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q-entropies and the entanglement dynamics of two-qubits interacting with an environment.
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We investigate entropic aspects of the quantum entanglement dynamics of two-qubits systems interacting with
an environment. In particular we consider the detection, based on the violation of classical entropic inequalities
involving q-entropies, of the phenomenon of entanglement disappearance and subsequent entanglement revival
during the alluded two-qubits’ evolution.
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1. INTRODUCTION

Entanglement and decoherence are two closely related
quantum phenomena that lie at the heart of the present un-
derstanding of the fabric of Nature [1–4]. There is nowadays
wide consensus that entanglement constitutes the most dis-
tinctive feature of the quantum mechanical description of the
physical world. The multiple manifestations of quantum en-
tanglement are currently the focus of intense and increasing
research efforts. From the point of view of the foundations
of physics, entanglement plays an important role, for exam-
ple, in connection with the origin of the classical macroscopic
world from a quantum mechanical background [4], and also
in justifying the main tenets of equilibrium statistical mechan-
ics [5]. On the other hand, the creation and manipulation of
multi-partite entangled states have remarkable technological
applications, such as quantum computation [2, 3] and quan-
tum metrology [6]. The phenomenon of decoherence com-
prises, basically, a family of effects arising from the interac-
tion (and the accompanying entanglement-development) be-
tween quantum systems and their environments [3, 4]. Phys-
ical systems in Nature are usually immersed in an environ-
ment and inevitably interact with it to some extent. The con-
comitant entanglement developed between the system and the
environment leads to the suppression of typical quantum fea-
tures of the system, such as the interference between different
system’s states. This process constitutes the basic ingredient
of the “decoherence program” for explaining the quantum-to-
classical transition [4].

The (internal) amount of entanglement exhibited by a com-
posite quantum system undergoing decoherence tends to de-
crease as the decoherence process takes place. This decay
of entanglement has recently attracted the interest of many
researchers [7, 8] because it constitutes one of the main ob-
stacles that have to be overcome in order to develop quan-
tum technologies based upon the controlled manipulation of
entangled states [3]. It has been shown that in some cases
entanglement can completely disappear in finite times. This

phenomenon is known as entanglement sudden death (ESD)
[7–10] and has been observed experimentally by Almeida et
al. [11]. It is of clear relevance to study and understand
ESD and related phenomena occurring during the evolution
of open quantum systems, because the actual implementation
of quantum computation and other quantum information tasks
depend on the longevity of entanglement in multiqubits states.

There have been many developments in recent years con-
cerning the application of q-entropies to the study of several
physical systems and processes. The two principal members
of the family of q-entropies are the Tsallis entropy S(T )

q [12]
and the related Rényi entropy S(R)

q [13]. Research activity on
applications of these entropic measures to physics (as con-
trasted to their restricted, sole application to information the-
ory) started in earnest after Tsallis proposal in 1988 of a ther-
mostatistical formalism based on the S(T )

q entropy [12]. After
Tsallis’ 1988 pioneering work, the S(T )

q measure has been suc-
cessfully utilized in connection with several problems both
in the classical [14–23] and the quantum regimes [24–28].
Tsallis entropy is nowadays thought to be of relevance for
the study (among others) of systems governed by non linear
Fokker-Planck equations [15, 16]; systems exhibiting a scale-
invariant occupancy of phase space [17, 18]; systems with
anomalous thermostatting dynamics [19]; non equilibrium
scenarios characterized by temperature fluctuations [20]; sys-
tems exhibiting weak chaos [21]; many body systems with
interactions of long range relative to the system’s size [22];
and biological ecosystems [23]. Last, but certainly not least,
several authors have explored the relationships between the
q-entropies and the phenomenon of quantum entanglement
[25–32]. Of course, the above list is far from complete. For
other interesting applications of Tsallis entropy see [14] and
references therein.

It is worth stressing that, even if the main motivation for
studying the properties of Tsallis entropy has been its applica-
tion to the development of a generalized thermo-statistics for
the study of various kinds of out of equilibrium many body
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systems, the relevance of Tsallis entropy is not restricted to
those applications. Due to the wealth of interesting and use-
full results obtained during the last twenty years concerning
the properties of the S(T )

q measure, Tsallis entropy can now be
regarded as part of the standard tool-kit of scientists and en-
gineers that use probabilistic or information-related concepts
in their work. A remarkable illustration of this is given by
the numerous applications of Tsallis measure to the field of
quantum information (and, in particular to the study of quan-
tum entanglement). In this regard, it is highly significant that
some recent monographs on quantum information or quantum
entanglement [1, 2] discuss the Tsallis entropic measure, even
if these works don’t deal with “nonextensive thermostatistics”
at all. Concerning the applications of Tsallis entropy to the
theory of quantum entanglement, a cautionary comment is in
order. One should not be dog matic. The future is always
open: even if most current applications of the Sq entropies
to the study of quantum entanglement don’t have any direct
relationship with nonextensive thermostatistics, it might hap-
pen that in the future someone finds that there is some deep
connection between quantum non-locality and nonextensive
themrostatistics.

When analysing the effects originating on the interactions
between a quantum mechanical system and its surroundings
the system must be regarded as an open quantum system. In
order to succeed in the development of useful quantum infor-
mation processing devices it is crucial to achieve a complete
characterization and understanding, from all possible points
of view, of the aforementioned effects arising from the inter-
action with the environment. The aim of the present work is
to explore some entropic manifestations, expressed in terms
of q-entropies, of the entanglement dynamics of couples of
qubits each interacting with a reservoir in a regime where
the non-Markovian effects are important. In other words,
we are going to consider reservoirs whose correlation times
are greater than, or of the same order as, the relaxation time
over which the state of the system changes [36]. In partic-
ular, we are going to investigate the possibility of detecting
the disappearance of entanglement (related to the celebrated
phenomenon of “Entanglement sudden death”) and its sub-
sequent revival, using the violation of the classical entropic
inequalities associated with different q-entropies.

2. QUANTUM ENTANGLEMENT AND Q-ENTROPIES

Given a composite quantum system AB consisting of two
subsystems A and B, the entropies associated with the com-
posite system as a whole, S[AB], and the entropies associ-
ated with the subsystems, S[A] and S[B], allow for a direct,
information-theoretical way of characterizing the entangle-
ment exhibited by certain quantum states. A very intuitive
property of classical composite systems is that the global en-
tropy of the complete system is always larger or equal than
the individual entropies associated with each of the subsys-
tems. However, this is not always true in the case of com-
posite quantum systems. For instance, when we have such a
composite system in a pure quantum state the entropies of its
subsystems are in general not zero, in spite of the fact that
the entropy of the global system vanishes. Indeed, for pure

states of bi-partite quantum systems the entropy of one of the
subsystems constitutes a valuable quantitative measure for the
amount of entanglement exhibited by the state.

In the case of mixed states of bi-partite quantum systems it
is also the case that, unlike what happens with classical sys-
tems, the entropy of a sub-system may be greater than the en-
tropy of the global system if the composite system is in an en-
tangled state. However, the situation is for mixed states more
complicated than it is for pure states. All non-entangled states
comply with the classical entropic inequalities, but some en-
tangled states also verify those inequalities. This means that
if, for a given state, the entropy of a subsystem is larger than
the entropy of the complete system, then we know for sure
that the state under consideration is entangled. However, if
the state complies with the entropic classical inequalities, we
cannot be sure that the state is separable.

On the basis of the above considerations, it is interesting to
consider entropic differences of the form

Dq = Sq[A]−Sq[AB] (1)

as indicators of entanglement. If Dq is positive, then one can
conclude that the state is entangled, but in the case when Dq
is negative or zero, one cannot conclude that the state is sepa-
rable, for there are entangled states for which the value of Dq
is negative. Thus, in the case of mixed states, the quantities
Dq lead to sufficient (but not necessary) criteria for entangle-
ment.

Quantum entanglement gives rise to various non-classical
and counterintuitive properties of entangled states, such as
the violation of Bell inequalities [2] or the violation of the
aforementioned classical entropic inequalities. However, not
all entangled states exhibit all these non-classical properties.
Consequently, it is of considerable interest not only to deter-
mine the amount of entanglement present in quantum states,
but also to characterize which entangled states do have (and
which do not) the different non-classical features. The ex-
ploration of which states do not comply with the classical
entropic inequalities is of special interest for the following
reasons:

• As already mentioned, the violations of the classi-
cal entropic inequalities constitute the most straight-
forward entropic or information-theoretical manifesta-
tions of entanglement: a part of a physical system hav-
ing a larger entropy than the whole system.

• In the case q = 2 the quantity Sq[A]+ Sq[B]− 2Sq[AB]
(evaluated using Tsallis q-entropies) is a lower bound
for the squared concurrence of the state and is an ex-
perimentally measurable quantity [33]. For quantum
states verifying the equality S2[A] = S2[B] the alluded
measurable quantity coincides with D2. The time de-
pendent states that we are going to study in the present
contribution comply with the last equality.

• A concrete experimental procedure for detecting vi-
olations of the clasical entropic inequality (based on
Renyi entropy with q = 2) for pairs of polarization-
entangled photons has been succesfuly implemented
recently [34].
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• The separability criteria based on q-entropic inequali-
ties constitute prototipe examples of nonlinear separa-
bility criteria, which are nowadays the focus of intense
reserach activity. In particular, the entropic criteria are
stronger than criteria based on Bell-CHSH inequalities
[34, 35].

The second of the above points is particularly important be-
cause the amount of entanglement (as measured, for instance,
by the squared concurrence) is not a directly measurable
quantity. It is therefore important, both from the practical
and the theoretical points of view, to investigate in detail the
properties of experimentally measurable indicators of entan-
glement, especially if they also establish lower bounds for the
amount of entanglement.

We are going to consider entropic differences like (1) based
on q-entropies [13] . We will use the Tsallis’ entropies

S(T )
q =

1
q−1

(1−Tr(ρ̂q)) (2)

and the Rényi entropies

S(R)
q =

1
1−q

ln(Tr(ρ̂q)) (3)

In the limit q→ 1, both these entropic measures become the
Von Neumann entropy given by

S1 =−Tr(ρ̂ ln ρ̂) (4)

and in the limit q→ ∞ the Rényi entropies becomes

S(R)
∞ (ρ) =− ln(λm) (5)

where λm is the maximum eigenvalue of the density matrix ρ.
The case q = 2 is of particular interest because the q-

entropies S(T )
2 and S(R)

2 offer many advantages for both nu-
merical and analytical studies. In part this is due to the fact
that to evaluate these entropies it is not necessary to diago-
nalize the density matrix. The q-entropic measure S(T )

2 [ρ] is
usually referred to as the linear entropy of the density ma-
trix ρ in the literature, and has proven to be very useful in
the field of quantum information theory (see [37, 38] and ref-
erences therein). Furthermore, as already explained, the en-
tropic difference D(T )

2 is closely related to a recently advanced
experimentally measurable entanglement indicator [33].

3. SYSTEM STUDIED

In order to study the q-entropic characterizations of the en-
tanglement dynamics of a two-qubit system interacting with
an environment we are going to use the paradigmatic model
discussed in [9] (this model was previously studied by Gar-
raway [39] who provided its analytical solution). The model
is described by a “qubit + reservoir” Hamiltonian of the form

H = ω0σ+σ−+∑
k

ωkb†
kbk +(σ+B+σ−B†) (6)

where B = ∑k gkbk, ω0 stands for the transition frequency of
the two-level system (that is, a qubit) and σ∓ denotes the sys-
tem’s raising and lowering operators. The reservoir consists
of a set of field modes, b†

k and bk being respectively the cre-
ation and annihilation operators corresponding to the k-mode.
These field modes are characterized by frequencies ωk and
coupling constants gk with the two-level system. The Hamil-
tonian (6) may describe, for instance, a qubit consisting of
the excited and ground electronic states of a two-level atom
that interacts with the quantized electromagnetic modes asso-
ciated with a high-Q cavity. The effective spectral density of
the reservoir is assumed to be of the form

J(ω) =
1

2π

γ0λ2

(ω−ω0)2 +λ2 , (7)

where γ0 and λ are positive parameters with dimensions of
inverse time (see [9] for details).

The dynamics of the single qubit is then described by the
density matrix

ρ(t) =
(

ρ11(0)Pt ρ10(0)
√

Pt
ρ01(0)

√
Pt ρ00(0)+ρ11(0)(1−Pt)

)
, (8)

where ρi j(0) are the initial density matrix elements of the
qubit and the function Pt is given by

Pt = e−λt
[

cos
(

dt
2

)
+

λ

d
sin
(

dt
2

)]2

(9)

with

d =
√

2γ0λ−λ2. (10)

The time evolution of two non-interacting qubits, each of
them individually evolving according to (8), is then given by
a time dependent density matrix whose elements with respect
to the computational basis

B = {|1〉 ≡ |11〉, |2〉 ≡ |10〉, |3〉 ≡ |01〉, |4〉 ≡ |00〉} (11)

are [9]

ρ
T
11(t) = ρ

T
11(0)P2

t ,

ρ
T
22(t) = ρ

T
22(0)Pt +ρ

T
11(0)Pt(1−Pt),

ρ
T
33(t) = ρ

T
33(0)Pt +ρ

T
11(0)Pt(1−Pt),

ρ
T
44(t) = 1− [ρT

11 +ρ
T
22 +ρ

T
33],

ρ
T
12(t) = ρ

T
12(0)P3/2

t ,ρT
13(0) = ρ

T
13(0)P3/2

t ,

ρ
T
14(t) = ρ

T
14(0)Pt ,ρ

T
23(0) = ρ

T
23(0)Pt ,

ρ
T
24(t) =

√
Pt [ρT

24(0)+ρ
T
13(0)Pt(1−Pt)],

ρ
T
34(t) =

√
Pt [ρT

34(0)+ρ
T
12(0)Pt(1−Pt)] (12)
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FIG. 1: Plots of the concurrence C and of the quantity D(T )
q

D(T )
q (t=0)

against γ0t for different values of q for the Tsallis’ entropy. All de-
picted quantities are non-dimensional.

with ρT
i j(t) = ρT∗

ji (t). That is, the matrix ρT (t) is Hermitian.
It is also possible to obtain equations similar to (12) de-

scribing the evolution of the density matrix elements describ-
ing the dynamics of a set of N non-interacting qubits each of
them interacting with its “own” reservoir, but in the present
work we are going to restrict our considerations to the two-
qubit case.

4. ENTANGLEMENT DYNAMICS AND q-ENTROPIES

In the model under consideration it has been observed that
for some initial states, entanglement disappears at a finite
time and afterwards the entanglement gets revived [9]. Here
we want to investigate the q-entropic counterpart of this be-
haviour. In order to do that we calculate, for the initial Bell
state

1√
2

(
|00〉+ |11〉

)
. (13)

and the strong non-Markovian regime corresponding to λ =
0.01γ0, the time evolution of the entropic difference Dq, both
for the Tsallis and the Rényi entropies.

The results are shown in Figure 1 and Figure 2, where the
time evolutions of the concurrence C and of the Dq quanti-
ties are shown for the Tsallis and the Rényi entropies, respec-
tively. In these figures the entropic differences Dq are plotted
against the non-dimensional variable γ0t. Since we use the
quantities Dq as entanglement indicators (and Dq > 0 is a suf-
ficient but not necessary condition for entanglement) in Fig-
ures 1 and 2 we set Dq = 0 (indicating that no entanglement
is detected by this quantity) whenever Dq becomes negative.

It is plain from Figures 1 and 2 that the first entanglement
disappearance and its subsequent revival can be observed in
the behaviour of Dq. It also transpires from Figure 2 (and
it is suggested by Figure 1) that the limit case q→ ∞ is the
most favourable for these purposes, which is fully consistent
with several previous studies by other researchers [29–32].
Indeed, it is observed in Figure 2 that the Rényi based en-
tropic difference D(R)

∞ is the one that detects the presence of

FIG. 2: Plots of the concurrence C and of the quantity D(R)
q against

γ0t for different values of q for the Rényi entropy. All depicted quan-
tities are non-dimensional.

entanglement for the largest time periods, both prior to the
disappearance of entanglement and also during the first en-
tanglement revival. During the initial decay of entanglement
D(R)

∞ detects entanglement (that is, the concomitant classical
entropic inequality does not hold) for approximately one half
of the time interval where the two-qubits are entangled. Dur-
ing the first entanglement revival, the classical inequality is
not verified for approximately one third of the time interval
corresponding to non-vanishing entanglement. In both cases
the classical entropic inequality starts to be verified when the
squared concurrence falls below a value around 0.2. Note that
in the figures we plotted C and not C2, in order to make it eas-
ier to see the points where entanglement disappears. How-
ever, had we plotted C2 instead of C, it would be clear that
2D(T )

2 does not constitute too bad a lower bound for C2.

An analytical expression for the entropic difference D(R)
q

associated with Rényi entropy in the limit q→ ∞ can be ob-
tained for the initial Bell state (13), and it is given by

D(R)
∞ = ln

[
1−Pt −P2

t +
√

1−2Pt +P2
t

2−Pt

]
. (14)

The entropic differences corresponding to q = 1/2 are con-
siderably less efficient as entanglement indicators during the
aforementioned processes of entanglement decay and revival.
On the other hand, it can also be appreciated in Figures 1 and
2 that the cases q = 2 and q = 7/2, even being not as good
as the case q = ∞, are almost as efficient as this limit case.
This feature of the q = 2 entropic differences is of particular
interest because, in the present case, D(T )

2 coincides with a
recently discovered experimentally measurable entanglement
indicator [33].

None of the entropic differences Dq based on either the
Tsallis or the Rényi entropies are able to detect the second en-
tanglement revival occurring after its second “death”. How-
ever, these later events are less important than the first entan-
glement revival, because the actual amount of entanglement
exhibited by the two-qubits system during the second entan-
glement “resurrection” is rather small and, consequently, of
limited practical relevance.
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5. CONCLUSIONS

We have explored some entropic manifestations of the en-
tanglement dynamics of a two-qubits system interacting with
an environment. We have investigated the time behaviour
of entropic differences Dq = Sq[A]− Sq[AB] between the q-
entropy of one of the alluded qubits and the q-entropy of the
two-qubits. The quantity Dq is an entanglement indicator in
the sense that Dq > 0 is a sufficient criterion for entanglement.
We computed the time evolution of Dq for various values of
q, both for the Tsallis and for the Rényi entropies. Classical
entropic inequalities are violated for (approximately) one half
of the time interval corresponding to the initial entanglement
decay, and for one third of the duration of the first entangle-
ment revival. In both cases the classical inequalities are veri-
fied when the concurrence falls below a value around 0.2. It
is interesting to note that this behaviour shows some similar-
ities with the behaviour exhibited for this system by the Bell
inequalities. It was found in [10] that the Bell inequalities are

satisfied (and, consequently, they don’t detect entanglement)
during an appreciable part of the first entanglement revival.

We found that the limit case q→ ∞ constitutes the most
favourable one for detecting the first decay of entanglement
and the subsequent entanglement revival, in agreement with
results obtained previously by other researchers in different
contexts [29–32]. However, the case q = 2 proved to be al-
most as good as the limit case q→ ∞ (particularly during the
first phase of entanglement decay). This is specially relevant
because, in the present case, D(T )

2 constitutes an experimen-
tally accessible indicator of entanglement.
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