (t) , (39)

with f (t) obtainable from Eq. (25) with the ansatz (39), is
physically meaningless, being divergent when v→ 0 (q > 1)
or v→ ∞ (q < 1).

Finally, the operator χ̃4 introduces more complicate scaling
involving all the variables ρ, v and t. The corresponding GIS
is again divergent in both v→ ∞ and t→ ∞.

More in general, starting from suitable linear combinations
of the generators (31) we can obtain some physically signi-
ficative solutions.
Among the many, let us consider the following case

χ = e(q−3) t v
∂

∂v
+
(

1− e(q−3) t
) ∂

∂ t
− e(q−3) t ρ

∂
∂ρ

≡ χ1 + χ̃3 . (40)

Introducing the global invariants

ξ = v
(

1− e(q−3) t
) 1

q−3
, (41)

η(ξ) = ρ(v, t)
(

1− e(q−3) t
) 1

3−q
, (42)

the q-NFPE becomes

D
d2

d ξ2 η(ξ)2−q +ξ
d

d ξ
η(ξ)+η(ξ) = 0 , (43)

whose solution can be written in

η(ξ) =
1
Zq

expq

(
−1

2
βq ξ2

)
, (44)
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with

βq =
1

2−q
Z1−q

q

D
, (45)

Zq the normalization constant and expq(x) = [1−(1−q)x]
1

1−q

the q-exponential.
Returning to the original variables ρ and v, we obtain the

well known q-Gaussian self-similar solution in the form

ρ(x, t) =
1

Zq(t)
expq

(
−1

2
βq(t)v2

)
, (46)

where

Zq(t) = Zq

(
1− e(q−3) t

m

) 1
3−q

, (47)

βq(t) = βq

(
Zq

Zq(t)

)2

. (48)

Finally, for a discussion of the remaining GIS belonging to
the linear Fokker-Planck equation, generated by the operators
χ3, χ4 and χ5 of Eq. (30), we remaind to the existent literature
[34, 36].

5. NONLINEAR DIFFUSIVE EQUATION

From the previous analysis it follows that, in general, the
self-similar function

ρG(v, t) = exp{κ,r}

(
a(t)−b(t)v2) , (49)

is not an exact solution of Eq. (23), although it still plays a
role in the study of purely diffusive processes related to this
equation.

In order to clarify this role let us recall that, according to
the following time-dependent transformation

η(v, t) =
1

a(t)
ρ
(
ζ(v, t), τ(t)

)
, (50)

with

ζ(v, t) =
√

D
v

a(t)
,

τ(t) = lna(t) , (51)

a(t) =
[
1+(3−q) t

] 1
3−q ,

the q-FPE is mapped in the following purely diffusive equa-
tion

∂η
∂ t

=
∂2

∂v2 η2−q , (52)

which is known as porous medium equation [37, 38].
Correspondingly, the self-similar q-Gaussian solution (46)

is changed into2

η(v, t) =
1

t
1

3−q

(
1− 1−q

2(2−q)(3−q)
v2

t
2

3−q

) 1
1−q

, (53)

2 We posed Zq = (3−q)1/(q−3).
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FIG. 2: Large time values behavior of the numerical solutions for
κ = 0.3, r = 0, with an initial triangular probability distribution. The
logarithm of the ratio (58) is plotted in each figure. The best fitted
parameters are: a = 1.324, b = 40.54 at t = 0.0; a = −4.862, b =
2.777× 10−3 at t = 137; a = −7.640, b = 2.871× 10−4 at t =
1.4× 103 and a = −23.39, b = 6.205× 10−7 at t = 6.73× 105, re-
spectively. Inset figures show η(v, t) at each time t.

that is a diffusive equation with an extra term representing a
source for the field particle.
In the large time limit, this term becomes negligible with re-
spect to the others, so that equation (56) can be well approxi-

mate by the purely (κ, r)-diffusive equation

∂
∂ t

η =
∂2

∂v2

[
η1+r

( r +κ
2κ

ηκ− r−κ
2κ

η−κ
)]

. (57)

We recall now that any localized solution of STM-NFPE (23)
approaches asymptotically the stationary state given by the
generalized Gaussian (29) which is, therefore, transformed by
means of equation (54) in another one that well approximates
the solution of Eq. (57). This means that, any localized state
is driven to a stationary state that is asymptotically well ap-
proximated by a (κ, r)-Gaussian function.

In order to confirm this asymptotic behavior, we study nu-
merically the approach to the equilibrium of a given Cauchy
problem for the diffusive equation (57).
In fact, the asymptotic behavior of the solutions of Eq. (57)
can be evidenced by studying the time evolution of the func-
tion

r(v, t) = ln
(

ρ(v, t)
ρG(v, t)

)
, (58)

which is the logarithmic ratio between the numerical solution
ρ(v, t) of equation (57) and the generalized Gaussian function
(49), with a(t) and b(t) the best fitted parameters of the nu-
merical solution, at each time t.
In the inset of figure 2, we plotted the time evolution of η(v, t)
with a initial triangle shape, for the case κ = 0.3, r = 0. It is
clear from this picture that r(v, t)→ 0 as t → ∞, i.e. the func-
tion (58) gradually decreases to zero as time evolves, which
gives a strong evidence that the numerical solution is asymp-
totically approaching to the generalized Gaussian function.
We have run several simulations with different initial shapes
to confirm this asymptotic behavior.

6. SUMMARY

In this work we have studied the classical Lie symme-
tries and the related group invariant solutions of a nonlinear
Fokker-Planck equation based on the Sharma-Taneja-Mittal
entropy. The analysis showed that the generalized Gaussian
function, obtained by replacing the standard exponential with
its generalized version, is recurrent in the expression of sev-
eral GIS. In fact, it models the stationary state (29) as well
as the traveling wave (36) and, limiting to the q-case, also
the self-similar solution (46). In general, the (κ, r)-Gaussian
is not a scale invariant solution of the STM-NFPE although
it plays a rôle in the study of the evolution of localized ini-
tial states driven by the purely diffusive equation (57) related
to the STM-NFPE. By performing several numerical simula-
tions, with different initial shapes, we have found strong ev-
idence that localized initial states are well approximated, for
large time values, by the (κ, r)-Gaussian function instead of
the standard Gaussian.

FIG. 2: Large time values behavior of the numerical solutions for
κ = 0.3, r = 0, with an initial triangular probability distribution.
The logarithm of the ratio (58) is plotted in each figure. The
best fitted parameters are: a = 1.324, b = 40.54 at t = 0.0; a =
−4.862, b = 2.777×10−3 at t = 137; a =−7.640, b = 2.871×10−4

at t = 1.4×103 and a =−23.39, b = 6.205×10−7 at t = 6.73×105,
respectively. Inset figures show η(v, t) at each time t.

that is the Barenblatt’ self-similar solution [39].

Based on these results, let us introduce a time-dependent
transformation for the whole family of the STM-NFPE, de-
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fined by

η(v, t) = ρ
(
ζ(v, t), τ(t)

)
, (54)

with ζ(v, t) and τ(t) as in Eq. (51), but now

a(t) = (1+2 t)
1
2 . (55)

Remark that the transformation (54) maps (κ, r)-Gaussian
into (κ, r)-Gaussian.

By applying such transformation on Eq. (23), we obtain
the following evolution equation

∂η
∂ t

=
∂2

∂v2

[
η1+r

( r +κ
2κ

ηκ− r−κ
2κ

η−κ
)]

+
η

2 t +1
, (56)

that is a diffusive equation with an extra term representing a
source for the field particle.

In the large time limit, this term becomes negligible with
respect to the others, so that equation (56) can be well ap-
proximate by the purely (κ, r)-diffusive equation

∂
∂ t

η =
∂2

∂v2

[
η1+r

( r +κ
2κ

ηκ− r−κ
2κ

η−κ
)]

. (57)

We recall now that any localized solution of STM-NFPE (23)
asymptotically approaches the stationary state given by the
generalized Gaussian (29) which is, therefore, transformed
by means of equation (54) in another one that well approxi-
mates the solution of Eq. (57). This means that, any localized
state is driven to a stationary state that is asymptotically well
approximated by a (κ, r)-Gaussian function.

In order to confirm this asymptotic behavior, we numeri-
cally study the approach to the equilibrium of a given Cauchy
problem for the diffusive equation (57).
In fact, the asymptotic behavior of the solutions of Eq. (57)
can be evidenced by studying the time evolution of the func-
tion

r(v, t) = ln
(

ρ(v, t)
ρG(v, t)

)
, (58)

which is the logarithmic ratio between the numerical solution
ρ(v, t) of equation (57) and the generalized Gaussian func-
tion (49), with a(t) and b(t) the best fitted parameters of the
numerical solution, at each time t.

In the inset of figure 2, we plotted the time evolution of
η(v, t) with an initial triangle shape, for the case κ = 0.3, r =
0. It is clear from this picture that r(v, t)→ 0 as t → ∞, i.e.
the function (58) gradually decreases to zero as time evolves,
which gives a strong evidence that the numerical solution is
asymptotically approaching the generalized Gaussian func-
tion.
We have run several simulations with different initial shapes
to confirm this asymptotic behavior.

6. SUMMARY

In this work we have studied the classical Lie symme-
tries and the related group invariant solutions of a nonlinear
Fokker-Planck equation based on the Sharma-Taneja-Mittal
entropy. The analysis showed that the generalized Gaussian
function, obtained by replacing the standard exponential with
its generalized version, is recurrent in the expression of sev-
eral GIS. In fact, it models the stationary state (29) as well
as the traveling wave (36) and, limiting to the q-case, also
the self-similar solution (46). In general, the (κ, r)-Gaussian
is not a scale invariant solution of the STM-NFPE although
it plays a role in the study of the evolution of localized ini-
tial states driven by the purely diffusive equation (57) related
to the STM-NFPE. By performing several numerical simula-
tions, with different initial shapes, we have found strong ev-
idence that localized initial states are well approximated, for
large time values, by the (κ, r)-Gaussian function instead of
the standard Gaussian.
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