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In this manuscript we give thought to the aftermath on the stable probability density function when standard
multiplicative cascades are generalised cascades based on the q-product of Borges that emerged in the context
of non-extensive statistical mechanics.
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1. INTRODUCTION

In the twenty years that have elapsed since the publication
of the non-additive entropy Sq, which is also fairly known
as Tsallis entropy [1], many applications and connections
with to natural and man-mind phenomena have been estab-
lished [2]. One of the most exciting applications which have
emerged within the non-extensive scope is the definition of a
whole new set of mathematical operations/functions that goes
from the generalised algebra independently defined by Borges
[3] and Nivanen et al. [4] and the integro-differential opera-
tors by Borges to the q-trigonometric functions [5]. Besides
its inherent beauty, these generalisations have found its own
field of applicability. Namely, the q-product plays a primary
role in the definition of the q-Fourier transform [6], thus in q-
Central Limit Theorem [7], whereas the generalised trigono-
metric functions have been quite successful in describing the
critical behaviour of a class of composed materials known
as manganites [8]. In this article, we inquire into the possi-
ble applications of the q-product in the generation of random
variables and its consequence on the definition of a new class
of probability density functions.

2. PRELIMINARIES: THE q-PRODUCT

The q-product, ⊗q, has been introduced with the purpose
to find a functional form that is able to generalise, in a non-
extensive way, the mathematical identity,

exp [ln x+ ln y] = x× y, (x,y > 0) , (1)

so that the equality,

x⊗q y≡ expq [lnq x+ lnq y] , (2)

holds. The representations lnq (.) and expq (.) correspond to
the q-logarithm [9],

lnq (x)≡ x1−q−1
1−q

, (x > 0,q ∈ℜ) , (3)

and its inverse, the q-exponential,

expq (x)≡ [1+(1−q) x]
1

1−q , (x,q ∈ℜ) , (4)

respectively (expq (x) = 0 if 1 + (1− q)x ≤ 0). For q→ 1,
equation (2) recovers the usual property,

ln(x× y) = ln x+ ln y
(x,y > 0), with x× y ≡ x⊗1 y. Its inverse operation, the q-
division, x�q y, verifies the following equality (x⊗q y)�q y =
x.

Bearing in mind that the q-exponential is a non-negative
function, the q-product must be restricted to the values of x
and y that respect the condition,

|x|1−q + |y|1−q−1≥ 0. (5)

Moreover, we can extend the domain of the q-product to neg-
ative values of x and y writing it as,

x⊗q y≡ sign(xy)expq [lnq |x|+ lnq |y|] . (6)

Regarding some key properties of the q-product we mention:

1. x⊗1 y = x y;

2. x⊗q y = y⊗q x;

3. (x⊗q y)⊗q z = x⊗q (y⊗q z) =
[
x1−q + y1−q−2

] 1
1−q ;

4. (x⊗q 1) = x;

5. lnq [x⊗q y]≡ lnq x+ lnq y;

6. lnq (xy) = lnq (x)+ lnq (y)+(1−q) lnq (x) lnq (y);

7. (x⊗q y)−1 = x−1⊗2−q y−1;

8. (x⊗q 0) =


0 if (q≥ 1 and x≥ 0) or if (q < 1 and 0≤ x≤ 1)

(
x1−q−1

) 1
1−q otherwise

For particular values of q, e.g., q = 1/2, the q-product pro- vides nonnegative values at points for which the inequality
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|x|1−q + |y|1−q− 1 < 0 is verified. According to the cut-off
of the q-exponential, a value of zero for x⊗q y is set down
in these cases. Restraining our analysis of Eq. (5) to the
sub-space x,y > 0, we can observe that for q→−∞ the re-
gion {0≤ x≤ 1,0≤ y≤ 1} is not defined. As the value of q
increases, the forbidden region decreases its area, and when
q = 0, we have the limiting line given by x+y = 1, for which
x⊗0 y = 0. Only for q = 1, the entire set of x and y real values
has a defined value for the q-product. For q > 1, the condi-
tion (5) implies a region, |x|1−q + |y|1−q = 1 for which the
q-product diverges. This undefined region augments its area
as q goes to infinity. When q = ∞, the q-product is only de-
fined in {x≥ 0,0≤ y≤ 1}∪ {0≤ x≤ 1,y > 1}. Illustrative
plots are presented in Fig. (1) of Ref. [10].

3. MULTIPLICATIVE PROCESSES AS GENERATORS OF
DISTRIBUTIONS

Multiplicative processes, particularly stochastic multi-
plicative processes, have been the source of plentiful models
applied in several fields of science and knowledge. In this
context, we can name the study of fluid turbulence [11], frac-
tals [12], finance [13], linguistics [14], etc. Specifically, mul-
tiplicative processes play a very important role on the emer-
gence of the log-Normal distribution as a natural and ubiqui-
tous distribution. In simple terms, the log-Normal distribu-
tion is the distribution of a random variable whose logarithm
is associated with a Normal distribution [15],

p(x) =
1√

2πσx
exp

[
− (lnx−µ)2

2σ2

]
. (7)

With regard to the dynamical origins of the log-Normal dis-
tribution, several processes have been thought up to generate
it. In this work we highlight the two most famous of them
— the law of proportionate effect [16], the theory of break-
age [17] or from Langevin-like processes [18]. We shall now
give a brief view of the former; Let us consider a variable Z̃
obtained from a multiplicative random process,

Z̃ =
N

∏
i=1

ζ̃i, (8)

where ζ̃i are nonnegative microscopic variables associated
with a distribution f ′

(
ζ̃

)
. If we consider the following trans-

form of variables Z ≡ ln Z̃, then we have,

Z =
N

∑
i=1

ζi,

with ζ ≡ ln ζ̃. Assume now ζ as a variable associated with
a distribution f (ζ) with average µ and variance σ2. Then, Z
converges to the Gaussian distribution in the limit of N go-
ing to infinity as entailed by the Central Limit Theorem [19].
Explicitly, considering that the variables ζ are independently
and identically distributed, the Fourier Transform of p(Z′) is
given by,

F
[
p
(
Z′
)]

(k) =
[∫ +∞

−∞

ei k ζ

N f (ζ) dζ

]N

, (9)

where Z′ = N−1Z. For all N, the integrand can be expanded
as,

F [p(Z′)] (k) =
[

∞

∑
n=0

(ik)n

n!
〈ζn〉

N

]N

,

F [p(Z′)] (k) = exp
{

N ln
[

1+ ik 〈ζ〉N −
1
2 k2 〈ζ2〉

N2 +O
(
N−3

)]}
,

(10)
expanding the logarithm,

F
[
P
(
Z′
)]

(k)≈ exp
[

ikµ− 1
2N

k2
σ

2
]
. (11)

Applying the inverse Fourier Transform, and reverting the Z′

change of variables we finally obtain,

p(Z) =
1√

2πNσ
exp

[
− (Z−N µ)2

2σ2 N

]
. (12)

We can define the attracting distribution in terms of the orig-
inal multiplicative random process, yielding the log-Normal
distribution [15],

p(Z̄) =
1√

2πNσ Z̄
exp

[
− (ln Z̄−N µ)2

2σ2 N

]
. (13)

Although this distribution with two parameters, µ and σ,
is able to appropriately describe a large variety of data sets,
there are cases for which the log-Normal distribution fails sta-
tistical testing [15]. In some of these cases, such a failure has
been overcome by introducing different statistical distribu-
tions (e.g., Weibull distributions) or changing the 2-parameter
log-Normal distribution by a 3-parameter log-Normal distri-
bution,

p(x) =
1√

2πσ (x−θ)
exp

[
− (ln [x−θ]−µ)2

2σ2

]
. (14)

In the sequel of this work we present an alternative procedure
to generalise Eq. (7). The motivation for this proposal comes
from changing the N products in Eq. (8) by N q-products,

Z̃ =
N

∏
i=1

(q)

ζ̃i ≡ ζ̃1⊗q ζ̃2⊗q . . .⊗q ζ̃N . (15)

Applying the q-logarithm we have a sum of N terms. If ev-
ery term is identically and independently distributed, then for
variables ζi = lnq ζ̃i with finite variables we have a Gaussian
which has stable distribution, i.e., a Gaussian distribution in
the q-logarithm variable. From this scenario we can obtain
our q-log Normal probability density function,

p(x) =
1

Zq xq exp

[
−

(lnq x−µ)2

2σ2

]
, (x≥ 0) , (16)

with the normalisation,

Zq =


√

π

2 erfc
[
− 1√

2σ

(
1

1−q +µ
)]

σ i f q < 1

√
π

2 erfc
[

1√
2σ

(
1

1−q +µ
)]

σ i f q > 1.

(17)
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In the limit of q equal to 1, lnq→1 x = lnx and Zq→1 =
√

2πσ

and the usual log-Normal is recovered thereof (erfc stands for
complementary error function). Typical plots for cases with
q = 4

5 , q = 1, q = 5
4 are depicted in Fig. 1.

FIG. 1: Plots of Eq. (16) vs x for q = 4
5 (dotted line), q = 1 (full

line) and q = 5
4 (dashed line) in linear-linear scale (upper), log-linear

(centre), log-log (lower).

The raw statistical moments,

〈xn〉 ≡
∫

∞

0
xn p(x) dx, (18)

can be analytically computed for q < 1 giving [20],

〈xn〉=
Γ [ν]exp

[
− γ2

8β

]
D−ν

[
γ√
2β

]
√

βν πσ(1−q)erfc
[
− 1√

2σ

(
1

1−q +µ
)] , (19)

with

β =
1

2σ2 (1−q)2 ; γ =−1+µ (1−q)

(1−q)2
σ2

; ν = 1+
n

1−q
,

(20)
where D−a [z] is the parabolic cylinder function [21]. For
q > 1, the raw moments are given by an expression quite sim-
ilar to Eq. (19) with the argument of the erfc replaced by

1√
2σ

(
1

1−q +µ
)

. However, the finiteness of the raw moments
is not guaranteed for every q > 1 for two very related reasons.
First, according to the definition of D−ν [z], ν must be greater
than 0. Second, the core of the probability density function,

exp
[
− (lnq x−µ)2

2σ2

]
, does not vanish in the limit of x going to

infinity ∞,

lim
x→∞

exp

[
−

(lnq x−µ)2

2σ2

]
= exp

[
−γ2

2

]
. (21)

This means that the limit p(x→ ∞) = 0 is introduced by the
normalisation factor x−q, which comes from redefining the
Gaussian of variables,

y≡ lnq x, (22)

as a distribution of variables x. Because of that, if the moment
surpasses the value of q, then the integral (18) diverges.

4. EXAMPLES OF CASCADE GENERATORS

In this section, we discuss the upshot of two simple cases
in which the dynamical process described in the previous sec-
tion is applied. We are going to verify that the value of q
influences the nature of the attractor in probability space.

4.1. Compact distribution [0,b]

Let us consider a compact distribution for indentically and
independently distributed variables x within the interval 0 and
b. Following what we have described in the preceding sec-
tion, we can transform our generalised multiplicative process
into a simple additive process of yi variables which are now
distributed in conformity with the distribution,

p′ (y) =
1
b

[1+(1−q)y]
q

1−q , (23)

with y defined between 1
q−1 and b1−q−1

1−q if q < 1, whereas y

ranges over the interval between −∞ and b1−q−1
1−q when q > 1.

Some curves for the special case b = 2 are plotted in Fig. 2.
If we look at the variance of this independent variable,

σ
2
y =

〈
y2〉−〈µy〉2 , (24)

which is the moment whose finitude plays the leading role in
the Central Limit Theory, we verify that for q > 3

2 , we obtain
a divergent value,

σ
2
y =

b2−2q

(3−2q)(2−q)2 . (25)
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FIG. 2: Plots of the Eq. (23) vs y for b = 2 and the values of q
presented in the text.

Hence, if q < 3
2 , we can apply the Lyapunov’s central Limit

theorem and our attractor in the probability space is the Gaus-
sian distribution. On the other hand, if q > 3

2 , the Lévy-
Gnedenko’s version of the central limit theorem [22] asserts
that the attracting distribution is a Lévy distribution with a tail
exponent,

α =
1

q−1
. (26)

Furthermore, it is simple to verify that the interval
( 3

2 ,∞
)

of q
values maps onto the interval (0,2) of α values, which is pre-
cisely the interval of validity of the Lévy class of distributions
that is defined by its Fourier Transform,

F [Lα (Y )] (k) = exp
[
−a |k|α

]
. (27)

In Fig. 3 we depict some sets generated by this process for
different values of q.

4.2. q-log Normal distribution

In this example, we consider the case of generalised multi-
plicative processes in which the variables follow a q-log Nor-
mal distribution. In agreement with what we have referred to
in Sec. 3, the outcome strongly depends on the value of q.
Consequently, in the associated x space, if we apply the gen-
eralised process to N variables y = lnq x (x ∈ [0,∞)) which
follow a Gaussian-like functional1 form with average µ and
finite standard deviation σ, i.e., ∀q<1 or q > 3 in Eq.(16), the
resulting distribution in the limit of N going to infinity corre-
sponds to the probability density function (16) with µ→ N µ
and σ2→ N σ2. In respect of the conditions of q we have just
mentioned here above, the q-log normal can be seen as an
asymptotic attractor, a stable attractor for q = 1, and an un-
stable distribution for the remaining cases with the resulting

1 Strictly speaking, we cannot use the term Gaussian distribution because it
is not defined in the interval (−∞,∞). The limitations in the domain do
affect the Fourier transform and thus the result of the convolution of the
probability density function.

FIG. 3: Sets of random variables generated from the process (15)
with N = 100 and q = − 1

2 (green), 0 (red), 1
2 (blue), 1 (black), 5

4
(magenta) in linear (upper panel) and log scales (lower panel). The
generating variable is uniformly distributed within the interval [0,1]
as is the same for all of the cases that we present. As visible, the
value of q deeply affects the values of XN = Z̃.

attracting distribution being computed by applying the con-
volution operation.

5. FINAL REMARKS

In this manuscript we have introduced a modification in the
multiplicative process that has enabled us to present a mod-
ification on the log-Normal distribution as well as other dis-
tributions with slow decay. This distribution is controlled by
an extra-parameter, q, when it is compared with the regular 2-
parameter log-Normal distribution, which can be dynamically
related to a change in the multiplicative random process. Be-
sides, it provides interesting mechanisms of on-off dynamics.

Regarding further applications, it is known that the stan-
dard log-normal distribution is unfitted for several data sets.
This 3-parameter log-Normal probability function is expected
to provide a better approach to these data [23].
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