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Tsallis scaling in the long-range Ising chain with competitive interactions
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A numerically efficient transfer matrix approach is used to investigate the validity of the Tsallis scaling hy-
pothesis in the long-range Ising spin chain with competitive interactions. In this model, the interaction between
two spins i and j placed r lattice steps apart is Ji, j = (−1)ζ(i, j)J0/rα, where ζ(i, j) is either 0 or 1. This proce-
dure has succeeded to show the validity of the scaling hypothesis for the well investigated ferromagnetic version
of the model, i.e., ζ(i, j) = 0,∀i, j, ∀α ≥ 0. Results are reported for some models of a set, which is defined
by requiring ζ(i, j) to be a periodic sequence of 0′s and 1′s. As expected from symmetry arguments, we find
that the hypothesis is not valid when ζ(i, j) = 1,∀i, j and α < 1. However, it is verified, with high degree of
numerical accuracy, when α < 1, for sequences in which the occurrence of ζ(i, j) = 0 is more frequent than that
of ζ(i, j) = 1.
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1. INTRODUCTION

The properties of the ferromagnetic long-range Ising chain
have been investigated by a large number of authors in the
past five decades [1–10]. However, the anti-ferromagnetic
and other more general versions of the model, where both
ferro and anti-ferromagnetic interactions are present, have
been almost neglected by the statistical physics community.
A possible explanation for this is the fact that, in opposition
to the ferromagnetic case, the cumulative effect of long-range
anti-ferromagnetic interaction is not of producing cooperative
effect responsible for spin ordering even in the linear chain.
Therefore, such system is not likely to produce any critical
behavior. Another possible reason to the lack of interest in
the model is the known mathematical and computational dif-
ficulties that one must overcome to obtain results already for
the simple ferromagnetic model.

A few years ago, one of us has developed an alternative
transfer matrix (TM) approach to investigate the thermody-
namical properties of the ferromagnetic Ising chain, which
is suitable to produce very accurate numerical results. Be-
sides that, it can be numerically implemented in relatively
small computational facilities [11]. The procedure, which
amounts to working with small TM’s, is optimized with re-
spect to storing the energy values for all distinct spin con-
figurations and to avoiding the numerical evaluation of the
TM largest eigenvalue. Within this framework, interactions
among spins placed up to g = 25 lattice sites apart could be
taken into account also in the evaluation of the critical proper-
ties [12]. When discussing the results for the thermodynamic
function, special attention was devoted to verifying the valid-
ity of the Tsallis scaling hypothesis [13, 14], which had not
been addressed in the investigations prior to 1995.

It is worthy stressing that, besides the direct evaluation of
the thermodynamical properties of long range magnetic mod-
els by ensemble averages, an alternative approach to this clas-
sical problem has been followed by several authors for about
a decade. It refers to evaluating time average of the corre-
sponding quantities, by numerically integrating the equations
of motion that follow from the system’s Hamiltonian. The
time integration approach, which seems more adequate for
the models with continuous valued variables, as the XY spin
model [15], has been mainly motivated by the problem of
identifying whether long range models may be described by

the non extensive statistical mechanics [16].
This work has two main purposes. The first one, which has

a more technical aspect, is to adapt the previously developed
TM approach and obtain the thermodynamical properties of
Ising chains with the presence of both ferro and anti-magnetic
interactions. The second one is to verify the validity of Tsallis
conjecture [14] for a broad class of models, which can be
written in terms of the following spin Hamiltonian:

H =−
∞

∑
i=−∞

∞

∑
r=i+1

Jrσiσi+r−H
∞

∑
i=−∞

σi. (1)

In Eq. (1), Jr = Ji, j = (−1)ζ(i, j)J0/rα, j = i+r, and ζ(i, j) = 0
or 1 controls the ferro- or anti-ferromagnetic character of the
interaction between spins i and j. Note that, since Ji, j de-
pends only on the distance between spins i and j, the models
that can be described by Eq. (1) are homogeneous in space.
Even though, many distinct situations can be described by the
function ζ(i, j). In this work, we restrict our investigation to
a restricted class of ζ(i, j), namely, those periodic sequences
of 0′s and 1′s that can be expressed in terms of F(k, `) and
A(k, `) as follows:

F(k, `) : ζ(i, i+ r) = 0, f or 1≤ r ≤ m
ζ(i, i+ r) = 1, f or m+1≤ r ≤ n

A(k, `) : ζ(i, i+ r) = 1, f or 1≤ r ≤ m
ζ(i, i+ r) = 0, f or m+1≤ r ≤ n

r = r mod(m+n+1) .

(2)

Due to the dependence of Jr on r, the frequency of values
of 0’s or 1’s and the relative strength of the corresponding
bonds impose different dominant ferro or anti-ferromagnetic
character to the F(k, `) and A(k, `) defined models. The pure
ferro- or anti-ferromagnetic models, corresponding to ζi,i+r =
0 or 1,∀r situations, become degenerated in the F(k, `) and
A(k, `) definitions. For the sake of simplicity, these limit cases
will be denoted by F(1,0) and A(1,0).

The rest of this work is organized as follows: in the Sec.
II we present the brief discussion of the expressions that de-
fine the Tsallis scaling while, in Sec. III, we summarize the
TM method used to evaluate the partition function and the



418 E. M. Carvalho Neto and R. F. S. Andrade

free energy. Results are presented and discussed in Sec. IV.
There we indicate, based on the behavior of the free energy,
the parameter range where we observe the validity of Tsallis
scaling. Finally, conclusions and perspectives of future works
are discussed in Sec. V.

2. THE TSALLIS SCALING CONJECTURE

The Tsallis scaling conjecture (TSC) [13, 14, 17, 18]
addresses, in an adequate way, the problem of defin-
ing any intensive energy-like thermodynamical property for
d−dimensional systems, where the energy interaction de-
creases with the distance r as r−α. Due to the presence of
long-range interactions, measured by the ratio α/d, the to-
tal energy U may increase faster than the number N of con-
stituents, i.e., the usual ratio U/N diverges in the U,N → ∞

limit. TSC generalizes, for instance, the mean field results for
the free Gibbs energy of a homogeneous ferromagnetic sys-
tem with constant interaction among any pair of spins, where
the ratio between the intensive function f (T,H,N) and the
logarithm of the partition function, logZ(T,H,N), is 1/N2.

The TSC for Gibbs free energy is synthesized by the fol-
lowing expression, where tildes indicate the re-scaled inten-
sive quantities:

f̃ (T̃ = T/Ñ, H̃ = H/Ñ) = f (T,H,N)/Ñ, (3)

where H denotes the magnetic field and the scaling variable
Ñ is defined as

Ñ =
N1−α/d−α/d

1−α/d
. (4)

In the N → ∞ limit, Ñ may be simplified by the following
expressions, which depend on the ratio between the system
dimensionality d and the exponent α:

Ñ =


α/d

α/d−1 if α/d > 1
lnN if α/d = 1

1
1−α/d N1−α/d if 0≤ α/d < 1

. (5)

The different dependence of Ñ on α clearly distinguishes the
extensive region (α/d > 1), where Ñ becomes independent of
N in the limit N → ∞, from the non-extensive region, where
Ñ explicitly depends on N in the same limit.

TSC states further that other N−dependent intensive ther-
modynamical functions, like the entropy s(T,H,N), specific
heat c(T,H,N) and magnetization m(T,H,N), have their N-
independent counterparts s̃, c̃, and m̃, defined by

s̃(T̃ , H̃) = s(T,H,N),
c̃(T̃ , H̃) = c(T,H,N),

m̃(T̃ , H̃) = m(T,H,N).
(6)

The TSC applies only to situations where the ”effective”
range of interaction decreases as a power law. For instance,
screening effects reduces the effective range of the interac-
tion, of systems of positive and negative charges interacting

via the long-range Coulomb interaction. In such situations,
intensive energies are obtained just by dividing the total en-
ergy by N, not by N2. A similar effect is observed in spin sys-
tems where all long-range couplings are anti-ferromagnetic.
Here, the screening effect is replaced by bond frustration that
results from the competing spin interactions. Therefore, in-
tensive energies are obtained by dividing the total energy of
lowest-energy spin configurations by N.

Intensive energies of mixed systems, in which long interac-
tions of alternating signs coexist, may require the introduction
of TS. This will be explored in Sec. IV, where we concentrate
on a few situations described by F(k, `),k ≥ `, sequences.

Before closing this section, we would like to state that TSC
gave rise to a series of investigations to test its validity. Sev-
eral long-range interaction models have been studied by dif-
ferent methods. They include spin models in connection with
mean-field, renormalization group and Monte Carlo simula-
tion [19–23] .

3. TRANSFER MATRIX FORMULATION

Since one must resort to numerical evaluation of the ther-
modynamical properties, we are forced to describe the infi-
nite system described by Eq.(1) with help of the finite size
approximations, which may depend both on the total num-
ber N of spins in the chain, and on the maximal range g of
interaction couplings. Thus, we consider a finite chain with
N = g+c+1≥ g+1 spins, and g distinct coupling constants
Jr, r = 1,2, ...g. Fixing the value of g, we notice that the in-
clusion of c new spins in the chain amounts to add g× c new
interactions. In Figure 1 we show, for the purpose of illustra-
tion, the interactions for the first 3 values of c for fixed g = 3.

Although the method we use herein has been discussed in
detail elsewhere [11, 12], let us briefly comment on the most
relevant steps that allow the evaluation of the partition func-
tion. Thus, let us define a 2×2 TM Mg,c by

Mg,c = (
g

∏
k=1

Pk)(Qg ·Pg)c ·Lg ≡ Rg,cLg. (7)

Lg denotes a 2g+1× 2 matrix with elements (Lg)i, j = 1(0),
when i+ j is even (odd). The matrix elements of the 2g+1×2g

matrix Qg are defined by

(Qg)i, j =
{

1 for i = j or i = j +2g

0 otherwise . (8)

On the other hand, the matrix elements of the auxiliary ma-
trices Pk are recursively defined by:

(Pk)i, j =


(Pk−1)i, j a(−1) j−1

k for i≤ 2k−1,
and j ≤ 2k

(Pk)2k−i+1,2k+1− j+1 for 2k−1 ≤ i≤ 2k,

and 2k ≤ j ≤ 2k+1

0 otherwise

(9)

where ak = exp(Jk/T ) are the problem Boltzmann weights.
These expressions lead to the partition function

Zg,c = 2λ
+
g,c = 2((Mg,c)1,1 +(Mg,c)1,2) = ∑

i, j
(Rg,c)i, j , (10)
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FIG. 1: Model F(5,1): TS free energy f̃ for α = 0.0 (solid), 0.6
(dashes), and 1.9 (dots), when c = 90,95, and g = 18,20. Good
convergence of f̃ with respect to c is observed for all values of α.
Convergence with respect to the values of g weakens as α decreases.
In the inset, differences ∆g,δ f̃ when α = 0.0, c = 95, δ = 1, as func-
tion of g ∈ [12,23], for T̃ = 0.02. Periodic oscillations are related to
appearance of a J < 0 at every sixth value of g, when the magnitude
of ∆g,1 f̃ increases and changes sign. After such jumps, the decreas-
ing tendency is resumed, indicating that f̃ converges for all values
of α.

and to the free energy per spin, fg,c =−T ln(Zg,c)/N.
From Eq.(10) it is possible to obtain expressions for the

derivatives of f with respect to T and H in terms of proper
sums of Boltzmann weights. This way, thermodynamic func-
tions like s, c and m can be evaluated with high degree of
precision, avoiding numerical differentiation procedures.

4. TS AND FREE ENERGY

We discuss results obtained by the method described in the
previous sections for chains with coupling constants intro-
duced according to the following sequences: F(2,1), F(4,1),
F(5,1), A(1,0), and A(1,1).

Since the focus of this work is the scaling properties of the
free energy, our discussion is based on numerical evidences
that support the validity of TS for several of the quoted se-
quences and values of α. However, for some other specific
sequences, the results indicate that the free energy is exten-
sive, even for values of α where the ferromagnetic model is
non-extensive. This evidences a break of validity of TS, since
Eq. 3 no longer holds.

Let us start by considering the F(k,1) sequences. We think
it is more suitable to start the discussion with the behavior of
the system for large values of m, as the pure ferromagnetic
F(1,0) chain can be reproduced when the limit k→∞ is con-
sidered. We have found that the values k ≤ 5 are sufficient
large to provide a clear picture of the validity of TSC. Our
results have been summarized in Figs. 2-5, which show the
behavior of f̃ as function of T̃ for decreasing values of k.

In order to test the validity of TS, it is important to call
the attention to the different roles played by g and N in our
approach. As explained in Sec. 2, it allows the possibility
of working with a number N of constituents larger than the
maximal distance g between interacting spins. This contrasts
with the TS definition based on Eq. (4), which makes no
distinction between N and g. As discussed previously [11], it
turns out that g, instead of N, is the relevant parameter to be
substituted in all Tsallis scaled quantities. This is related to
the fact that TS accounts for the range g of interactions, while
the number of constituents N is accounted for by dividing the
total energy by N. This has been made clear in the results for
the F(1,0) Ising chain, where one easily notes that, for small
values of g, the curves for f at different values of c are Tsallis
scaled as distinct systems.

Fig. 1 illustrates, for the F(5,1) sequence, the dependence
of f̃ on g = 18 and 20, for fixed values of c = 90,95, when
α = 0.0, 0.6, and 1.9. The collapse for the different sets of 4
curves have quite good quality with respect to the dependence
on c, but the picture changes when we consider the difference
with respect to g. First note that, the 4 curves for f̃ in the
extensive region (α = 1.9) are almost indistinguishable. Re-
garding the dependence on g, we recall that for large values
of g, TS amounts only to scaling both axes by an g indepen-
dent factor. Thus, the corresponding plots actually show the
dependence of both f and f̃ on g and, as a consequence, the
validity of TS in this particular range is an expected result.
For the values of α in the non-extensive region, we notice
that the convergence of f̃ for α = 0.6, measured by the dif-
ference between the curves for g = 18 and 20 is not so fast.
This effect is related to the stronger dependence of f and Ñ
on g for smaller values of α, and has also been found for the
F(1,0) chain. The convergence is actually much more com-
plex, as can be quantitatively estimated by evaluating the dif-
ferences ∆g,δ f̃ = f̃g+δ,c(T̃ )− f̃g,c(T̃ ). For the sake of a better
visualization, we draw in the inset values of ∆g,δ for δ = 1 as
function of g ∈ [12,23], for a fixed value of T̃ = 0.02. We
clearly see an oscillating behavior of period 6, which is re-
lated to the introduction of bonds with J < 0. Whenever this
occurs, the total energy of the system is reduced in compar-
ison to the previous value of g, causing a jump in the value
of ∆g,δ. After such jumps, the values of ∆g,δ become nega-
tive while its absolute value has again decreasing tendency. It
is also possible to notice that the height of such jumps also
decreases as g increases.

Such effects are enhanced for α = 0.0, in the sense that
both the absolute values of ∆g,δ in the decreasing region, as
well as the height of the jumps, are larger. Nevertheless, they
keep showing the monotonic behavior. Such results can be
compared with those obtained for the F(1,0) chain where TS
is valid. This is a clear indication that, despite slower conver-
gence, TS holds for the wide range of values of α.

Increasing the relative presence of AF bonds in the chain
affects the behavior of ∆g,δ f̃ in a variety of ways, which
clearly depend on the value of α and k. The changes affect
both the convergence properties as well as the period of the
oscillations. This is illustrated in Figs. 2 and 3 for models
described, respectively, by the F(4,1) and F(2,1) sequences.
We consider g = 17,18,19,20,21, the same values of c as in
Fig.1, while α = 0.0 and 0.6. Since the behavior of f and f̃
in the extensive region is much like that one for the F(5,1)
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FIG. 2: Model F(4,1): TS free energy f̃ for α = 0.6, c = 95, while
g = 16,17,18,19,20 and 21. For the whole range of values of T̃ ,
the curves clearly change their tendency of getting together when a
J < 0 is introduced in the chain. The period of oscillations is reduced
to 5. In the inset, differences ∆g,δ f̃ when c = 95, δ = 1 and g =
16,17,18,19 and 20. The behavior of ∆g,δ f̃ suggests TS is valid for
both values of α = 0.0 (back squares) and 0.6 (red open circles).

FIG. 3: Model F(2,1): TS free energy f̃ for the same values of g
as in Fig. 2, with exception of g = 16. The magnitudes of ∆g,δ f̃
(inset), for the same values of α as in Fig.2 are considerably larger.
The overall decreasing tendency suggests validity of TS for both
values of α. The oscillation period 3 fits well into the overall frame
discussed before.

model, the discussion is restricted to the analysis of conver-
gence in the non-extensive range of α.

The features in Figs. 2 and 3 confirm the overall tracts
described before. By comparing the explicit temperature de-
pendence of the curves for α = 0.6 we note a decrease in the
absolute value of f̃ when a negative coupling constant is in-
troduced at g = 15 and 20 for F(4,1), and at g = 15,18 and
21 for F(2,1). The tendency of an oscillatory dependence
of ∆g,δ f̃ with respect to g is observed again, but the period

FIG. 4: Model A(1,0): Usual free energy f = F/N as function of
T for α = 0, c = 0, g = 10,14,20. The curve collapse indicates
that f is intensive. The inset shows that TSC is not valid, as the
corresponding f̃ curves do not collapse.

is reduced, respectively, to 5 and 3. After each jump, ∆g,δ f̃
decreases monotonically with g, much as observed in Fig.1.

Now let us consider the two A sequences. Due to high
configurational symmetry, the models defined by the selected
sequences are amenable to exact results in some parameter
and temperature ranges. If we choose an arbitrary spin in
the pure AF (A(1,0)) model, its minimum energy state oc-
curs when it is anti-parallel to all other spins. As this hap-
pens to any spin, we immediately see that a large number of
frustrated bonds necessarily occurs in the large degeneracy
ground state. When α = 0, it is possible to exactly com-
pute the ground state energy E0 = −J0N/2 and degeneracy
N!/[(N/2)!(N/2)!]. This shows that the free energy is ex-
tensive, and that entropy per spin s = kB ln2 is temperature
independent. As advanced in Sec. 2, this shows that TS does
not apply. We observe that no magnetization or sub-lattice
staggered magnetization are observed, even at T = 0. In the
other α→ ∞ limit situation, the ground state of the system
is characterized by a simple minimum energy configuration
consisting of anti-parallel neighboring spins. In such situa-
tion, TS is trivially verified as Ñ = 1.

Such features were reproduced by the numerical evaluation
of the partition function. In Fig.4, the quite good collapse
of curves for g = 10,14 and 20 make it clear that the free
energy f = F/N is an intensive quantity. In the inset, the f̃ ×
T̃ curves for the same values of g confirm that, as expected,
TSC is not valid for the current model.

The situation changes continuously for intermediate values
of α in the interval (0,1). Although we cannot compute ex-
actly the value of the ground state energy, the numerical eval-
uation of Z confirms that f is intensive, as shown in Fig.5 for
α = 0.2 and the same values of g as in Fig.4. The curves in
Figs. 4 and 5 were obtained by considering c = 0. Indeed, the
exact results discussed above for α = 0 require that all spins
interact among themselves. If we take c > 0, this requirement
is no longer met and, as a consequence, the collapse of the
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FIG. 5: Model A(1,0): f as function of T for α = 0.2, c = 0, g =
10,14,20. The collapse confirms that the free energy is extensive in
the whole range of α values. The inset shows the dependence of f
on values of c > 0, when fixing the value g = 10.

different f curves, especially in the low temperature region,
is not observed. This is exemplarily shown in the inset of
Fig.5.

The next sequence, A(1,1), leads to a situation that can
be understood on the basis of the traditional ferromagnetic
chain. Indeed, the sequence indicates that the model is com-
posed of constant couplings of alternating signs, starting with
a Jr=1 < 0: spins in neighboring sites have a tendency to align
anti-parallel to each other. As the second-neighbor coupling
J2 > 0, this results no competition between the two bonds.
The same is valid for all other values of r and, as a result, the
system is decomposed into two sub-lattices, which are dis-
tinguished only by the fact that the spins align in opposite
direction. Therefore, the total energy increases faster than the
number of constituents, and TS is verified in a similar way as
observed for the quoted F(1,0) chain.

Finally, let us comment on the scaling properties of the
model described by the F(1,1) sequence. If we consider
α = 0, it is clear that frustration occurs for a very large num-
ber of bonds. The situation is much similar to the one we find
for the already discussed A(1,0) sequence. There, all pairs of
spins σiσi+r separated by even (odd) r would like to point in
the same (opposite) directions. In the F(1,1) case, the situa-
tion is the opposite, i.e., all pairs of spins separated by even
(odd) r would like to point in the opposite (same) directions.
This indicates that energy is extensive, entropy is constant,
and TS is not valid.

5. CONCLUSIONS

In this work we presented some preliminary results on the
behavior of the Ising chain with the presence of long-range

interactions of competing character. Our main focus was to
establish for which parameter interval the free energy of the
system continues to follow the scaling properties proposed by
Tsallis.

Our results were obtained within a previously introduced
framework for the analysis of the simplest ferromagnetic ver-
sion of the general problem. The procedure, which can
be formulated with the help of transfer matrices, amounts
to the precise numerical evaluation of the partition function
Z(T,N = g+ c+1), where the range of interaction and num-
ber of spins in the system have been as large as 24 and 200,
respectively.

We selected five different systems, which distinguish them-
selves by the order in which interactions with coupling cou-
plings J > 0 and J < 0 are introduced. We also discussed
some limiting situations which, due to high symmetry, are
amenable for analytical results.

In the extensive region α > 1, the value of Ñ approaches
a constant value when N → ∞, what has less impact in the
search of an intensive free energy. Because of that, we
concentrate our discussion of the validity of TS in the non-
extensive region 0≤ α < 1.

As a general result, we have shown that continuously in-
creasing the number of AF interactions on a basic model
where, initially, all J > 0 contribute to decrease the speed
at which TS is attained. We have uncovered the emergence
of periodic oscillations in the convergence process of f̃ . De-
spite the reduction in the convergence, our results show that,
as long as the number of F bonds exceeds that of AF counter-
parts, the validity of TSC is observed.

On the other hand, systems where all J < 0 do not obey
TS when 0 ≤ α < 1. Such result was obtained from exact
counting and confirmed by the numerical evaluation of the
partition function.

The situation when the number of F and AF bonds is equal
has also been addressed. We have indicated that the model
described by the A(1,1) sequence is analogous to the pure
ferromagnetic chain F(1,0). Thus, the total free energy is
non-extensive and TS is valid. Much in a symmetric way,
the behavior of the F(1,1) model is analogous to the pure
ferromagnetic chain A(1,0): the free energy is extensive and
TS is not valid for α = 0.
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