
Brazilian Journal of Physics, vol. 39, no. 2A, August, 2009 439

q-exponential distribution in time correlation function of water hydrogen bonds
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In a series of molecular dynamics simulations we analyzed structural and dynamics properties of water at dif-
ferent temperatures (213 K to 360 K), using the Simple Point Charge-Extended (SPC/E) water. We detected a
q-exponential behavior in the history-dependent bond correlation function of hydrogen bonds. We found that q
increases with T−1 below approximately 300 K and is correlated to the increase of the tetrahedral structure of
water and the subdiffusive motion of the molecules.
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1. INTRODUCTION

Water physical properties have been investigated in far
greater details, because water is one of the most ubiquitous
substances on Earth and most life processes are related with
their properties [1–3]. In particular, structural and dynamic
properties of the hydrogen bonds have been investigated us-
ing different experimental and theoretical techniques, never-
theless several issues remain unsolved. X-Ray diffraction,
neutron diffraction and proton magnetic shielding tensor mea-
surements can be related to the oxygen-oxygen radial distri-
bution, hydrogen bonds geometry of water and other struc-
tural properties [4–6].

A number of experimental and simulation techniques were
used to study the elemental dynamics process of rupturing
and forming of hydrogen bonds in water, characterized by an
average bond lifetime τHB and caused by diffusion and libra-
tional motions of water molecules on a very fast time scale
[7–13]. In molecular dynamics (MD), a “history-dependent”
bond correlation function P(t) is used to obtain τHB [14, 15].
P(t) represents the probability that an hydrogen bond formed
at a time t = 0 remained continuously unbroken and will be
broken at time t.

τHB =
∞∫

0

tP(t)dt (1)

Both MD simulations and experimental data for depolar-
izated light scattering show an Arrhenious behavior of τHB,
where τHB ∝ exp(−E∗/RT ) and E∗ is an activation energy
[13–15]. E∗ can be interpreted as the energy required to break
a hydrogen bond (≈ 10 KJ/mol). However, the functional be-
havior of P(t) has not been clearly established to date. In
previous works it was found that P(t) not to verify either an
exponential or a power law behavior in the liquid and super-
cooled region of water, regardless of the hydrogen bond defi-
nition used [14, 15].

In other works the dynamics of liquid and supercooled wa-
ter was studied by analyzing the behavior of the mean-square
displacement time series (M(t) )

M(t) = 〈[r(t)− r(0)]2〉 (2)

where r(t) is the position of de oxygen atoms of water at
time t, r(0) is their initial position and the brackets 〈〉 de-
note ensemble average. At room temperature the motion of

water molecules at short times is ballistic, where M(t) ∝ tα

and α ≈ 2 for pure ballistic motion. At later times the water
molecules move diffusively (α≈ 1 according to Einstein rela-
tion) and the diffusion coefficient D can be calculated. How-
ever, a plateau emerges in M(t) (0 < α < 1) at intermediate
times in the supercooled region of water (T . 273 K) where
the movement of the water molecules is called subdiffusive
[16, 17]. This phenomenon is attributed to a caging behavior
of water, in which a water molecule is temporarily trapped
by its neighbors and then moves in short burst due to nearby
cooperative motion.

The diffusion is associated with a non-Gaussian statistics,
when the Einstein relation is not satisfied [18–20]. In par-
ticular, the caging behavior of water is studied by Mazza et.
al [17] calculating the non-Gaussian parameter α2(∆t) of the
displacement of water molecules.

Constantino Tsallis and collaborators introduced the q-
exponential probability distribution [21]. This can be de-
fined through their ”complementary” distribution functions,
also called ”survival ” functions:

Pq,κ(X > x) =
(

1− (1−q)x
κ

)1/(1−q)

(3)

Tsallis et al. proposed these distributions to handle
statistical-mechanical systems with long-range interactions,
necessitating a non-extensive generalization of the ordinary
Gibbs-Shannon entropy. Following Jaynes’s procedure [22]
of maximizing an entropy subject to constraints on expecta-
tion values, they got the q-exponential ditributions, in wich
κ enforces the constrains, and q measures the departure from
extensivity, Boltzmann-Gibbs statistics being recovered as q
→ 1. Sometimes, a q-exponential behavior of dynamic vari-
ables has been observed in cases of particles with a subdi-
fussive behavior [18, 23, 24]. However, this last behavior has
not been considered in water dynamic variables of molecular
dynamics simulations.

In this work, using a MD method, we studied the structural
and dynamics behavior of the extended simple point charge
(SPC/E) model of water over a wide range of temperatures
(213-360 K). As a result, we will show that the bond corre-
lation function, P(t), has a non-exponential behavior and fits
to a q-exponential function. Besides, we analyzed possible
correlations between this q-exponential behavior of P(t), the
hydrogen bonds distributions and the displacement of water
molecules.
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TABLE I: Fitting parameters of the bond correlation function corre-
sponding to the different simulated systems.

T / K q ∆q r2 a . 103fs−1 b τHB / fs
213 1.28 0.02 0.997 -4.798 -0.780 576.4
233 1.23 0.01 0.997 -4.840 -0.842 456.7
253 1.16 0.02 0.996 -4.457 -1.068 386.3
263 1.13 0.01 0.996 -4.280 -1.149 362.8
273 1.11 0.02 0.994 -4.125 -1.243 353.3
283 1.10 0.02 0.994 -4.309 -1.211 325.2
293 1.11 0.02 0.993 -4.992 -1.047 286.4
303 1.10 0.02 0.993 -5.174 -1.025 266.3
313 1.09 0.02 0.992 -5.412 -0.985 245.3
323 1.09 0.02 0.991 -5.555 -0.975 238.8
343 1.08 0.02 0.993 -6.300 -0.855 201.8
360 1.06 0.01 0.995 -6.342 -0.884 188.7

2. THEORY AND METHOD

We performed MD simulations of the SPC/E model of wa-
ter using the GROMACS package [25, 26]. This water model
assumed a rigid geometry of the molecules, with an O–H dis-
tance of 0.1 nm and a H–O–H angle of 109.47◦. The hydro-
gen atom charge is qH = 0.4238e and the oxygen atom charge
is −2qH . The parameters of the Lennard-Jones interactions
between the oxygen atoms were those of the AMBER-99φ
force field [27].

FIG. 1: Fitting of P(t) of the systems to 283 (�) and 323 K (O). The
lines correspond to the calculated P(t).

We carried out MD simulations with a constant number of
water molecules (1158), in which we used the Berendsen’s
thermostat to apply a thermal and a hydrostatic bath to the
system, obtaining isobaric-isothermal ensembles at 1 atm of
pressure [28]. The values of the systems’ temperatures were
360, 343, 323, 313, 303, 293, 283, 273, 263, 253, 233 and
213 K.

We assigned the velocities of the molecules according to
Boltzmann’s distribution in the system at 360 K. The equili-
bration method was similar for all systems: initially, we made
a 200 steps of energy minimization, continuing with an equi-

libration run of ∼ 1 ns using the constant potential energy as
stability criterion. Then, we calculated the trajectory for an
additional 3 ns. The preceding higher temperature liquid con-
figuration was used as the starting point for each successive
simulation. The values of the densities were according to the
bibliography [16, 29, 30]. The simulation time step was 2
fs and the trajectories were collected every 10 fs for all sim-
ulations. The sampling time is shorter than the typical time
during which a hydrogen bond can be destroyed by libration
movements.
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We performed MD simulations of the SPC/E model of wa-
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tance of 0.1 nm and a H–O–H angle of 109.47◦. The hydrogen
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FIG. 1: Fitting of P(t) of the systems at to 283 (¤) and 323 K (O).
The blue lines correspond to the calculated P(t).

We carried out MD simulations with a constant number of
water molecules (1158), in which we used the Berendsen’s
thermostat to apply a thermal and a hydrostatic bath to the
system, obtaining isobaric-isothermal ensembles at 1 atm of
pressure [28]. The values of the temperatures of the systems
were 360, 343, 323, 313, 303, 293, 283, 273, 263, 253, 233
and 213 K.

We assigned the velocities of the molecules according to
Boltzmann’s distribution in the system at 360 K. The equili-
bration method was similar for all systems: initially, we made
a 200 steps of energy minimization, continuing with a equi-
libration run of ∼ 1 ns using the constant potential energy as
stability criterion. Then, we calculated the trajectory for an
additional 3 ns. The preceding higher temperature liquid con-
figuration was used as the starting point for each successive
simulation. The values of the densities were according to the
bibliography [16, 29, 30]. The simulation time step was 2
fs and the trajectories were collected every 10 fs for all sim-
ulations. The sampling time is shorter than the typical time
during which a hydrogen bond can be destroyed by libration
movements.
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FIG. 2: Non-extensivity parameters q values as a function of 1/T .
The possible significance of the change of q behavior with T is dis-
cussed in the text.

We used a geometric definition of hydrogen bond [10] with
a maximum distance between their oxygen atoms of 3.5 Å and
145◦ as the minimum angle formed by the atoms Odonor–H–
Oacceptor. In order to obtain the hydrogen bonds distribution
function, in each simulation, we calculated a histogram of
the quantity of hydrogen bonds for each analyzed molecule
and then normalized it with the number of trajectories and the
number of water molecules in the system. Then, we obtained
f (n) with n = 1,2, ...,5, being f (n) the probability of occur-
rence of n hydrogen bonds.

The bond correlation function P(t) was obtained from sim-
ulations by building a histogram of the hydrogen bonds life-
times for each configuration. Then, we analyzed if P(t) fol-
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cussed in the text.

We used a geometric definition of hydrogen bond [10] with
a maximum distance between their oxygen atoms of 3.5 Å and
145◦ as the minimum angle formed by the atoms Odonor–H–
Oacceptor. In order to obtain the hydrogen bonds distribution
function, in each simulation, we calculated a histogram of
the quantity of hydrogen bonds for each analyzed molecule
and then normalized it with the number of trajectories and the
number of water molecules in the system. Then, we obtained
f (n) with n = 0,1, ...,5, being f (n) the probability of occur-
rence of n hydrogen bonds.

The bond correlation function P(t) was obtained from sim-
ulations by building a histogram of the hydrogen bonds’ life-
times for each configuration. Then, we analyzed if P(t) fol-
lows a Tsallis distribution of the form

expq(t) = [1+(1−q) t]1/(1−q) (4)

being t the hydrogen bonds lifetime and q the nonextensivity
parameter. In the limit when q→ 1, expq(t)→ exp(t).

The non-Gaussian behavior of the displacement of water
molecules was studied calculating the time t∗, the time at
which the non-Gaussian parameter α2(t) reaches a maximum.
The non-Gaussian parameter is

α2(t) =
3
〈
r4(t)

〉

5〈r2(t)〉 −1 (5)
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FIG. 3: Average bond lifetime τHB from Montrose et al. depolar-
izated light scattering experiments [13] (©) and from our simulation
(¤). To facilitate comparison of the results, we scaled the temper-
ature of our simulation by T SPC/E

MD = 245 K, and the temperature of
the experimental data by T H2O

MD = 277 K (TMD: Temperature at which
the water density displays a maximum).

The non-Gaussian behavior of the displacement of water
molecules was studied calculating the time t∗, the time at
which the non-Gaussian parameter α2(t) reaches a maximum.
The non-Gaussian parameter is

α2(t) =
3
〈
r4(t)

〉

5〈r2(t)〉 −1 (5)

where
〈
r4(t)

〉
and

〈
r2(t)

〉
are the fourth and second moments

of the displacement distribution, respectively. α2(t) is known
to be zero for a Gaussian distribution [17, 31].

3. RESULTS AND DISCUSSION

To study the possible q-exponential behavior of the bond
correlation function we followed this procedure: We assigned
successive values to q ( 1 < q . 1.3, with a step of 0.01) and
made a linear fitting 1 of logq P(t), choosing the q value with

1 logq(x) = 1−x1−q

1−q
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versus T . (b) Hydrogen bonds distribution functions for n=1,2 and 4
versus T−1. (c) q versus probability of occurrence of four hydrogen
bonds.

the highest correlation coefficient r2. Below the 130 fs the be-
havior of P(t) is strongly influenced by the libration of atoms.
Above the 2.5 ps the statistical is poor, because of the unlikely
fact that two water molecules remain bonded by a hydrogen
bond at this time. Hence, we fitted all the P(t) functions in
the interval from 130 fs to 2500 fs, finding that P(t) can be
acceptably fitted with a q-exponential and may be written as
follows
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to be zero for a Gaussian distribution [17, 31].

3. RESULTS AND DISCUSSION

To study the possible q-exponential behavior of the bond
correlation function we followed this procedure: We assigned
successive values to q ( 1 < q . 1.3, with a step of 0.01) and
made a linear fitting 1 of logq P(t), choosing the q value with
the highest correlation coefficient r2. Below the 130 fs the be-
havior of P(t) is strongly influenced by the libration of atoms.
Above 2.5 ps the statistics is poor, because of the unlikely
fact that two water molecules remain bonded by a hydrogen
bond at this time. Hence, we fitted all the P(t) functions in
the interval from 130 fs to 2500 fs, finding that P(t) can be
acceptably fitted with a q-exponential and may be written as
follows

P(t) = P0 expq(at +b) = P0 [1+(1−q)(at +b)]
1

1−q (6)

where P0, a and b are constants. The values of q and others
parameters of the fitting for different temperatures are indi-
cated in Table I. Fig. 1 shows, as an example, the P(t) fitting
of the systems at 283 and 323 K.

Fig. 2 shows that q ∝ T−1 for temperatures below ∼300
K, whereas this parameter is ∼1 for temperatures above this
value. This fact indicates that a clear non-exponential behav-
ior of P(t) occurs in the region below approximately 300 K.

1 logq(x) = 1−x1−q

1−q

FIG. 4: (a) Hydrogen bonds distribution functions for n=0 to n=5
versus T . (b) Hydrogen bonds distribution functions for n=1,2 and 4
versus T−1. (c) q versus probability of occurrence of four hydrogen
bonds.

The q values higher than one indicate the increase of the prob-
ability that two molecules remain bonded much longer.

Although the average bond lifetimes τHB obtained using
Eq. 1 and 6 do not coincide with those of experimental data
from polarizated light scattering experiments (see Fig. 3),
both curves can be fitted by an Arrhenius behavior (τHB ∝
exp(−E∗/RT )). This fact was observed in previous works
[14] [15].

The hydrogen bonds distribution functions for different
temperatures are shown in Fig. 4(a). In this graphic we
can distinguish three regions : The first one between 213
and ∼270 K in which predominates the four hydrogen bonds
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rameters of the fitting for different temperatures are indicated
in Table I. Fig. 1 shows, as an example, the P(t) fitting of the
systems at 283 and 323 K.

Fig. 2 shows that q ∝ T−1 for temperatures below ∼300
K, whereas this parameter is ∼1 for temperatures above this
value. This fact indicates that a clear non-exponential be-
havior of P(t) occurs in the region below approximately 300
K. The q values higher than one indicates the increase of the
probability that two molecules remain bonded much longer.

Although the average bond lifetimes τHB obtained using
Eq. 1 and 6 do not coincide with those of experimental data
from polarizated light scattering experiments (see Fig. 3),
both curves can be fitted by an Arrhenius behavior (τHB ∝
exp(−E∗/RT )). This fact was observed in previous works
[14] [15].
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FIG. 5: Mean square displacement of water in the systems at 213 K
(solid line), 273 K (dashed line) and 360 K (dotted line).

The hydrogen bonds distribution functions for different
temperatures are shown in Fig. 4(a). In this graphic we can
distinguish three regions : A first one between 213 and ∼270
K in which predominates the four hydrogen bonds probability
( f (4)) that is higher than f (3) and f (2), a second region be-
tween ∼270 and ∼320 K, in which f (3) > f (4) > f (2) and
finally, a third region above ∼320 K in which f (3) > f (2) >
f (4). In the lower temperature regime almost 50 % of wa-
ter molecules have four hydrogen bonds, this percentage de-
creases when the temperature increases, reaching 20 % when
T = 360 K. In Fig. 4(b) we can observe the occurrence of a
reciprocal relation between f (2), f (1) and f (4) and the tem-
perature. These results coincide only qualitatively with the
ones obtained by Sutmann and Vallauri [32]. According to the
water model and the hydrogen bond definition used, amongst
other things, the results from different simulations may quan-
titatively differ.
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To study the correlation between the structural transition
and the change of q we analyzed the behavior of q versus f (4)
(see Fig. 4 (c)). We can observe that for temperatures below
300 K there are a linear correlation between both variables.
In other words, the produced structural change below approx-
imately 320 K causes the change in the statistical behavior

FIG. 5: Mean square displacement of water in the systems at 213 K
(solid line), 273 K (dashed line) and 360 K (dotted line).

probability ( f (4)) that is higher than f (3) and f (2), a sec-
ond region between ∼270 and ∼320 K, in which f (3) >
f (4) > f (2) and finally, a third region above∼320 K in which
f (3) > f (2) > f (4). In the lower temperature regime almost
50 % of water molecules have four hydrogen bonds, this per-
centage decreases when the temperature increases, reaching
20 % when T = 360 K. In Fig. 4(b) we can observe the oc-
currence of a reciprocal relation between f (2), f (1) and f (4)
and the temperature. These results coincide only qualitatively
with the ones obtained by Sutmann and Vallauri [32]. Ac-
cording to the water model and the hydrogen bond definition
used, amongst other things, the results from different simula-
tions may quantitatively differ.

To study the correlation between the structural transition
and the change of q we analyzed the behavior of q versus
f (4) (see Fig. 4 (c)). We can observe that for temperatures
below 300 K there is a linear correlation between both vari-
ables. In other words, the produced structural change below
approximately 320 K causes the change in the statistical be-
havior of P(t) and, as a consequence, a significative increase
of the probability of two water molecules be bonded much
longer.

Fig. 5 shows the mean square displacements for the sys-
tems at 213, 273 and 360 K. M(t) shows some evidence
of the caging behavior for water at temperatures below 300
K, where we can observe the appearance of an intermediate
plateau at times between 0.1 and 100 ps that indicates a subd-
iffusive motion of the water. At longer times, there is a recov-
ery of diffusive motion. We can observe from Fig. 6 (a) that
t∗ increases with the decrease of T , according to the results
obtained by Mazza et al. [17]. Clearly, t∗ ∼ T−1at tempera-
tures below 300 K. This fact is attributable to the increase of
the subdiffusive motion of the water.

Fig. 6 (b) shows that q and t∗ are correlated when the tem-
perature drops below 300 K, which is an expected result be-
cause both parameters have a similar behavior with this vari-
able. These changes in q and t∗ are produced by a modifi-
cation in the water structure when f (4) outnumbers f (2) at

FIG. 6: (a) time when α2(t) reaches a maximum t∗ vs. 1/T . (b)
Non-extensivity parameter q vs. t∗. (c) f (4)−

1
4 vs t∗.

approximately 320 K, and a structure in which prevails three
and four hydrogen bonds begins to be the most frequent one
in the water.

Moreover, in Fig. 6 (c) we can see the correlation between
t∗ and f (4) for values corresponding to the systems below
300 K, in which it is observed that t∗ ∼ f (4)−

1
4 .

Considering these results, the four hydrogen bonds proba-
bility associated to a tetrahedral structure in water is a critical
variable in the phenomenon of ”cage effect” that occurs at
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low temperatures and the dynamics of the hydrogen bonds
that changes from an exponential to a non-exponential distri-
bution.

4. CONCLUSIONS

We have shown that the temporal correlation function of
hydrogen bonds P(t) has a q-exponential behavior. The
nonextensivity parameter q takes values above 1 below ap-
proximately 300 K. This increase of q indicates the increase
of the probability that two molecules remain bonded during
a long time t. The transition of P(t) from an exponential to

a q-exponential behavior occurs in parallel with a structural
modification in water, where the probability of occurrence of
four hydrogen bonds outnumbers the one of two hydrogen
bonds. The increase of q is also correlated with the increase
of the Non-Gaussian behavior of water displacement. This
fact is associated which the increase of t∗, the time at which
the Non-Gaussian parameter α2(∆t) reaches a maximum.
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[29] L.A. Báez and P. Clancy, J. Chem. Phys. 101(11), 9837 (1994).
[30] B. Taras and A.D.J. Haymet, Molecular Simulation 30, 131

(2003).
[31] A. Raman, Phys. Rev. 136, 405 (1964).
[32] G. Sutmann and R. Vallauri, J. of Mol. Liq. 98-99, 213 (2002).


